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1* Introduction* Let X be a locally compact Hausdorff space
and μ a positive Radon measure on X. Let Sίf be a separable Hibert
space and let LL (1 ^ p g +°o) denote the space of §ίf-valued func-
tions on X which are weakly measurable and whose norms are in
scalar Lp(dμ). Call P a measurable range function if P is a function
on X defined a.e. (dμ) to the space of orthogonal projections on Sίf
which is weakly measurable. We shall regard two range functions
P, Pf to be the same if P(x) = P'(x) l.a.e., i.e. P(x) = P\x) a.e. on
every compact subset of X. We shall denote by P the operator on
Lp

% defined by (Pf)(x) = P(x)f(x) l.a.e. Let A be a subalgebra of
the algebra C(X) of bounded continuous functions on X such that
A\J A (where the bar denotes complex conjugation) is weakly* dense
in L°°(dμ). Say that a subspace ^£'of Lp^ is doubly invariant if

(i) ^£ is closed in Lv% if 1 ^ p < oo and weakly* closed if p = co,
(ii) ^£ is invariant under multiplication by functions in A U A.

We shall refer to the following theorem as Wiener's theorem for Lp^:

THEOREM. Every doubly invariant subspace ̂ f of Lp^ (1 ̂  p fg co)
is of the form PL% for some measurable range function P (and
trivially conversely); ^ determines P uniquely.

For compact spaces X, Wiener's theorem was proved in [4] for
arbitrary Sίf ΐor p = 2 and for the scalar £ίf (the space of complex
numbers) for arbitrary p. It was pointed out in [4] that the L2%
theorem is true for locally compact spaces and the proof was outlined
considering the real line as an example. It was also mentioned in [4]
that the L2^ theorem is a special case of a known theorem on rings
of operators [2; p. 167, Theoreme 1]. But the proof in [4] and the
proof of the more general theorem in [2] implicitly assume the σ-
finiteness of μ or at least of the separability of L^, (as opposed to
the separability of £(?). The theorem itself is true without this
restriction not only for p — 2 but for all p and all (separable) ^f
(not necessarily the scalar £ίf). Indeed the general L^, theorem is
true even under the weaker assumption that the restriction of A U A
to every compact subset K of X is ZΛdense in h\dμ \ K), instead of
being weakly* dense in L°°. In this paper we prove this theorem
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(Theorem 4) in its full generality (with the above weaker assumption).
This is done as follows: Using the techniques employed in [5] we first
show in § 2 (Theorem 2) that a general class of subalgebras dense in
L2 is weakly* dense, which seems to be of independent interest. This
enables us to reduce the IΛdensity case to that of weak* density.
To overcome the difficulties caused by the (possible) non-separability
of L^, we extend in §3 (Theorem 3) a theorem of Dunford-Pettis
[1; p. 46, Corollaire 2] to apply to our setup. We finally use the U%
theorem for compact X in [4] and the broad techniques in [4] to
complete the proof. As pointed out in [4], the L?% theorem for p Φ 2
is of special interest as it shows that the doubly invariant subspaces
of Uφ admit projections of norm 1 commuting with bounded (scalar)
functions; as is well known, a closed linear subspace of a Banach
space does not in general have any bounded projection at all. In the
final section of the paper we extend a known theorem [2] on operators
in L^, which commute with multiplication by bounded (scalar) func-
tions (Theorem 5).

2. Weak* density of certain subalgebras of L°°.

THEOREM 1. Let (X, m) be a finite measure space. Any sub-
algebra s/ of L°°(dm) which is conjugate-closed and dense in L\dm)
is weakly* dense in Loo(dm).1

The following three lemmas will lead to the proof of the theorem.

LEMMA 1. Let g§ be a conjugate-closed subalgebra of L°°(dm)
which contains constants and is closed in L°°(dm). Then & is closed
for absolute values.

Proof. Let fe <&, 0 ̂  / ^ 1/2, say. Then /* = (1 - (1 - /))*
can be expressed as the sum of a convergent series in L°°(dm) whose
terms come from &\ it follows that /* e & for all non-negative / e ^ .
Since & is conjugate-closed, the lemm follows.

