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1* Introduction* In a recent paper [3], D. V. V. Wend made use
of the Green's functions g2(x, s), g3(x, s) for the boundary value problems

u" = 0; ΐφi) = u(a2) = 0, (αx < αa) ,

u'" = 0; u(ax) = u(a2) = u(a3) = 0, (αx < α2 < α3) .

In particular, he showed that if aλ ^ 0, then

I g2(x, s) I < α2 , | flr3(α, s) | < αl

for αx g x, s <L α2 or ax ^ a;, s ^ α3 respectively. He conjectured that if
gn(x, s) is the Green's function for the boundary value problem

(1.1) u{n) = 0; u{aΎ) = ... = u(an) = 0, (a, < α2 < < an) ,

then

I gn(x, s) I < al~\ aλ^x,s^an ,

(if aλ ^ 0) and states in a footnote that this conjecture has been verified
for n < 6. Assuming this conjecture valid he uses the inequality to
obtain a lower bound for the mth positive zero of a solution of the
differential equation

(1.2) y{n) +f(x)y = 0

where f(x) is continuous and complex-valued on 0 <£ # < °°. In this proof,
all zeros of the solution are counted as though they were simple zeros.

In this paper, we consider a more general boundary value problem
allowing for multiple zeros of y(x). Let gn{x, s) now denote the Green's
function of the differential system

α 3) \
W ) tfifl) y"(a) yΛi) (μt) = 0 .

where ax < a% < < ar, 0 ^ kiy kx + k2 + + kr + r = n. In §2, we
shall prove that

r

Π | τ π |

(1.4) \ ( ) \ ^
' — ' " - (n-l)l(ar-ai) ~ V n I n\

for aλ< x, s < ar. In the case r = n, Wend's conjecture is thus verified,
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and improved. In §3, we apply this inequality to differential equations
of the form (1.2), and more generally to nonlinear differential equations

(1.5) y{n) +f(χ,y,yf, . . . f i/(-1}) = 0 ,

to obtain lower bounds for the mth zero of solutions. The inequality
(1.4) also leads to an extension of an oscillation criterion of Liapounofϊ
for the case n — 2.

2. The Green's function* If gn{x, s) denotes the Green's function
of the system (1.3), then gn satisfies—and in fact, is defined by—the
three conditions:

1° Qny 9n, , 9(n~2) are continuous functions of (x, s) on the square
dit^x, s ίg αr, while g{n~ι) is a continuous function of (x, s) in each of
the two triangles ax ^ x ^ s ^ ar and αx <L s ^ x gΞ ar with

g(Γ1] (β + , s) - g{

n

n~1] (s-, s) = - 1 , a, < s < ar .

2°. #iw) (ίc,s) = 0 in each of the two triangles above.
3°. For each s, with ax < s < ar, gn(x, s) satisfies the n boundary

conditions of the system (1.3).
In the above statements (and throughout this paper), all derivatives

are taken with respect to x. For a thorough discussion of Green's
functions for much more general systems than (1.3), see Toyoda [2].
The existence of gn depends on the fact that the system (1.3) is incom-
patible. We need not verify this directly since the result will follow
from our method of proof which is by induction.

Although the conditions l°-3° define gn on the square a1^x9 s ^ αr,
we want to extend the domain of definition of gn to the entire plane.
We assert that this can be done in such a way that

( L ) gn, g'n, •• ,#ίΓ~2) are continuous for all (x, s), while g ^ is
continuous in each of the half-planes x ^ s and s <£ x, with g{χ~1] (s + , s) —
flrίΓ"1} (β—, s) = - 1 , - c o < s< ex..

