A TOPOLOGICAL MEASURE CONSTRUCTION

W. W. BLEDSOE AND A. P. MORSE

1. Introduction. The purpose of this paper is to give two results
in topological measure theory that generalize two well known results
for metric spaces.

The principal one of these, which is given in § 3, concerns the
construction of a measure from a nonnegative set function. Cara-
théodory [1] has done this in a natural way in defining Carathéodory
linear measure in a finite dimensional Euclidean space. It is well
known that this Carathéodory construction can be applied in metric
spaces to produce measures for which the open sets are measurable.!
Our treatment produces a measure for which the open F sets, in a
regular topological space, are measurable, and is identical with the
Carathéodory measure in case the topology is metrizable. Since each
open set in a metric space is an F) this provides a generalization of
the metric result.

Our other result, which is given in § 2, concerns a necessary and
sufficient condition for the measurability of open sets. A well known
condition for this in metric spaces is that the measure be additive
on any two sets which are a positive distance apart. When this
condition is changed to require the additivity on two sets whose
closures do not intersect, it becomes a necessary and sufficient con-
dition for the measurability of the open F, sets, for a normal topo-
logical space. We show that the condition of normality can be
weakened to one of “¢ Normal” (see definition 2.4.5 below). Since
a metric space is normal and therefore ¢ Normal, and since each
open set of a metric space is an F,, this provides a clear generali-
zation of the metric result.

At first glance the weakened normality condition of 2.4.5 appears
to add little to topological measure theory. However, this is just
the condition that results from our construction in §8 (even though
the topology is not necessarily normal) and hence the results of §2
help us to obtain the results of § 3.

Nowhere in this paper is an assumption of local compactness
made.

2. Conditions for measurability.

2.1. DEFINITIONS.

Received February 13, 1963.
1 See, for example, Method II, page 105, of [3].
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.1 ~B = the complement of B.

.2 oF = the union of F'={JBec FB=Ex(xep for some Bec F)
= the set of points # for which x e 8 for some B¢ F.

.3 wedomain f if and only if (x, y)ef for some y.

.4 o = the set of nonnegative integers.

2.2. DEFINITIONS.

.1 ¢ measures & if and only if ¢ is such a function of the
subsets of &7 that:

0 = ¢(4) whenever Ac & ;

and
$(A) = >, Be Fo(B)
whenever F is a countable family for which

AcoFc ..
2 A is ¢ measurable if and only if A€ domain ¢ and
#(T) = ¢(TA) + &(T ~ A)
for each T'cdomain ¢.
.3 measurable ¢ = EA(A is ¢ measurable)
.4 section ¢T = the function 4 on domain ¢ such that
¥(4) = $(TA)

for each A e domain ¢.

.5 4 is a submeasure of ¢ if and only if + = section ¢T for
some T for which ¢(T) < oo.

2.3. DEFINITIONS.

.1 % is a topology if and only if € is such a family of sets
that

cFel whenever FFC ¥,

and
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anNpBel whenever ¢ ¥ and Be¥.

Thus a topology £ is closed to finite intersections and unrestricted
unions. For example, the family of all open sets of a metric space
is a topology.

.2 T topologizes &7 if and only if ¥ is a topology and .&¥ = o%.
3 Cis ¥ closed if and only if C = 0% ~ A for some AcX.

.4 Closure TA = the intersection of all ¥ closed sets which
contain A.

.5 % is regular if and only if corresponding to each A€ < and
each x € A there is a Be X such that € B and Closure B C A.

.6 Fsigma T = EB (Be< and B=0cF for some countable family
F of ¥ closed sets).

7 Gdelta T = EC(C is £ closed and C is the intersection of a
countable subfamily of ).

Thus Fsigma £ and Gdelta £ are the familiar open F,’s and
closed Gy’s.

This paper deals with a fixed topology, ¥, which topologizes the
space, .&“. It is assumed that the hypothesis

¥ topologizes &7

is added to every theorem. Also the “I” will be dropped from such
expressions as “C is T closed” whenever no confusion will result.
Thus we write “Fsigma” for “Fsigma Z,” “Closure A” for “Closure TA,”
ete.

