DOUBLY INVARIANT SUBSPACES, II

MORISUKE HASUMI AND T. P. SRINIVASAN

1. Introduction. Let X be a locally compact Hausdorff space
and /¢ a positive Radon measure on X. Let S5# be a separable Hibert
space and let L}, (1 < p < + ) denote the space of S#-valued func-
tions on X which are weakly measurable and whose norms are in
scalar L*(dt). Call P a measurable range function if P is a function
on X defined a.e. (dt) to the space of orthogonal projections on 57
which is weakly measurable. We shall regard two range functions
P, P’ to be the same if P(x) = P'(x) l.a.e., i.e. P(x) = P'(x) a.e. on
every compact subset of X. We shall denote by P the operator on
L%, defined by (Pf)(x) = P(x)f(x) l.a.e. Let A be a subalgebra of
the algebra C(X) of bounded continuous functions on X such that
A U A (where the bar denotes complex conjugation) is weakly* dense
in L=(dp). Say that a subspace # of L}, is doubly invariant if

(i) 4 is closed in Lgf if 1 < p < o and weakly™* closed if p = o,

(ii) _# is invariant under multiplication by functions in 4 U A.
We shall refer to the following theorem as Wiener’s theorem for L7,:

THEOREM. Ewvery doubly invariant subspace . of Ly, (1 <p = )
18 of the form PL}, for some measurable range function P (and
trivially conversely); 7 determines P uniquely.

For compact spaces X, Wiener’s theorem was proved in [4] for
arbitrary &7 for p = 2 and for the scalar 57 (the space of complex
numbers) for arbitrary p. It was pointed out in [4] that the Lj,
theorem is true for locally compact spaces and the proof was outlined
considering the real line as an example. It was also mentioned in [4]
that the L7, theorem is a special case of a known theorem on rings
of operators [2; p. 167, Théoréme 1]. But the proof in [4] and the
proof of the more general theorem in [2] implicitly assume the o-
finiteness of g or at least of the separability of L, (as opposed to
the separability of 57°). The theorem itself is true without this
restriction not only for p = 2 but for all » and all (separable) 5#
(not necessarily the scalar 5#°). Indeed the general Lj, theorem is
true even under the weaker assumption that the restriction of A U A
to every compact subset K of X is L’-dense in Ldx¢| K), instead of
being weakly* dense in L=~. In this paper we prove this theorem
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(Theorem 4) in its full generality (with the above weaker assumption).
This is done as follows: Using the techniques employed in [5] we first
show in § 2 (Theorem 2) that a general class of subalgebras dense in
L* is weakly* dense, which seems to be of independent interest. This
enables us to reduce the L’-density case to that of weak* density.
To overcome the difficulties caused by the (possible) non-separability
of L we extend in §3 (Theorem 3) a theorem of Dunford-Pettis
[1; p. 46, Corollaire 2] to apply to our setup. We finally use the Ly,
theorem for compact X in [4] and the broad techniques in [4] to
complete the proof. As pointed out in [4], the L}, theorem for p = 2
is of special interest as it shows that the doubly invariant subspaces
of L} admit projections of norm 1 commuting with bounded (scalar)
functions; as is well known, a closed linear subspace of a Banach
space does not in general have any bounded projection at all. In the
final section of the paper we extend a known theorem [2] on operators
in L}, which commute with multiplication by bounded (scalar) fune-
tions (Theorem 5).

2. Weak* density of certain subalgebras of L-.

THEOREM 1. Let (X, m) be a finite measure space. Any sub-
algebra 7 of L=(dm) which is conjugate-closed and dense in L*(dm)
18 weakly* dense in L=(dm).

The following three lemmas will lead to the proof of the theorem.

LeMMA 1. Let <% be a conjugate-closed subalgebra of L=(dm)
which contains constants and is closed in L=(dm). Then <& is closed
for absolute values.

Proof. Let fe<#, 0<f=1/2, say. Then fif=(@1— (1 —f))*
can be expressed as the sum of a convergent series in L~(dm) whose
terms come from <7; it follows that f* € <& for all non-negative f ¢ 7.
Since & is conjugate-closed, the lemm follows.

LEMMA 2. Let (X, m) be a finite measure space and A a sub-
algebra of L=(dm) such that AU A 1is dense in LXdm). Then every
closed subspace _# of L*dm) which is invariant under multiplica-
tion by fumctions in A U A is of the form CgL(dm) for some measur-
able subset S of X (where Cy denotes the characteristic function of S).