( ΐ l n) g{n} (x, s) == 0 in each of the above half-planes.
(IΠ») For each s, (— oo < s < co), gn(χ, s) satisfies the w boundary

conditions of the system (1.3).
(IVW) gn(x, s) = 0 if s ?g min (alf x), or s ^ max (αr, x).
We proceed to prove these assertions by induction. Suppose they

are valid for any system of the form (1.3). If aά is any zero of a
boundary value problem of this form for the equation y{n+1) — 0, the
corresponding set of boundary conditions is either of the form (1.3) with
kj replaced by kj + 1 (in case aό is not a simple zero for the new system),
or is of the form

α,) = 0 ,
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where now kλ + + fc,-i + kj+1 + + & r + r = w + l . Let gn+1 {x, s)
be the Green's function for this new system. We assert t h a t

(2.2) gn+1(x, s) = — Ux - s)gn(x, s)
n I

_ (α, - »)gJN+»(»,, s) {χ _ ή / x - gt y.+n
(fey + 1)! j=i\ α, — α^/ J

in the first case noted above, while

(2.3) gn+1{x, s) = 1 {(s - «)(/.(», s) - (α, - s )^(α, , s

in the second case. Note that (2.3) is formally included in (2.2) by setting
kj = - 1 in (2.2). In the sequel we work with (2.2) only; (2.3) will follow
by making use of this formal identity. We remark that gn is defined
by the conditions l°-3° in 2(r — 1) ' 'pieces'', an explicit determination
of any "piece" requiring the solution of n nonhomogeneous linear
equations. For this reason, the recursion relations (2.2), (2.3) may be
of some interest in themselves.

For brevity, set

wη^'sUχ-a^ π
)! *

For each s, P(x, s) is a polynomial of degree n in x. If k3- < n — 2 it
follows from our induction assumptions that P, as well as all its derivatives
with respect to x, is a continuous function of (x, s) in the entire plane.
This also holds if k3? = n — 2 because of the factor (α3- — s), provided
we define P{x, a3) = 0. We also note that

P{m)(aif s) = 0, 0 ^ m ^ ki9 i Φ j ,

(2.4) P ( m ) ( α y , β) = 0, 0 ^ m ^ fcy ,

ah s) = (α y - β)flr<*'+1)(αy, β) .

(In the case k5 = — 1, the second of the identities (2.4) does not appear.)
Differentiating (2.2) partially with respect to x, we obtain

flfi+ifc, s) = — {(a? - s)flfi(aj, s) + flfw(a?, s) - P'(α?, s)} ,

ΛVi(», s) = - {(x - β)ffϊ(», β) + 2g&x, s) - P"(^, β)} ,
n

= — {(a? - βtoίΓ'ίs, 8) + m ^ - 1 } ( ^ , s) - P ( m )(x, 8)} ,
n

1 ^ m ^ n + 1 .
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By our induction assumptions, together with the preceding remarks
concerning P(x, s), it follows that gn+1, gή+i, •• ,flΰ+ϊ2> are continuous in
the entire plane. The same is true of g{n+i\ because of the factor
(x — s). Finally, for x Φ s,

9 s) = -L {(x - s)g{:){xi s) + ng[:~ι)(x, s) - PM(x, s)} ,
n

so that

1^
n

f s) - g{

n

n-1](s-, s)} = -

and condition (/n+1) is thus satisfied. Condition (Πn+1) is also satisfied
since g™ = 0 and P{n+1) Ξ O in each of the two half-planes x ^ s and
s ^ x. For the boundary conditions we have

gimλ(aif s) = l {(α, - s)glT\aίf s) +
n

a,, s) - P^(aif s)} = 0

for 1 g i g r and 0 g m g kiy using the first two of (2.4). Using the
last of (2.4), we also see that ff'fα^sjΞO, and (ΠIn+1) is satisfied.
Finally, suppose s S min (alf x) so that gn{x, s) = 0, and hence also
gnJ+1)(ajf s) = 0 since s ^ αx ^ αJβ Thus, by (2.2), the first of conditions
(IVn+1) is satisfied, and similarly, so is the second.

For n — 2, we have explicitly

— oo < s

(2.5) , β) -

/γ Q
tΛ/ O ,

0,

(x — c

a.

(s-a

a.