In definitions 2.4 below the well known topological concepts of
compactness and normality, are followed by generalizations involving
both topology and measure.

2.4. DEFINITIONS.

.1 A is compact if and only if A is closed and for each FFC ¥
for which A C oF there is a finite subfamily H of F for which
ACoH.

.2 A is ¢ compact if and only if A is closed and for each FC ¥
for which 4 c oF, for each submeasure + for ¢, for each ¢ >0,
there is a finite subfamily H of F for which (4) < ¥(AcH) + .
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.3 A is normal if and only if A is closed and for each C and
B for which C is closed, C c A, C c Beg, there exists De ¥ for
which C < D and Closure D C B.

4 A is ¢ normal if and only if A is closed and for each C and
B for which C is closed, C c A, C c Be¥, and for each submeasure
4 for ¢, for each ¢ > 0, there exists De < and a closed set C’ for
which C' < C, C' < D, Closure D C B, and

(1) P(C) =(C) +e.

We define the slightly less general notion of ¢ Normality by
changing the condition (1) to condition (2) below.

.5 A is ¢ Normal if and only if A is closed and for each C
and B for which C is closed, C c A, C c Be ¥, and for each sub-
measure + of ¢, for each ¢ > 0, there exists De¥ and a closed set
C’ for which C' < C, C' < D, Closure D C B, and

(2) WC~C)=e.

6 ¢ is T additive if and only if ¢(A U B) = ¢(4) + ¢(B)
whenever Closure A N Closure B = 0.

.7 ¢ is a p metric measure if and only if p metrizes &, ¢
measures .&°, and ¢(4 U B) = ¢(A) + ¢(B) whenever A and B are
subsets of & which are a positive o distance apart.

2.5. THEOREM. If ¢ measures &7 then:

1 if A is compact then A is ¢ compact;
2 if A is normal then A is ¢ Normal;

3 if A is ¢ Normal then A is ¢ normal.

2.6. THEOREM. If p melrizes &7, ¥ 1is the family of p-open
sets, and ¢ measures & then:

1 ¢ is T additive if and only if ¢ is a P metric measure;
2 T is a regular topology;
3 & is normal.

A well known theorem is the following:
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2.7. THEOREM. If p metrizes & and ¢ measures .&° then ¢ is
a p metric measure if and only if the p-open sets are ¢ measurable,

The primary aim of this section is to generalize Theorem 2.7 to
the case where the metric space is replaced by a regular, ¢ Normal,
topology. This is done in Theorem 2.19.

2.8. THEOREM. If ¢ measures &, C is closed and C C A then:

1 if A is compact then C is compact;

2 if A is ¢ compact then C is ¢ compact.

Proof. .1 is well known.

Suppose FFC Z, C < oF, + is a submeasure of ¢, 4" = section C,
0<e< oo, F"=EB(BeF or B=.”~C(C). Since ACoF', F' Cg,
4’ is a submeasure of ¢, and A is ¢ compact, we can and do choose
such a finite subfamily H’ of F” that

¥'(A) = V'(AoH') + €.

Letting H= EB (Bc€ H' and B+ & ~ (), it follows that H is a
finite subfamily of F, and

W(C) = ¥'(4) = ¥y'(AoH') + ¢
= '(AcH) + ¢ = y(CoH) + ¢.

Consequently C is ¢ compact, and .2 is proved.

2.9. THEOREM. If T s regular, and ¢ measures & then

1 if A dis compact then A is mormal,
2 if A is ¢ compact then A is ¢ normal.
Proof. .1 is well known.

Suppose A is ¢ compact, C T A4, C is closed, CC BeZ, + is a
submeasure of ¢, and ¢ > 0. First use the fact that £ is regular to
secure such a function £ on C that f(x)e X, x € f(x), Closure f(x) C B
for each x € C. Now again use the regularity of £ to secure such a
function g on C that g(x)eZ, x<g(x), Closure g(x) < f(x) for each
xz e C. Now use the (2.8) facts that C is ¢ compact and C < U x € Cg(x)
to secure such a finite subset Q of C that

w(C)=v(C N UreQo) +e¢.
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Let
D=UzeQf(x), C' =UzeQ(C N Closure g(x))
and observe that De g, C’ is closed, C’' < C,
C'=U2e@Q(C N Closure g(x)) c UzeQf(x) =D,
Closure D = Closure Uz € @Qf(x) = U x e @ Closure f(x) c B, and

P(C)=y(CNUzeQy(x)) +¢
= (C N Uxe Closure g(x)) + ¢
=(C’") +¢.