Proof. Let <7 be the closed subalgebra of L~(dm) generated by
A U A and the constants. Then _# is clearly invariant under multi-

1 A weaker result was proved in [5].



DOUBLY INVARIANT SUBSPACES, II 527

plication by functions in <#. By Lemma 1, <Z is closed for absolute
values. Let g be the orthogonal projection of the constant function
lon _#. Thenl1l—q 1 #. Since _# is invariant under multipli-
cation by function in &, it follows that

2.1) | faam = {£1qrdm

for all fe <. Let Y be any measurable subset of X and let {f,} be
a sequence of functions from .2 which converges to C, in L*(dm).
Since |f, — f.|€ &, we have from (2.1)

[1£a = fullaldm = {170 = 7.l adm

and the last integral is less than (Slf'” — fu |2dm>% X (S]q |2 dm>%. It

follows that {f,|q |’} is a Cauchy sequence in L'(dm). Hence f,|q]*—
Cy|q in L*(dm); in particular,

(2.2) [#1gpam—| 1qram.

Since f, — Cy in LXdm), f,q9 — Cyq in L'(dm) and thus

(2.3) S f.qdm — qudm .

It follows from (2.1)-(2.3) that S g ]*dm :S qdm for all measurable
subsets Y; hence |q|* = q a.e. Tﬁus q = Cg g.e. for some S c X.

Because of invariance, CyL*dm) C .. If the inclusion were
strict, let ge .7 © CsL(dm). Then g | Cy<# also Cy € _#+ (where
S'=X—8) and _# is also invariant along with _# under multi-
plications by funections in <. So g 1 Cy.<#. It follows that g 1 <&
and because of density of <% in L*dm), we have g = 0 a.e. Thus
A = CgLXdm).

LeMMA 3. Let (X, m) and A be as in Lemma 2. Then every
closed subspace of L'(dm) which s invariant under multiplication
by functions in A U A is of the form CgLdm) for some measurable
subset S.

Proof. This follows from Lemma 2 above and Theorem 7 in [4].

Proof of Theorem 1. Let 7 — { fe Lidm): S fgdm =0 for all
ge . } Then _# is . -invariant, meaning invariant under multi-
plication by functions in .o and Lemma 3 applies for _#Z (with &
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replacing A). Thus # = CgL'(dm) for some S, so .Z N Li(dm) =
CsL(dm). But _#Z N Ldm) = L (dm) S . Since % is dense in
Ldm) by assumption, it follows that Cy = 0 a.e. Therefore _# ={0}
and the theorem follows.

REMARK. One of the corollaries of Theorem 1 is the “uniqueness”
of the Fourier coefficients of any function in LYG), for a compact
Abelian group G. The characters are dense in L*G) so that the sub-
space .7 of their finite linear combinations is weakly* dense in L=(dm)
by Theorem 1 and the uniqueness follows.

We now extend Theorem 1 to infinite measure spaces. For con-
venience we state the result in terms of Radon measures on locally
compact spaces. We have

THEOREM 2. Let X be a locally compact Hausdorff space and
a positve Radon measure on X. Let 7 be a subalgebra of the
algebra of bounded continuous functions on X such that

(i) 7 1s conjugate-closed,

(i) 7| K s dense in L*dp| K) for every compact subset K of
X. Then &7 is weakly* dense in L=(dp).

Proof. Let 7 = {fe LY(dp): ngd;z =0 for all ge Ja/} If we
show that _#Z = {0}, the theorem is proved. Now _# is clearly a

closed subspace of L(dx) and is .7 -invariant. We need the following
lemma which will be proved below.

LeMMA 4. Every closed .&7-invariant subspace _# of LNdp) is
of the form CsLNdp) for some measurable subset S (where &7 is as
in Theorem 2).

Assuming Lemma 4, the main theorem follows at once. For, since
A = CelMdpy), 7 C #+ = CyL™(dpt). If u(S) > 0, then S contains
a compact subset K of positive measure. Since . C CsL=(dp),
7 | K = {0}, contradicting the density of & | K in L*(dy¢| K). Hence
1(S) =0, so .27 = {0}, completing the proof of the theorem.