LEMMA 2. Let (X, m) be a finite measure space and A a sub-
algebra of L°°(dm) such that A U A is dense in L\dm). Then every
closed subspace ^S of L\dm) which is invariant under multiplica-
tion by functions in A U A is of the form CsL\dm) for some measur-
able subset S of X (where Cs denotes the characteristic function of S).

Proof. Let & be the closed subalgebra of L°°(dm) generated by
A\J A and the constants. Then ^ is clearly invariant under multi-

A weaker result was proved in [5].
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plication by functions in &. By Lemma 1, & is closed for absolute
values. Let q be the orthogonal projection of the constant function
1 on ̂ C Then 1 — q _L ̂ . Since ^^ is invariant under multipli-
cation by function in ^ , it follows that

(2.1)

for all fe&. Let Y be any measurable subset of X and let {/J be
a sequence of functions from & which converges to Cγ in L\dm).
Since \fm — fn \ e &, we have from (2.1)

\\fm-fn\\q\2dm= \\fm-fn\qdm

and the last integral is less than (\\fm — fn\
2dmj x \\\q\2dmj . I t

follows t h a t {fn | q |2} is a Cauchy sequence in L\dm). Hence fn \ q |2—•
Cγ | g |2 in L\dm)\ in particular,

(2.2)

Since / n —> C r in L\dm), fnq —> CYq in L\dm) and thus

(2.3) [fnqdm —> I gdm .
J Jr

I t follows from (2.1)-(2.3) t h a t \ \q\2dm = \ gdm for all measurable
JF JF

subsets F; hence | q |2 = g a.e. Thus q — Cs a.e. for some S c l .
Because of invariance, CsL\dm) c . J ' . If the inclusion were

strict, let g e ^ QC8L*(dm). Then g 1 C ^ ^ also C^/G^^ 1 (where
S' = X— S) and ̂ //L is also invariant along with ^f/ under multi-
plications by functions in &. So g _L Ca>&. It follows that g 1_ ^
and because of density of ^ in L\dm), we have # = 0 a.e. Thus
^ = CsL\dm).

LEMMA 3. Let (X, m) and A be as in Lemma 2. Then every
closed subspace of L\dm) which is invariant under multiplication
by functions in A {J A is of the form CsL\dm) for some measurable
subset S.

Proof. This follows from Lemma 2 above and Theorem 7 in [4].

Proof of Theorem 1. Let ̂  = \feL\dm): \fgdm = 0 for all

gej^f\. Then ^ is jy-invariant, meaning invariant under multi-

plication by functions in sf and Lemma 3 applies for ^£ (with
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replacing A). Thus ^ = CsL\dm) for some S, so ^ Π L\dm) =
CsL\dm). But ^ ^ n L\dm) — U{dm) Q s/. Since j ^ is dense in
L\dm) by assumption, it follows that Cs = 0 a.e. Therefore ^ f ={0}
and the theorem follows.

REMARK. One of the corollaries of Theorem 1 is the "uniqueness"
of the Fourier coefficients of any function in L\G), for a compact
Abelian group G. The characters are dense in L\G) so that the sub-
space £/ of their finite linear combinations is weakly* dense in L°°(dm)
by Theorem 1 and the uniqueness follows.

We now extend Theorem 1 to infinite measure spaces. For con-
venience we state the result in terms of Radon measures on locally
compact spaces. We have

THEOREM 2. Let X be a locally compact Hausdorff space and μ
a positve Radon measure on X. Let sf be a subalgebra of the
algebra of bounded continuous functions on X such that

(i) S/ is conjugate-closed,
(ii) Szf | K is dense in L\dμ \ K) for every compact subset K of

X. Then S/ is weakly* dense in Lco(dμ).

Proof. Let ^ = ίfeL^dμ): [fgdμ = 0 for all geSf\. If we
show that ^€ = {0}, the theorem is proved. Now ^£ is clearly a
closed subspace of L\dμ) and is J^-invariant. We need the following
lemma which will be proved below.