0,
s — x,

Ϊ — Λ]

i — 0]

- β )
>

-x)

L

ΛJ ^ S,

S ^ X,

X ^ 8,

S ^ X,

X ^ S,

^ 8 ^ α 2 ,

α2
<

from which one easily verifies that the conditions (I2)-(IV2) are satisfied,
thus completing the induction for all n ^ 2.

Our goal now is to obtain an upper bound for \gn(x,s)\. It will,
however, be easier to work with the related function Gn(x, s) defined by

(2.6)
gn(x, s) = Gn(x, s) Π (x

i
for x Φ α« .

(α4, s) = (fci + 1)! Π (di - dm)km+1 Gn(aiy s) for x = at .

We note that for each fixed s Φ aif Gn(x, s) is continuous for all x. If
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k{ < n — 2, Gn(x, at) is also continuous for all x, while if ki — n — 2,
Gn(x, a,) has a finite jump at x = a{ and is otherwise continuous. (The
case kj = —1 is again included in (2.6), the factor (x — α,)fc^+1 becoming
unity in this case.) We now have

gn+1(x, s) = Gn+ί(x, s) (x - as) U(x- α<)*«+1, x Φ a, .
ΐ = l

Using (2.2) and (2.6), we also have

= 1 {(a- - 8 ) Π (a? - a%

= I n (a? - α,
m

n{x, s) - (αy - s) f[ (x - ax)^Gn{ah s)\

(», β) - fay - e)Gw(a i f β)} ,

so that

(2.7) (x - aj)Gn+1(x, «) = i {(x - s)Gn{x, s) - (a, - s)Gn{ah «)} .

We note that for all n ^ 2, (IVTC) gives

(2.8) Gn(x, s) Ξ 0 for s g min (α1; x) and s ^ max (ar, x) .

We now prove by induction that

1 1

(2.9)

(n — 1)1 ar — x '

1 1
(n - 1)! ar-a,'

1 1

=oo < s < alf x ^

- 1)! x - αx '
 α r < s < oo, s ^ a;.

For w = 2, (2.5) gives

\G%(X,8)\ =

( « 1

( « 2

( a ? -

(X

(s — x
- x) (α2

- x) (α2

(β-α,

- aλ) (α2

-αθ(*

- x ) '

- O i ) '

v t

-a,)'

X ^ 8,

α2 ,

α 2 < s < o o , s ^ Ξ s c ,

from which (2.9) is immediately verified for n = 2.
We will ^ϊrsέ prove (2.9) under the assumption that gn+1 has at



806 PAUL R. BEESACK

least three distinct zeros. Taking j = 1 in (2.2) and (2.7), we have for
— oo < s < a19 x ^ s,

G m + 1 (» , β) =

by (2.8); hence

) = i- ULZJ- Gn(x, s) - -^—s- Gn(aly s)\
n I x — α x # — α 2 J

w aλ — a? w! α r — x

Similarly, taking j = r in (2.2) and (2.7) we obtain for α r < s < oo, s <£ #,

I ~ " 7 f / ~ ± \ — 7 / 1 I ~ " 7 ( < \ 7 / \ *

n x — ar nl x — ax

Note that the above work is valid whether ax or ar are simple zeros of
gn+1 or not. Also, the first inequality is valid even when r = 2 provided
&! is not a simple zero of gn+1, and similarly for the second inequality
provided ar = α2 is not a simple zero of gn+1.

In order to complete the induction on the middle inequality of (2.9),
we suppose first that α2 < s < ar and s ^ x. Taking j = 2 in (2.2) and
(2.7), we obtain

I G w + 1 ( # , s) I ̂  — { ^ ~ S I GW(OJ, s) I + s ~ α 2 I Gn(a2, s) |

nl ar — aλ

If, however, αx < s <£ α2 and s ^ a;, we again take i = 1, whence

(2.10) I G.+1(», β) I ̂  - { J L z A . I G%(X, s) I + 1 ^ 1 ^ | Gn(aus) \\
n I x — αx x — &! J

^ 1 1
n\ ar — α x

if »! is not a simple zero of gn+u or

I Gn+1(x, s)\=j^ IZl1 ' G*(αi' S)' - i f α l α

if aλ is a simple zero of gn+1. (In this latter case, we used (2.8) and
the first of inequalities (2.9).)