Proof of Lemma 4. Let #x = Cx #, ¥ = Cx S and Uz =
Cgyt. We shall identify L*(dy|K), L*(dpx) and CgL*(dft) which are
clearly mutually isometrically isomorphic. KEach _#Z; is closed and
-invariant in LY(dptg), so by Lemma 3, _#Zx = Cgx)L'(dttg) for some
S(K)yc K. If K’' D K, compact, then
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Csum/ LM dpt) = Cyu LN dpg) = Ax = CeCxr A
= CxCsxnLN(dtx) = Csmnnxl(dtx)
= Cymnnxli(dp) ,

so that S(K) = S(K’) N K (modulo null sets).
Let .27 denote the set of all continuous functions with compact
support and let ¢ be the linear functional on .27 defined by

2.4) o(@) = SS(K)zpdy

for ¢ € 27 where K is any compact subset containing the support of
®. Then o is well-defined and is continuous in the L'-norm, so can
be uniquely extended to a bounded linear functional on L*dft), which
we again denote by o. Let o be realized by the L>-function g so
that

(2.5) o(f) = | rodn

for all fe L(dy). From (2.4) and (2.5) it is easy to see that g| K =
Csxy a.e. for every compact subset K; so we may assume g = Cy for
some measurable S with S N K = S(K) (modulo null sets). Now

CKCSLl(dZU) = CsnKLl(d/") = CS(K)Ll(dfu) = Mx = CK//

for all compact K. Since for any feL'dpy), Cef—f in LYdp), it
follows from the above that C,LY(dy) = _#.

REMARK. The assumption that & is an algebra is crucial in
both Theorems 1 and 2; the conclusion would be false if &7 were
merely a linear subspace satisfying the rest of the assumptions. The
following example shows that, in the locally compact case for instance,
a conjugate-closed linear subspace of L=(dt) may be weakly* dense
on every compact subset but not on the whole space.

Let X be a locally compact space and f¢-a non-finite Radon measure
on X. Let feL'dy) be real and have a support of infinite g-measure.
Then the support is non-compact. Let & :{geL“’(dﬂ): Sg fdp = O}.
Then &7 is clearly not weakly* dense in L~(dy). But if g is any
continuous function with compact support which is “orthogonal” to
&, then g must be in the linear span of f in L'(dy). It follows
from our assumption on f that g is the zero function. Hence . is
weakly* dense on every compact subset.

3. Dunford-Pettis theorem. Let X denote a locally compact
Hausdorff space and pg a positive Radon measure on X. Let E be a
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separable Banach space and .9%; denote the space of continuous func-
tions from X into E with compact support. For 1 =< p < o, let F;°
be the space of all functions f from X into E with

N = (| 17@ 1 dp@) <

X
whereS denotes the upper integral. .7 is then a locally convex

space with respect to the seminorm N,. Let .57 denote the closure
of 97z in &5 and let L} = &°/_#;F where _#;7 is the set of all
functions fe. &7 with N,(f) =0. Then L% is a Banach space with
the norm induced by N, in the obvious way.

Denote by &4 the space of all weakly™ measurable functions f
on X to the dual E* of E such that || f(2)|| =< A < o« La.e. (||f(x)|| = A
a.e. on every compact subset). For fe . &57 let

N.(f) = supg (ess. sup,ex || £ (@) |])

where K ranges over all compact subsets of X. Then N, is a semi-
norm which makes &5 a locally convex space. Let L3. be the
quotient of 77 by the space of all functions in &5 which vanish
l.a.e. Then Lj. is a Banach space.

The following theorem is well-known (cf. for instance [1; p. 46,
Corollaire 2]):

THEOREM (Dunford-Pettis). Let F be a separable Banach space.
For feL3. and ge LYdp), let

wig) = Lgfdﬂ .

Then we(g) e F'* and the mapping f— w; tnduces an tsometric 1so-
morphism from L. onto &7 (L, F'*), the space of bounded linear
maps from LNdp) to F*.

We need the following variant of the Dunford-Pettis theorem:

THEOREM 3. Let E, F' be separable Banach spaces. For any
bounded linear map u of Ly into F'* there exists a function @ from
X into F(E, F*) such that

(i) <@(zx)s, t> is measurable for every sc K, teF,

(ii) N.(?) < «, and

(i) u(f) :S O(w)f (@)d () for every fe L with ||u|| = No(®).
Conversely, any ;unction O satisfying (i) and (ii) defines a bounded
linear map w satisfying (iii).
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Proof. Only the direct part needs a proof. First we note that
< (E, F*) can be regarded as the strong dual of the projective tensor
product K ® F. Indeed, the strong dual of F ®F is canonically
identified with the space B(E, F') of bounded bilinear forms on E X F'
and & (E, F'*) is canonically isomorphic with B(Z, F'). Since E, F'
are separable, so is E® F' and therefore &7 (K, F'*) can be regarded
as the strong dual of a separable Banach space.