LEMMA 4. Every closed Jzf-invariant subspace ^ of L\dμ) is
of the form CsL\dμ) for some measurable subset S (where sf is as
in Theorem 2).

Assuming Lemma 4, the main theorem follows at once. For, since
^ T = CsL\dμ), Sf <z.^/£L = CS'L°°(dμ). If μ(S) > 0, then S contains
a compact subset K of positive measure. Since Szf c CsfV

o{dμ)i

Sf\K— {0}, contradicting the density of S*f \ K in L\dμ \ K). Hence
μ{β) = 0, so ^€ = {0}, completing the proof of the theorem.

Proof of Lemma 4. Let ^tκ = Cκ^£', Sfκ = CκSf and μκ —
Cκμ. We shall identify Lv(dμ \ K), Lp(dμκ) and CκL

p(dμ) which are
clearly mutually isometrically isomorphic. Each ^ κ is closed and
J^:-invariant in L\dμκ), so by Lemma 3, ^£κ = Cs{κ)L\dμ^) for some
S(K) c K. If K' -D K, compact, then
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Cs{κ)U{dμ) = CS{κ)U(dμκ) =

so that S(K) = S(UL') Π if (modulo null sets).
Let JίΓ denote the set of all continuous functions with compact

support and let σ be the linear functional on 3ίΓ defined by

(2.4) σ(φ) = \ φdμ
JS(K)

for φ G 3ίΓ where K is any compact subset containing the support of
φ. Then σ is well-defined and is continuous in the ZΛ norm, so can
be uniquely extended to a bounded linear functional on L\dμ), which
we again denote by σ. Let σ be realized by the L°°-ΐunction g so
that

(2.5) σ(f) =

for all feL\dμ). From (2.4) and (2.5) it is easy to see t h a t g\K =

CS(κ) a.e. for every compact subset K; so we may assume g = Cs for

some measurable S with S Γi K = S(K) (modulo null sets). Now

CκCsL\dμ) - Cs(λκL\dμ) = Cs{κ)L\dμ) = ^ = C^^T

for all compact K. Since for any feL\dμ), Cκf—>f in L\dμ), it
follows from the above that CsL\dμ) =

REMARK. The assumption that J ^ is an algebra is crucial in
both Theorems 1 and 2; the conclusion would be false if Ssf were
merely a linear subspace satisfying the rest of the assumptions. The
following example shows that, in the locally compact case for instance,
a conjugate-closed linear subspace of L°°(dμ) may be weakly* dense
on every compact subset but not on the whole space.

Let X b e a locally compact space and μ a non-finite Radon measure

on X. Let feU(dμ) be real and have a support of infinite /^-measure.

Then the support is non-compact. Let Ssf =<g eL°°(dμ): \gfdμ = ok

Then S*f is clearly not weakly* dense in L°°(dμ). But if g is any

continuous function with compact support which is "orthogonal" to

J ^ , then g must be in the linear span of / in L\dμ). It follows

from our assumption on / that g is the zero function. Hence Sx? is

weakly* dense on every compact subset.

3. Dunford-Pettis theorem* Let X denote a locally compact
Hausdorff space and μ a positive Radon measure on X. Let E be a
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separable Banach space and 5?ΓE denote the space of continuous func-
tions from X into E with compact support. For 1 ̂  p < oo, let
be the space of all functions / from X into E with

where I denotes the upper integral. J?"^ is then a locally convex
space with respect to the seminorm Np. Let SfE denote the closure
of J3ΓE in j^i and let LE = S^il^ί^i where ^E

v is the set of all
functions fz£fE

v with Np(f) = 0. Then L\ is a Banach space with
the norm induced by Np in the obvious way.