Consequently A is ¢ normal and the proof is complete.

The following theorem is given in Chapter 5 of [3].

2.10. THEOREM. If ¢ measures & and if for each mcw and
each submeasure + of ¢,

An c An+1 c y ’
and
then

1 Uneow A, is ¢ measuradble, and

2 (UnrewA,) = lim0(A,), whenever 0 is a submeasure of ¢.

By considering complements one easily established the following
corollary of 2.10.

2.11. THEOREM. If ¢ measures & and if for each new and
each submeasure + of ¢

A,.,.CA, C.&,
and
P(Apa U (7 ~ 4,) = y(4,10) + 3(&F ~A4A,)
then

1 N recwd, is ¢ measurable, and

2 (N newA,) = lim0(4,), whenever 0 is a submeasure of ¢.

The following lemma is easily verified.



A TOPOLOGICAL MEASURE CONSTRUCTION 1073

2.12. LEMMA. If ¢ measures S then ¢ is T additive if and
only if + is T additive for each submeasure + of &.

2.13. THEOREM. If ¢ measures ., ¢ is T additive, A, C .,
and Closure A, ., N Closure (& ~ A,) = 0 for each n < w, then

1 NnewA, is ¢ measurable, and

2 (N newA,) = limd(4,), whenever 0 is a submeasure of ¢.

Proof. Observe that A, ,cA, %, for new. Let + be a
submeasure of ¢. Since, by 2.12, + is T additive, it follows that

for each ncw. Application of 2.11 completes the proof.

2.14. THEOREM. If ¢ measures &7, ¢() < o, ¢ is T additive,
C is ¢ normal, CC BeZ, and 0 < e < oo, then there exist sets C’
and D such that C’ is ¢ measurable, C' € Gdelta, C' < C, De %, C'C D,
Closure D < B, and ¢(C ~ C') = e.

Proof. Since ¢(&”) < « it follows that ¢ is a submeasure of 4.
We use the facts that C is ¢ normal and C < B to inductively obtain
such sequences ¢’ and d that ¢, =C, d,= B, ¢, is closed, d,€<%,
¢ C ¢, d,, Closure d,., Cd,, and ¢(c,) = &(c).,) + ¢/2"", for each
neE .

Let C'=Nnecwd,, D=d, Since

Closure d,., N Closure (& ~d,) =0
for each n € w, it follows from 2.13.1 that C' is ¢ measurable. Also
C'=Nnrecwd, = new Closure d,,,

is closed, C’'eGdelta, DeZ, C'cC, C'cd, =D and Closure D =
Closure d, ¢ d, = B.
We now use induction to deduce that, for any m c w,

#(C) = ¢(c)) = ¢(ch) + X m € w(e/2 )

(1) < 9(c) + <.

Since ¢, c d,, ¢, < C, and ¢, < C N d,, for each m € w, it follows
from (1) that

HC) = g(cn) +e=dCNdy) +e



1074 W. W. BLEDSOE AND A. P. MORSE

for each mew. Let 6 = section ¢C and, with the help of 2.13.2.
observe that

#(CC") = 6(C")
= lim 6(d,,)

m—oo

= lim ¢(Cd.,)

Mm—oo

= lim¢(C) — ¢

m—oo

= ¢(C) -,
and, since C’' is ¢ measurable,

#C~C)=¢(C) —g(CC)=e¢.

2.15. THEOREM. If ¢ measures &, ¢(.) < =, ¢ is T additive,
C is ¢ normal, and C < Be E, then for some ¢ measurable set K,
Cc KcCB.