Similarly, if ax < s < αr_x and x ^ s, we take i = r — 1 in (2.7) to obtain
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I Gn+1(x, β) I ^ i - { S~x I Gu{x, s) I + **-* ~ s I Gn(ar.19 s) \\
n I αr_χ — x α r _ x — a? J

n\ ar — aλ

If αr_i S s < ar and x ^ s, we again take j = r, whence

(2.11) I Gn+1(x, s) I ^ — { ^""^ I G Λ (» , s) | + ar ~ s \ Gn(ar, s) \
n I α r — x ar — x

^ 1 1

if α r is not a simple zero of gn+lf or

, β) I = i ^ ^ ^ - 1 G.(αr, s) \ ^
n ar — x n\ ar — ax

if α r is a simple zero of gn+1.
We now complete the induction in the case that gn+1 has only two

distinct zeros. For n ^ 2, at least one of al7 a2 must be a multiple zero
of gn+1. Suppose a2 is a multiple zero of gn+1. Let #w(x, s) denote the
Green's function for the boundary conditions

V(aύ = »'(«!> = = »(fcl)(αi) - 0 ,

( t t l) - 0 ,

and gn+1(x, s) the Green's function for these boundary conditions with
k2 replaced by k2 + 1. For any a with ax < a < α2, let 0»+i(fic, s; α) denote
the Green's function for the boundary conditions of gn together with
the condition y(a) — 0. Let Gn(x, s), Gn+1(x, s) Gn+1(x, s; a) denote the
related functions defined by (2.6). By (2.7)

Gn+1(x, s) - i - { x~s Gn(x, s) - ^ J Z l Gn(a2, s)\, x Φ a 2 ,
n i x — a2 x — a2 J

Gn+1(x, β; α) = 1 \^—?- Gn(x, s) - ^ - 1 G%(a,
n ix — a x — a

For each s φ α2 and a? =£ α2, we have

lim Gn+1(x, s; a) = G»+1(α?, s)

since G%(α, s) is a continuous function of a for any s Φ a2. Since we
have already established
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,
nl a2 — x

\Gn+1(x,s;a)\ ^

1, x <^ s

, αx < s < α2, — co < x < oo ,
w! α2 — aτ

1 1 α < s < c o s<x
nl x — a±

 2 ~~

the same result holds for \Gn+1(x, s)\. The proof of (2.9) is now complete.
From (2.6) and (2.9) it follows that, for each n ^ 2, we have

(2.12) \gn(x,s)\ ^ / - ,
(n - 1)1 (ar - a,)

We now prove t h a t

(2.13) Π I x - a, |fc*+1 ^
i

α,<s<αr, -

n n
for ai^x^ar,

which will complete the proof of (1.4). Here, r ^ 2 , 0^kίf aλ<a2< < α r ,
and fci + &2 + + kr + r = n. We note that equality is attained in
(2.13) for r = 2, kλ = 0, &2 = n - 2, a? = [(w - l)αx + α2]/^, or for r = 2,
&! = ^ — 2, k2 = 0, and a? = [(w — l)α2 + αj/w.

Instead of proving (2.13) in the form stated, we will prove

(2.13,) Π (x - a,) A) 1 (an - axγ

where αx ^ α2 ^ ^ a». As a first step, we prove

for aλ ^ a? ^ α w ,

(2.14) Π (* - at)
.(a -αO -^α, - *),

To this end, suppose a3 < x < α i + 1 . If cc — αx ^ αw — x, then

Π (» - α4
^ (a? ^ (a? - a^~\a% - x)

if x — αx ^ αw — x (and α^ < x < α i + 1 ) , then

Π (x - a,) ^ (x - ax)\an - ^(x- a,) (an -

proving (2.14). Now, setting fλ{x) = (x — αx) (an — #)w~\ we see that
fiix) has an absolute maximum on aλ < x < an when a? — [(^ — l)ax + an]ln.
Similarly, f2(x) = (a? — α^^'Xα,, — cc) has an absolute maximum on
ax < x < an when x — [(n — l)an + a^/n. The inequalities (2.130 and
(2.13) now follow by computation.
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There remains the question as to whether the above inequalities
are best possible. The inequality (2.9), or rather the restriction