Denote by *2fE? the space of all weakly* measurable functions /
on X to the dual E* of E such that \\f(x) || ̂  A < oo l.a.e. (\\f(x) || ̂  A
a.e. on every compact subset). For fe^f^ let

A/ | / * \ • QΊΊ1Λ (Λςiςj QΠYΊ f (Wl •

where ϋΓ ranges over all compact subsets of X. Then N*> is a semi-
norm which makes ^fET a locally convex space. Let Lj* be the
quotient of £fE~ by the space of all functions in SfE7 which vanish
l.a.e. Then LE* is a Banach space.

The following theorem is well-known (cf. for instance [1; p. 46,
Corollaire 2]):

THEOREM (Dunford-Pettis). Let F be a separable Banach space.
For f e Lp* and g e L\dμ), let

wΛg) = \ gfdμ .
Jx

Then wf(g)eF* and the mapping f—+wf induces an isometric iso-
morphism from Lp* onto £f{Lλ, F*), the space of bounded linear
maps from Lλ(dμ) to F*.

We need the following variant of the Dunford-Pettis theorem:

THEOREM 3. Let E, F be separable Banach spaces. For any
bounded linear map u of LE into F* there exists a function Φ from
X into Jzf(E, F*) such that

( i ) ζΦ(x)s, ty is measurable for every seE, teF,
(ii) N^Φ) < oo, and

(iii) u(f) — \ Φ{x)f{x)dμ{x) for every feLE with \\u\\ = N^Φ).
JX

Conversely, any function Φ satisfying (i) and (ii) defines a bounded
linear map u satisfying (iii).
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Proof. Only the direct part needs a proof. First we note that
(E, F*) can be regarded as the strong dual of the protective tensor

product E(g)F. Indeed, the strong dual of E0F is canonically
identified with the space B(E, F) of bounded bilinear forms on ExF
and £f{E,F*) is canonically isomorphic with B{E,F). Since E, F
are separable, so is E§§F and therefore Jzf(E9 i*7*) can be regarded
as the strong dual of a separable Banach space.

Let u be a bounded linear map of L\ into F*. Then u induces
a bounded bilinear form u on L1 x E into F* by u(f, s) = w(/® s)
for feL1, seE. For any fixed feL1, s—>#(/, s) is a bounded linear
map of E into F* which we shall denote by uf. Then ux: f-+uf is
a bounded linear map from L1 into jSf(E, F*) with H^H = ||%||. By
the Dunford-Pettis theorem, there exists a function Φ: X-^ £f{E, F*)
such that

( i ) (Φ(x)s, ty is measurable for each seE, teF
(ii) 2^(0) = | K ||, and

(iii) uλ(f) = uf=\ f(x)Φ(x)dμ(x).

Hence

u{f®s) = «(/, β) = %(s) = \/Φsdμ

Because of the continuity of u, the theorem follows.

4. Doubly invariant subspaces* In this section we prove Wiener's
theorem in the general setup. Let as usual X denote a locally com-
pact Hausdorff space, μ a positive Radon measure on X, ^f a sepa-
rable Hubert space and 3tΓ^ the space of continuous functions from
X into ^f with compact support. Let A be a subalgebra of the alge-
bra of bounded continuous functions on X and S^f denote the algebra
generated by A U A and the constants. A subspace ^€ of L^, is
clearly invariant under multiplication by functions is A U A if and
only if it is J^-invariant. We recall that ^£ is doubly invariant if

(i) ^/ί is closed in Lp^ if 1 ̂  p < co and weakly* closed if p = oo,
(ii) ^£ is .^-invariant.

Then we have

THEOREM 4. // S^ \ K is dense in L\dμ \ K) for every compact
subset K, then every doubly invariant subspace ̂ Jt of Lp^ (1 fg p g oo)
is of the form PLP^ for some measurable range function P; ^f
determines P uniquely.

Proof. We divide the proof into three parts; in the first and the
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second we assume μ(X) < oo and the proof is an imitation of that of
the scalar case in [4]. In the last part we treat the case of arbitrary
measure spaces and an indication of the proof in this case was given
in the proof of Theorem 2.