Proof. Repeatedly use 2.14 to secure such a sequence, k, of ¢
measurable sets that &k, c B, and ¢(C ~ k,) < (1/2") for each ncw.
Let

| K' =Umnrcwk,, K=K'UC.
Thus K’ is ¢ measurable, K C B,
0=¢(C~K')=¢(C~k,) = (1/29

for eachnew, ¢(C~ K') =0, C~ K is ¢ measurable, K=K'U(C~ K’)
is ¢ measurable and C c K — B.
The following lemma is well known.

2.16. LEMMA. If ¢ measures . and A C .S then A is ¢ meas-
urable vf and only if A is 4 measurable for each submeasure  of ¢.

2.17. THEOREM. If ¢ measures &7, ¢ is ¥ additive and 7 is
¢ normal then Fsigma C measurable ¢.

Proof. Let BeFsigma, and let 4 be a submeasure of ¢. Choose
such a countable subfamily F of closed sets that B = o¢F. Check
that (&) < o, + is T additive, C is ¢ normal, and C is + normal,
for each Ce F.

Thus we can and do use 2.15 to secure such a funetion X on F'
that K(C) is + measurable and C < K(C) B for each CeF. It
follows that
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B=cF=JCeFC
cUCeFK(@C)
cB,
B=UCeFK(C),
B is +» measurable.
Thus B is 4 measurable for each submeasure + of ¢, and, by

2.16, B is ¢ measurable.
The desired conclusion is at hand.

2.18. THEOREM. If ¢ measures &, ¢() < o, C is ¢ Normal
CcBegZ, and 0 < e < o, then there exists such a member C’' of
Gdelta that C' < B and ¢(C ~ C') = e.

Proof. Repeatedly use the fact that C is ¢ Normal to obtain
such sequences ¢’ and d that ¢, =C, d,= B, ¢, is closed, d,€%,
¢..cc,cd,, Closure d,,, ©d,, and

p(ch, ~ i) = (€271,
for each n € w.

Let C' = N newd, and observe that C’e Gdelta, C’' C B,

#(C ~ C")=¢C~Nnewd,)
=¢(Unew(C ~d,)
= d(Unew(C~ )
= ¢(Un € w(c; ~ ¢,))
= ¢(Un € w(c, ~ ¢11))
= Sinewd(c, ~ 1))
< Sinew(E2) =e¢.

Thus ¢(C ~ C’) < ¢, and the proof is complete.

2.19. THEOREM. If ¢ measures ., and & is ¢ Normal then
Fsigma C measurable ¢

if and only if ¢ is T additive.

Proof. If ¢ is T additive, it follows from 2.17 that
Fsigma C measurable ¢ ,

since (2.5.3) a set which is ¢ Normal is also ¢ normal.
Now suppose that Fsigma C measurable ¢. Let + be a sub-
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measure of ¢, 0<e< o, Ac¥, Bc.s”, A=Closure A, B=
Closure B, @ = & ~ B, and suppose that AB = 0.

Since 4 C @ we may use 2.18 to secure such a member C’ of
Gdelta that C’'ca and v(A ~ C’) <e. Thus v(A~C)<Z¢, (AUB)C' =
AC', (AU B)~C’'= (A~ C")UB, and, since C’ € Fsigma Cmeasurable ¢,

¥(AUB) =¥(AUB)C" + (AU B)~ ()
= ¥(AC") + ¥ (A~ C) U B)
z ¥(AC) + ¥(B)
= P(4) — y(4 ~ C') + ¥(B)
z ¥(4) + ¥(B) —¢.

Thus 4(4 U B) = 4(A) + 4(B), and since +(4A U B) = v(4) + +(B),
it follows that

¥(A U B) = ¥(4) + +(B) .

Therefore ¢ is ¥ additive, and the proof is complete.

2.20. REMARK. Since any metric space is normal and therefore
(2.52) ¢ Normal and since every open set of a metric space is an Fj,
it follows that 2.19 is a generalization of the following well known
theorem.

THEOREM. If o metrizes &, ¢ measures 7, and T is the family
of p-open sets, then T C measurable ¢ if and only i1f ¢(A U B) =
#(A) + ¢(A) whenever A and B are a positive p-distance apart.

