ON COMPLEX APPROXIMATION
L. C. EGGAN and E. A. MAIER

1. Let C denote the set of complex numbers and G the set of
Gaussian integers. In this note we prove the following theorem which
is a two-dimensional analogue of Theorem 2 in [3].

THEOREM 1. If B,veC, then there exists ucG such that
|IB—u| <2 and

27/82 if |B—r| <118

18 —ully—ul< VZ2I|B—7|/2 if |B—v|=vIIB.

As an illustration of the application of Theorem 1 to complex
approximation, we use it to prove the following result.

THEOREM 2. If 0¢C is irrational and ac C, a = md + n where
m, n €@, then there exist infinitely many pairs of relatively prime
integers %,y € G such that

|2(xd —y —a) < 1/2.

The method of proof of Theorem 2 is due to Niven [6]. Also in
[7], Niven uses Theorem 1 to obtain a more general result concerning
complex approximation by nonhomogeneous linear forms.

Alternatively, Theorem 2 may be obtained as a consequence of a
theorem of Hlawka [5]. This was done by Eggan [2] using Chalk’s
statement [1] of Hlawka’s Theorem.

2. Theorem 1 may be restated in an equivalent form. For
u, b, ce C, define

g, b,0) = u — (b +o)|u—(0—0).

Then Theorem 1 may be stated as follows.

THEOREM 1. If b,ce C, then there exist u,, u,€ G such that
(i) =0+ <2 u,—0—c)|<2

and for v = 1,2,

27/82 if |e| < 1/11/32

V2 Je| if |e| = V1132,

It is clear that Theorem 1’ implies Theorem 1 by taking

(i) g(us;, b, ¢) <
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b= +7)2 c=B—-7)2.

To see that Theorem 1 implies Theorem 1’, first apply Theorem 1 with
B=b+¢, vy=b—c¢ and then apply Theorem 1 with 8 =0 —c¢,
vy==>b+c.

3. We precede the proof of Theorem 1’ with a few remarks
concerning the nature of the proof.

Given b, ce C, introduce a rectangular coordinate system for the
complex plane such that b has coordinates (0,0) and b + ¢ has co-
ordinates (k, 0) where k£ = |¢|. Then if u € C has coordinates (z, ¥)

g (u,b,e) = |u —b—cllu—b+cf
= ((x — k) + y¥’)(x + k) + v
= (& + y* + k) — 4kc® .

Now for k a positive real number let R(k) be the set of all points
(xz, ¥) such that

(27/32 if k< 111/32

2 2y R — Al
@ + v+ ) <lew if k=12,

Theorem 1’ depends upon showing that R(k) under any rigid
motion always contains two lattice points, not necessarily distinct.
These lattice points correspond to the integers u, and u, of the theorem.

For k> 1)V"2, R(k) contains two circles with centers at

(£VE =1J2, 0)

and each of radius 1/v'2. Each of these circles contains a lattice
point no matter how R(k) is displaced in the plane. In this case,
u, and u, correspond to these lattice points.

For k < V/11/32, R(k) contains the circle with center at (0, 0)
and radius 1/v"2. In this case, u, = u, corresponds to a lattice
point in this circle. Finally if V11/32 <k < 1/v'2 R(k) contains a
region described by Sawyer [8] which always contains a lattice point
no matter how it is displaced and u, = u, corresponds to a lattice
point in this region.

4, We turn now to the proof of Theorem 1’. As above, for given
b, ce C, introduce a coordinate system so that b has coordinate (0, 0)
and b + ¢ has coordinates (k, 0) where k = |c|. Then if weC has
coordinates (x, y),

(1) g*(u, b, ¢) = (& + y* + k?)* — 4k*.
Suppose that |¢| =k >1/1/2. For i=1,2 let
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where d; = (—1)'** and let u;€ G be a closest Gaussian integer to

d;(l.e.|d; —u;| =|d; — t|, teG). Then, omitting the subscripts,

ld— @ +de)|=|0VE —12—=0k|=k—-VE—-12<1V2.
Hence
lu — (b +dc)| < |u—d|+]d—(b+d)|<21/V2)<2

and condition (i) is satisfied.
Now let u; have coordinates (x;, ;). Then, again omitting sub-
scripts, since |d — u| < 1/1/2, we have

(2) (@ —ovVE—12¢+y <1/2,

equality holding if and only if d is the center of a unit square with
Gaussian integers as vertices. Also, since for any two real numbers
a and b, 2ab = a® + %, equality holding if and only if @ = b, we have

(3) 200V —12 <o+ k* — 1/2,
equality holding if and only if « = 1k* — 1/2/6. Thus

(1 + 202V'E® — 1/2) = 402V'E* — 1]2 + 4a*(k* — 1/2) + 1
< 22 + 2k — 1 + 4x’(k* — 1/2) + 1
= k2 + 42%)

and since k& and k*2 + 4% are positive,

1+ 200vV'k* —1/2 < kV'2 + 4%,
Hence

(4) 12— (@ —0VE —12 =1+ 22 VE — 12 — 2* — k?
<kV2+ 40— — k2,

Using (4) and (2), we have
CERYPSEV2ZEar (@ -0V =122 —1/2 4+
<kV2 + 427,
(5) (@ + K + v°)* < 28 + 4k .