( i) μ(X) < CΌ , 1 ^ p ^ 2. By Theorem 2, sf is weakly* dense
in L°°(dμ) and in this case the theorem has been proved in [4] for
p = 2. Let 1 ^ p < 2 and ^Ϋ" = Λ€ [\ U%. Then ^ is a doubly
invariant subspace of U% and so <sK = PL2^ for some measurable
range function P. We wish to show that Λ' — PLP%.

For any / e ^ let /;(*) = ||/(αθ ir(p/2) and A(x) = MxyVix) (of
course /a(α?) = 0 if /;(&) - 0). Then /x 6 Ls(dμ) where (1/β) + (1/2) = (1/p)
and /a 6 L2^. Let ^^J be the doubly invariant subspace of L2% gener-
ated by /a. Then Λ^ = -P*^# for a measurable range function P2.
Here we may assume that P2(x) = 0 for those x for which fx{x) = 0.
For any φ e

On the other hand, since s > 2,

as /iGL s, P 2 ^ is bounded and μ(-X") < 00. Hence

This means that PP2/i<P = PJ& for all φe^έ^. So, P2(x) ̂  P(x)
l.a.e. Thus we have ^ ς = P2^L c PLL, Hence

/ - /1/2 ̂ Λ ^ ί cΛPL 2^ c ^

the last inclusion resulting from the fact that fx e Ls where
(1/β) + (1/2) = (IIp). This shows that ^ ^ c PLV%.

Since ^-Ώ Λr == PL2^, W e have ^ =) P J ^ . But 5^% is dense
in L^ and P is I/p-continuous. So ^ 3 PL^ and we have ^ =

P& *
(ii) ^(X) < 00, 2 < p ^ co. Let ^£f = { / e L ^ : / l ^ } where

(1/g) + (1/p) = 1. Then 1 ^ g < 2 and ^ ' is doubly invariant in Lq^.
Hence by (i) ^€f = PfLq% for some measurable range function P' .
Then it is easy to see that ^€ = PL^ where P(x) = J - P'(a ), i
denoting the identity operator on ^

(iii) /^(X) not necessarily finite, 1 ^ p ^ 00. Consider any com-
pact subset ϋΓ of X. Let ^ ^ = Cκ^£', J&ί = C^J^ and μ* — C^^.
We shall identify Lp%(dμ\K), Lp^(dμκ) and CκL

v^{dμ) which are
obviously mutually isometrically isomorphic and denote any of them
by LP^(K). Now ^fκ is a doubly invariant subspace of Lv

w(dμκ)
(with J^i; replacing Ssf) and J ^ is dense in L*(dμκ). Hence by (i)
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and (ii) above, Λκ = PκL
v

m(K). We extend Pκ to the whole of X
by defining Pκ(x) = 0 outside of K.

For any two compact subsets Kl9 K2 with Kx ZD K2 we have

Hence PK2 = PKlCK2 a.e. It follows from this that the map σ:
S^f given by

σ(φ) = I Pκ{x)φ{x)dμ(x) ,

where K is any compact subset containing the support of φ, is well-
defined, σ is clearly continuous with respect to the L^-norm and so
can be uniquely extended to the whole of L1^ to be continuous. We
shall denote the extended map by σ. By Theorem 3 there exists a
weakly measurable bounded operator-valued function Φ: X~
such that

σ(f) = \ Φ(x)f(x)dμ(x)

for all / e L 1 . Then, since σ entends σ, it is obvious that

Φ\K=PK a.e.

for every compact set K; so there exists a measurable range function
P such that Φ = P l.a.e.

We assert that ^e = PLP^. This follows from the fact that
Cκ^f = CKPLP^ for every compact set K and every/ e ^f is the
LMimit (or the weak* limit if p = oo) of Cκf. This completes the
proof.

The uniqueness of P (for a given ^ ) follows from the uniqueness
established in [4] for finite measure spaces.