We shall use 2.17 in the next section where the topological space
is not known to be normal but is ¢ normal for the measure ¢ that
is constructed there.

3. Measure construction.

It is well known that the set function, § = msm goH, defined in
3.2 below, is a Borel measure (i.e., the p-open sets are 0 measurable)
in case p metrizes .&” and ¢ is a nonnegative function of H. It is
the purpose of this section to generalize this result to the topolagical
case by defining a measure, ¢ = mst gTH, for which the open F,’s
are ¢-measurable whenever ¥ is regular, and which is equal to ¢ in
case T is metrizable.

3.0. DEFINITIONS.

.1 mss g~°H = the function 4, on the subsets of &, such
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that if A .5 then 4(A) is the infimum of numbers of the form
2. Be Fg(B)

where F' is such a countable subfamily of H that A C oF.
In connection with 3.1. we would like to remind the reader that
an empty infimum is oo.

.2 msm goH = the function 6, on the subsets of .57, such that,
if Ac & then

0(A) = lim mss ¢.%"H,(4),

where H, consists of those members of H whose p-diameter is less
than 1/2*, for each .

.3 msf gFH = mss g% H,, where
H,=HNED(DcB for some BeF).

4 Cover T=EF(FCX¥ and 0F = 0%).
Thus, EcCover & if and only if FFC ¥ and F covers the space
covered by Z.

.5 mst gTH = the function ¢ on the subsets of .&” such that,
if Ac % then

¢(A) = sup F'e Cover Tg,(A)
where ¢, = msf gFH, for each F'eCover Z.

.6 Fis a refinement of F' if and only if each member of
F is a subset of some member of F".

7 FNnNF =EB(B=aB for some ac F and some B F).

3.1. LemMmA. If FeCover &, F'eCover £, and F"=F NN F’,
then F" €Cover £ and F" is a refinement of F.

The following theorem is well known.

3.2. THEOREM. If g is a nonnegative function on H, and « =
mss 9. H then:

1 + measures &

2 iof HC H and ' = mss g H', then +'(4) = v(4) for
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AcC.&;

3 if Y(A) <o and 0<e< oo then there exists such a countable
subfamily G of H that A C oG and 3, DeG g(D) < y(A) + .

3.3. THEOREM. If g is a momnegative function of H, F is a
refinement of F', ¢, = msf gFH, and ¢, = msf gF'H, then

$ri(A) = 6:(A)
for each AC S.
Proof. Let

H, =HNEB(BcD for some DeF),
H, = HN EB(B.c D for some De F"),

and note that ¢, = mss g.&°H,. Application of 3.2.2 completes the
proof.
The following theorem is well known.

3.4. THEOREM. If F is monempty, + measures & for each
e F, and

#(D) = sup - € F'y(D)

whenever D C ., then:
1 ¢ measures &;

.2 of for each ' € F and each ' € F, there exists a € F
for which

V(D) = ¥(D) and +"(D) = ¥(D)
whenever D C &7, then

N + € F measurable 4 C measurable ¢ .

38.5. THEOREM. If < is a regular topology, g vs a monnegative
Sfumction on H, and ¢ = mst gTH then Fsigma C measurable ¢.

Proof. Let ¢, = msf gF'H for each FeCover¥. Thus
#(A) = sup F e Cover Tp,(A)

whenever A C .&”. The proof is completed in six parts.

PArT 1. ¢ measures 5.
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Proof. Since, by 3.2.1, ¢, measures &, for each F'eCover %,
and since Cover £ is not empty, it follows from 3.4.1 that ¢ meas-
ures .&.

Part II. If FeCover T, ¢(A) < o, and 0 < e < o then there
exists such a refinement F' of F that F'eCover &, and ¢(A) <
$r(A4) + e.

Proof. Choose such a member F” of Cover T that ¢(4) =
é..(A) + ¢, and let F' = F'N N F"” (see Definition 3.0.7). Thus SCoF",
F'cg, F'eCover ¥, and using 3.1 and 3.3, we infer that F’ is a
refinement of F, F’ is a refinement of F”, and

H(A) = ¢5(A) + & = 9(4) + €.
PaArT III. & 1s ¢ compact.