Thus, from (1) and (5), g°(u, b, ¢) < 2k?, the equality holding if and
only if equality holds in both (2) and (8). If equality holds in (2),
then there exist four possible choices for %, at least two of these
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choices having unequal first coordinates. Now equality holds in (3) if
and only if, for fixed k&, # is unique. Thus if equality holds in (2), w
may be chosen so that equality does not hold in (3). For this choice
of u, g%(u,b,c) < 2k* which establishes condition (ii).

Next suppose |¢| =k < V11/32. Now there exists ueG such
that | —b| <1/v/2. Thus

[u—@xe)|=|lu—b|+lc|<21/V2)<2.
Also, if u has coordinates (x, %), #* + ¥* < 1/2 and thus

g, b, ) = (@ + )" + 2 — 7 + K
1 11\ 1 11\? 27\?
2 4oy L 24) = (4L
<p+2(mp)e ) =G
which establishes the theorem for |c| < 1V/11/32.

Finally, for v11/82 < |¢| =k < 1/V'2, we use a result due to
Sawyer [8] which states that the region defined by |z| < 3/4 — ¥,
|y | =< 1/2 always contains a lattice point no matter how it is displaced
in the plane. Thus there exists we G with coordinates (x,y) such

that |z | < 3/4 — ¢, |y| < 1/2.
If || < 1/2, then

lu—@bxte)|<|u—>bl+lcl=Va@F+y¥+c|=V2.
Also since |x* — k*| < 1/2,
9’(u, b, 0) = (& — k') + 2%(a* + K) + v*
1 1/1 1 1

11
=4 2=(=4+ = — === 2]|c].
<4+ 4<4+2)+16 16 el

If 1/12 = |x| < 3/4 — ¢, then

9 1 1 1\* 9
2 2 <L Y oy = 2 _. = <.__.
x+y=16 2y+y 2+<‘!/ 4>_16
Hence
—T 3 1
— (b < 1% 2 <2 4+ - <2
lu—G+ol=Va+ ¢ +lel=+ =<

Also —2*° < —1/4 so y* — 2* < 0. Thus

9’(u, b, 0) = (&* + ') + 2K(y" — #°) + &

9 \: 111 _ s
< (35) +O+ g <gg Sl

This completes the proof of Theorem 1.
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5. To prove Theorem 2, we require a well-known result of Ford
[4] which states that for any irrational 6 € C, there exist infinitely
many pairs of relatively prime h, k€ G such that

(6) | k(k0 — Rh)| < 1V 3 .

For 6 and a is in the statement of Theorem 2, choose &,k
satisfying (6) and let tc€ G be such that |t — ka| <1/ 2. Since h
and k are relatively prime, there exist 7, s€ G such that rh —sk =1t
and hence

(7) |r*h — sk —ka| < 1V'2 .
Now, in Theorem 1, let

B:'rﬂ—s—a

w—n

r
k
and set

x=17r—Fku y=s— hu

where % is the Gaussian integer whose existence is guaranteed by the
theorem. Then x, y€ G and

(20 —y —al||lz|=|B—ul|ly—u||k||kd —h].
Hence if |8 — 7| < V'11/8 we have, using Theorem 1 and (6),

27 27 1 1
0 — 1y — 20 Kk — 18 1L 1
| % Y a]|wl<321( h)l<32 1/3<2

If |B—v|=V11/8, using Theorem 1 and (7), we have
|20 —y —al|a] < %V?lv—ﬁ]]k(kﬁ—hﬂ

1 Ve hr — ks — ka 1
==1V2|—="_ "2 kkl —h)| < =.

2 k(k6 — h) | ( )= 2
Thus for each pair %, k satisfying (6) we have a solution in G of
(8) |20 —y —a)| < 1/2.

To show that there are infinitely many solutions to (8), we note
that since |8 —u|< 2 and a # m0 + n, m,ne G, we have with the
use of (6).

(9) O0<|af—y—al=]|B—ullkd—h|<2/(V3]k]).

If there are only a finite number of solutions of (8), let M be
the minimum of |20 —y — a| for these solutions. Then from (9), for
every h, k satisfying (6) we have | k| < 2/(V/3M) and
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|h|=|h—kO|+ k0| <1/(V3|k]) +|kI|0|<N,

say. But this is impossible since there are infinitely many pairs
h, k€ G which satisfy (6).
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