5 Decomposable operators* Let X, μ, A and S$f be as in § 4
and let T be an operator in Lp% bounded if 1 ^ p < oo and in addition
weakly* continuous if p = oo. Clearly T commutes with multiplication
by functions in A U A if and only if it commutes with functions in
Szf, and any operator T which operates pointwise (l.a.e.), meaning

(Tf)(x) = T(x)f(x) l.a.e.

for an operator-valued function T(x), clearly has this property. We
wish to prove the following converse.

THEOREM 5. If T is a bounded (and weakly* continuous, if
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p = co) linear map from L7^ into Lp^ (1 ^ p ^ oo) which commutes
with multiplication by functions in jzf, then there exists an operator-
valued function T(x) defined a.e. with T(x) e &{§(?7, Sίf) which is
weakly measurable and uniformly bounded such that

(Tf)(x) = T(x)f(x) a.e. ((Tf)(x) = T(x)f(x) l.a.e. if p = co)

This theorem is usually stated for L2^ [2; p. 162, Theoreme 1]
and as far as we are aware, the existing proofs require L2^ to be
separable. We use the variant of Dunford-Pettis theorem established
by us in § 3 to get around the difficulties that may be caused by non-
separability (we of course assume that the Hubert space Sίf is separable).

Proof of Theorem 5. We first consider the case 1 ^ p < co, for
convenience we assume that T is bounded by 1. Let feL7^. Then

J

\\(Tf)(x)\\*dμ(x)^ ( \\f(x)\\'dμ(x).
x Jx

Since T commutes with multiplication by functions in S^, this yields

a(x) |* || (Tf)(x) ||* dμ(x) ^ j J a(x) \* \\f(x) ||» dμ(x)

for all a e έ%f. From the weak* density of S/ in L°°, it follows that
\\(Tf)(x)\\^\\f{x)\\ a.e.

If LP2p is separable, we can obtain T(x) by an explicit construc-
tion. In the general case we argue as follows:

Define a map u: ^L —> Sίf by setting

U{φ) =

Then u is continuous with respect to the 1/̂ ,-norm on 3^ because

(Tφ)(x)dμ{x) | U ( || (Tφ)(x) || dμ(x)
II J x

<\j\φ(x)\\dμ(x).

Since 3%^ is dense in L^, u can be extended by continuity to the
whole L1^ without increasing its norm. We denote the extended map
also by u. By Theorem 3 there exists a function Φ(x) from X into
J5f(J%f, ^f) such that Φ is weakly measurable, uniformly bounded
with 11 Φ(x) 11 5g 11 u \ | ^ 1 and

u(f) = ( Φ(x)f(x)dμ(x)
Jx



DOUBLY INVARIANT SUBSPACES, II 535

for every fe LL. Thus for any φe 3tL

\ (Tφ)(x)dμ(x) = U(φ) = \ Φ(x)φ(x)dμ(x) .
JX JX

Since T commutes with multiplication by functions in Sf and every
a e Szf is continuous, we get

1 a{x)Φ{x)φ{x)dμ(x) = \ Φ(x)a(x)φ(x)dμ(x)
Jx Jx

= ( (Taφ)(x)dμ(x) = \ a(x)(Tφ)(x)dμ(x) .
JX JX

By the weak* density of <S$f in L°°, this implies

(Tφ)(x) = Φ(x)φ(x) a.e.

for all φe 3ίΓ^. If Φ denotes the operator in L* defined by

(Φf)(x) = Φ(x)f{x) a.e.,

then we have Tφ = Φφ for all φe 3^. Since both T and Φ are
bounded in L^ and <5Γ% is dense in L^,, it follows that T = Φ. Now
we have only to put Φ(x) = T(x) in order to get the theorem.

If p = co and T is bounded and weakly* continuous, then the
transposed map Γ* of T maps L^ into L^. Since Γ* commutes
with multiplication by functions in j ^ , ϊ7* is expressed by an operator-
valued function which is weakly measurable and uniformly bounded.
Therefore T is also a uniformly bounded and weakly measurable
operator-valued function T(x). In this case, we clearly have

(Tf)(x) = T(x)f(x) l.a.e.

for all /eLj.
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