Proof. Recall definition 2.4.2. Let FeCover Z, ¢(T) < oo, o =
section ¢T, and 0 < & < oo, Use Part II to choose such a refinement
F’ of F that F’eCover £ and

NT) = ¢p(T) +6/2< .

Now use 3.2.3 and definition 3.0.3 to secure such a countable
subfamily H' of H that T c oH', H' is a refinement of F’, and
SV De H'g(D) < oo; and let H” be such a finite subfamily of H’ that

>SxDe(H' ~ H")g(D) < ¢/2.

Since H" is a refinement of F', choose such a finite subfamily G of
F that H” is a refinement of G. Thus

$p(T) = ¢p(ToH") + ¢5(To(H' ~ H"))
= HToH") + ¢p(0(H" ~ H"))
= #(ToG) + 3. De(H' ~ H")9(D)
= () + ¢z,

(&) = (T) = ¢,(T) + ¢/2
=y(T)+e.

Thus & is ¢ compact.
ParT IV. ¢ 1s & additive.

Proof. Recall definition 2.4.6. Let A = Closure 4, B = Closure B,
AB=0. If §(A U B) = o then ¢(4 U B) = é(4) + ¢(B).
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Now assume ¢(4A U B) < o, 0 < ¢ < o, and select such members
G’ and G" of Cover ¥ that

(1) #(A) = ¢a(4) +¢/8,  #(B) = ¢a(B) + ¢/3,
and let

F’' = Ea(a = BN (& ~ B) for some Be@),
F" = Ba(a = B N (& ~ A) for some BeG"),

F=FUF".
Thus:
Fc¥%;, & coF; FeCover T;
(2) if DeF and DA +0 then DeF’;

if DeF and DB=+0 then DeF'".

Now use 8.2.3 to secure such a countable subfamily H'’ of H
that H'” is a refinement of F, AU Bc H'’, and

(3) > De H"g(D) < (A U B) +¢/3;
infer from (2) that

if DeH" and DA +#0 then DB=0
if DeH'" and DB#0 then DA=0;

let H = H"”" N ED(DA + 0), H'" = H'"' N ED(DB + 0) .
Thus H' UH”"C H" CcH, H'UH" is countable, AcoH', BCcoH",
H'H" =0, H' is a refinement of G’, H” is a refinement of G”, and

(4) 9e(A) =3 DeH'9g(D), ¢(B)=3.DeH"9(D).
Consequently, with the help of (1), (4) and (3), we deduce that

#(A) + ¢(B) < $¢(A4) + d¢(B) + 2¢/3
=S\ DeH'g(D) + 3, De H"g(D) + 2¢/3
< 3. De H"9(D) + 2¢/3
= ¢:(A U B) + ¢/3 + 2¢/3
<#AUB)+e.
Thus, if ¢(A U B) < o,
#(A) + ¢(B) = 4(AU B) .
Therefore
$(A U B) = ¢(A) + ¢(B) ,
whenever A c .&¥, BC .%”, and ¢ is ¥ additive.
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PART V. & is ¢ normal.
Proof. Recall definition 2.4.4, use part IV and 2.9.2.
PART VI. Fsigma C measurable ¢.

Proof. By parts IV and V, ¢ is € additive and .&” is ¢ normal.
Application of 2.17 completes the proof.

The reader will observe that the regularity of £ was not used
in the proofs of Parts I-III.

3.6. LEMMA. If p metrizes &7, ¥ is the family of p-open sets,
Fcg new, and G, = ED (the p-diameter of D < 1/2"), then:

1 TNG,eCover &

2 if H CG,, ©f DA+ 0 whenever De H', and +f for each
xc A there exists a Be F' such that

(the p-distance from x to ¥ ~ B) > 1/2",
then H' is a refinement of F';

3 De@G, if, and only 1f, D Be @G, for some Be X,

Proof. Suppose De@G,, and let d = the p-diameter of D, § =
1/2* — d, and ‘

B = Ex (o(x, y) < 0/3 for some yeD).

Thus, we have immediately that BeZ, Dc B, and one can show
that Beg@G,.