(2.15) \Gn(x,8)\£- — I -, ax<s<arf - c o <χ< oo ,
(n-ΐ)l (ar - α2)

is best possible. Indeed, equality holds in (2.15) for precisely the cases
in which equality was attained in (2.13), that is, for r = 2, kx = 0, k2 = n — 1
and for r = 2, kx = n — 2, k2 = 0. For the first of these cases we shall
show that

(2.16) Km \Gn(x,a2)\ = 1

(n — 1)! (α2 — αx)

which will prove that (2.15) is best possible. Indeed, taking j = 2 and
s = α2 in (2.7), we have

G»+i(α?, α2) = — G%(α?, α2), x Φ a2,

so that (2.16) holds for {n + 1) if it holds for n. One easily verifies
that (2.16) is valid for n = 2. Similarly, for the second case noted above,
we have

lim
* - > < * ! - (n — 1)1 (a2 — ax)

It seems likely that equality is possible in (2.15) only in these two cases.
Nevertheless, the inequality (1.4) is not the best possible, even in

the simple case r — 2, kx — 0, k2 — 1, when (2.15) is best possible. We
leave it to the reader to verify that in this case

with equality holding for s = 1/2 {(3 - T / Ί Γ K + ("l/ΊΓ - l)α2} = s0, and
α? = (a2s0 — af)l(a2 + s0 — 2ax). This is an improvement over our estimate
(1.4) which, for this case, is

3* Applications* Consider the ordinary differential equation

(3.1) y { n ) + f(x, y,y',---, y{n~X)) = 0 ,

where we assume that / is a continuous, complex-valued function for

a>i ^ x ^ αr» and for all 2/, ̂ /', , 2/(w~~υ, and
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(3.2) \f(x,y, •• ,» (- 1 )) |^λ(»)l»l

in this domain, where h(x) is a nonnegative continuous function with
h(x) ΐ θ on aλ ^ x ^ ar. Suppose (3.1) has a non trivial solution y(x)
satisfying the boundary conditions

(3.3) v i a , ) = y ' i d i ) = •• = y ^ f a ) = 0 , l ^ i ^ r ,

where ax < a2 < < ar9 0 ^ &*, fcx + k2 + + kr + r = n. Then
is a solution of the linear nonhomogeneous equation

y™ = -/[&, y(s), ϊ/'(αθ, , ^ - " ( α ) ]

which satisfies the linear homogeneous boundary conditions (3.3). By
Theorem 1 of [2] it follows that y(x) satisfies the integral equation

(3.4) y(x) = \argn{x, s)f[s, y(s), . . , ^ - " ( β f l d β , a, ^ x ^ ar,

where gn(x, s) is the Green's function of the system (1.3). Taking x to
be the point—or one of the points—at which | y(x) \ assumes its maximum
value on ax ^ x ^ α r, we obtain

(3.5) 1 < \ar\gn(x,s)\h(s)ds,

by (3.2). Hence, using the inequality (1.4),

(3.6) 1 < ( i ^

\ n
The inequality (3.6) is thus a necessary condition for the existence

of a solution of the boundary value problem (3.1), (3.3). If the system
(1.3) is self-adjoint, we may improve this necessary condition. The system
(1.3) is self-ad joint if n — 2m, r = 2, and the boundary conditions are

ί3 7) \v(μi) = y'{ai) = ' = y { m

The Green's function is now symmetric, and by (2.12) we have

| g . ( * , β)l - \g.(8, x)\ S ^ " ai]l(f2 ~ S)\ , a x < s < a 2 .
(2m — 1)! (α2 — α^