Therefore if DeG, then D Be @G, for some Be S,

The remainder of the proof is straightforward.

3.7. THEOREM. If p metrizes &7, T is the family of all p-open
sets, F'C <, g 1s a nonnegative function on H, G, = ED ((the o-dia-
meter of D) < 1/2") for each ne€w, and § = msm goH, then:

.0 T C measurable ¢;

A if 0(A) < o, new, and 0<e< o, then there exvists a
countable subfomily H' of H for which H' G, AcC H', and
> De H'g(D) = 0(A) + &
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2 if 0(4) < », new, 0 <e< o, and if for each x € A there
exists a Be F such that

(the p-distance from x to & ~ B) = 1/2*,

then there exists a countable subfamily H' of H for which H' < G,,
AcCoH', H is a refinement of F, and >, De H'g(D) < 6(A) + e.

Proof. .0 is well known.

Proof .1 Let 6, = mss g5°(HG,). Thus 6,(4) < 6(4) < o, and
we can use 3.2.3 to secure such a countable subfamily H’ of (H N G,)
that Ac oH’ and >, De H'g(D) < 6,(A) + ¢. Since 6,(4) < 6(A) the
proof is complete.

Proof .2 Use .1 to obtain such a countable subfamily H” of
(HG,) that AcoH"” and >, De H"9g(D) < 0(A) +¢, and let H' =
H” N ED(DA + 0).

Thus AcoH’, and >, De H'g(D) < >, De H'g(D) < 6(4) + e.
Also DA #+ 0 for each De H’, so by 3.6.2 H' is a refinement of F.

3.8. THEOREM. If p metrizes &, T is the family of all p-open
sets, g is a nonnegative function on H, ¢ = mst gTH, and 6 = msm goH
then ¢ = 0.

Proof. Let ¢, = msf gFH for each FeCover £, and complete
the proof in Parts I and II by showing that ¢(4) = 6(A), and ¢(4) <
6(A) whenever A C &

PART I. If AC.& then $(4) = 6(A).

Proof. Let
G, = ED((the p-diameter of D) < 1/2"),

F,=%nG, H=HNG, and 0,=mss g5H, for each new.
Thus, for each ncw, F,cCover &, and by definition 3.0.3, and 3.6.3,.
¢y, = msf gF,H
=mss ¢~ (H N ED(D c B for some Be F,))
=mss g H,
=40,.

Consequently,
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#(A) = sup F'e Cover To,(A)
= sup n € W, (A)
= sup % € wh,(A)
= 0(4) .

ParT II. If AC .5 then 4(A) < 6(A).

Proof. The result being obvious if 6(A) = o, we assume that
0(A) < . Let 0 <e< o, FeCover T, and let f' and f be such
sequences that

S»=U Be F Ex ((the p-distance from % to .~ B) > 1/2"),
fo= fo’ s
fn+1 :f7:+1 vai ’
whenever new®w. We infer: f, is a p-Borel set and, by 3.7.0, f, is ¢
measurable for each new; A =Uncw(Af,); 6(4) = S, necwi(Af,);
for each new, for each we(Af,), there is a Be F for which the
distance from x to . ~ B is greater than 1/2". Consequently, we

can use 3.7.2 to secure such a sequence, h, that %, is a countable
subfamily of H, Af, C oh,, h, is a refinement of F, and

>, Deh,g(D) = 0(Af,) + ¢/2v*,

whenever 7 € w.
Let H' = U n € wh, and note that H' is a countable subfamily

of H A=Unecw(Af,) c Unecwoh,=0cH', H' is a refinement of
F, and

$(A) = X DeH'g(D) = >mew > Deh,g(D)
< Sinew(@(Af,) + /2" = S\ newd(Af,) + ¢ = 0(A) + ¢ .
Thus ¢,(A) < 0(A) for each FeCover £, and

#(A) = sup F e Cover To,(A)
< 0(A) .

3.9. REMARK. Thus, because of Theorems 3.5.3 and 3.8, the
topological measure ¢ = mst gEH is a generalization of the metric
measure ¢ = msm goH.
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