On substituting this in (3.5), we obtain

(3.8) 1 < — -f- [\s - aT{a2 - srh(s)ds
(2m — 1)! (a2 — aj Uλ

as a necessary condition for the existence of a solution of the boundary
value problem consisting of (3.1)—with n = 2m—and (3.7).
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We may adopt a different point of view and use (3.6) or (3.8) to
obtain an extension of the following oscillation criterion due originally
to Liapounoff (cf. [1]): / / y"(x) and y"{x)y~\x) are continuous for
aλ ^ x ^ a2, with y{aλ) — y(a2) = 0, then

(3.9) \°1\y"y-1\ dx >
a2 —

By taking / = - y^{x)y-\x)y in (3.1), h(x) = \y(n)(x)y-\x)\ in (3.2), (3.6)
leads to the following extension: If y{n){x) and y{n)(x)y~1(x) are continuous
for a1 ^ x g α r, and y(x) has n zeros (counting multiplicity) including
a1 and ar, on ax ^ x ^ α r, then

(3.10) ί"r| dx

This reduces to (3.9) when w = 2. Similarly, using (3.8) in the self-adjoint
case: If y{2m)(x) and y{2m)(x)y~1(x) are continuous for aλ ^ x ^ α2,
2/(fc)(^i) = 2/(fc)(O = 0 / o r 0 ^ Jfc ̂  m - 1, then

(3.11) ( % - αθm(α2 - α?)« |τ/ ( 2 w ) (^- χ (^) | dx > (2m - 1)! (α2 - α j ,

(3.12) (α2| τ / ( «(^-^) I dx > (fm ~ 1 } ' 2 T

The inequality (3.12) also reduces to (3.9) when m = 1, but is better
than (3.10) for n = 2m ^ 4.

Next we turn to the question of obtaining a lower bound for the
rath zero of solutions of the linear equation

(3.13) y^ + h(x)y = 0

on an interval /: x0 <£ x < oo. cf. [3, Theorem 5]. We suppose that h(x)
is continuous, complex-valued, with h(x) Ξ£ 0 on I, and

(3.14) \~\h(x)\dx = K.

Ifcbi^^i^ ^ dm are m consecutive zeros of any solution of (3.13)
on the interval I, then for m^n

(3.15) am > aλ +
 n - V (ra - ^ + 1) [(^ - 1)!] m

n — 1 f K

To prove this, we first note that for the equation (3.13)—but not
necessarily for (3.1)—no solution can have a zero of multiplicity greater
than (n — 1) at any point of J. Hence, if a{ 5g ai+1 ^ ^ α ί+%_! are
n consecutive zeros of a solution of (3.13) on / t h e n a{ < ai+n-u and (3.6)
applies to give
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(3.16) (—"-JTw! < (ai+m-i - ad"'11^"') h(x) \ dx .

Suppose m = qn + s, where q ^ 1, 0 ^ s < n — 1, so am ^ agn. Taking
i = 1, n + 1, , (q — l)w + 1 in (3.16) and adding these inequalities gives

(«) I dx ,- ^ — ) gw! < Σ [din - α ( i _ 1 ) w + 1 ] ^ 1

whence, since qn — m — s ^ m — n + 1,

(3.17) (-±J)n~\m - n + 1)[(n - 1)!] < (am - a^ [m\h(x)\dx .

The inequality (3.15) follows at once from (3.17). As in [3], (3.17) can
be used to obtain a lower bound for am even when K = oo.

In case m > 2n — 1, these inequalities can be improved slightly, as
follows, lί m — qn + s, with tf^l, 0 ^ s ^ n — 1, there exists precisely
one integer r ^ 1 such that

rn — (r — 1) ^ m < (r + l)w — r .

Now taking i = 1, w, 2^ — 1, , (r — l)w — (r — 2) in (3.16), and
proceeding as above, we obtain

(—^—V'Vnl < [α_(r_1} - α j - 1 [^^IHx)] dx .

Since r(w — 1) + n > m and αm Ξ> «,.»_(,._!,, we have

n — j

this yields the estimate

(3.18) am > a,
n — 1 r (^ — l)K

which is a slight improvement on (3.15) for m > 2n — 1.
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