Let # be a bounded linear map of L} into F'*. Then u induces
a bounded bilinear form # on L' X E into F'* by #%(f, s) = u(fQ s)
for fe L', sc E. For any fixed fe L', s— (f,s) is a bounded linear
map of E into F'* which we shall denote by u;. Then u,: f— u; is
a bounded linear map from L'into & (&, F'*) with |[|u,|| =]||u]|]. By
the Dunford-Pettis theorem, there exists a function @: X — <Z(H, F'*)
such that

(i) <@(x)s, ty> is measurable for each se E, te I

(i) No(?) = [lu ||, and

(i) w(f) =u = | f@O@0ue).

Hence }
W @s) = Wf, ) = uls) = | fosdp
= o @sn.
Because of the continuity of u, the theorem follows.

4. Doubly invariant subspaces. In this section we prove Wiener’s
theorem in the general setup. Let as usual X denote a locally com-
pact Hausdorff space, ¢ a positive Radon measure on X, 5% a sepa-
rable Hilbert space and %7, the space of continuous functions from
X into 57 with compact support. Let A be a subalgebra of the alge-
bra of bounded continuous functions on X and .7 denote the algebra
generated by AU A and the constants. A subspace .# of L3, is
clearly invariant under multiplication by functions is A U 4 if and
only if it is .%7-invariant. We recall that _# is doubly invariant if

(i) # isclosed in Ly, if 1 < p < o and weakly* closed if p = oo,

(i) # is -invariant.

Then we have

THEOREM 4. If | K is dense in L*{dp| K) for every compact
subset K, then every doubly invariant subspace 7 of Ly, (1 = p = o)
s of the form PLj, for some measurable range function P; _#
determines P uniquely.

Proof. We divide the proof into three parts; in the first and the



532 MORISUKE HASUMI AND T. P. SRINIVASAN

second we assume #(X) < o and the proof is an imitation of that of
the scalar case in [4]. In the last part we treat the case of arbitrary
measure spaces and an indication of the proof in this case was given
in the proof of Theorem 2.

(i) MX)< o, 1 =<p=2. By Theorem 2, . is weakly* dense
in L*(dy) and in this case the theorem has been proved in [4] for
p=2. Let 1Z<p<2 and 4 = //ﬂL2 Then _# is a doubly
invariant subspace of L3, and so 4" = PL2 for some measurable
range function P. We w1sh to show that % PL”

For any fe # let fi(x) =|f(x)|!~** and fz(W) Si(@)7f () (of
course f,(x) = 0 if fi(x) = 0). Then f; € L’(d) where (1/s) + (1/2) = (1/p)
and f,e Lj,. Let _#; be the doubly invariant subspace of L, gener-
ated by f.. Then 7] = PL for a measurable range function P,.
Here we may assume that Pz(x) =0 for those « for which fi(x) = 0.
For any @€ %%

flp2¢ef1p2L% ZfIMC/z’ .
On the other hand, since s > 2,
fiPpels, C L,
as fie L, P,p is bounded and #(X) < . Hence
fiPpe zn Ly =_1 =PL,

This means that PP, fip = Pf1¢ for all pe 5,,. 8o, Py(r) = P(x)
l.a.e. Thus we have _#; = PL2 C PL2 Hence

f:fleGfl'%CflPL%CPL?y{ ’

the last inclusion resulting from the fact that f,€L° where
(1/s) + (1/2) = (1/p). This shows that .2 C PLj,.

Since . Z D 4" = PL2 , we have _#Z D P% But 97, is dense
in L}, and Pis L”-contmuous So # D PL and we have M =
PL?,.

(i) MX) <o, 2<p=o. Let #'={feLl:f L 4} where
1/g) + (U/p) = 1. Then 1<q¢g<2and #Z' is doubly ‘invariant in Le,.
Hence by (i) #Z' = P’L" for some measurable range function P’
Then it is easy to see that A = PL” where P(x) =I1— P'(x), 1
denoting the identity operator on 57~

(iii) @(X) not necessarily finite, 1 < p < «. Consider any com-
pact subset K of X. Let #x = Cx.”, Yk = Cx. ¥ and tp = Cgp.
We shall identify Lj,(d¢|K), Li,(dpg) and CgL%(df) which are
obviously mutually 1sometr1cally isomorphic and denote any of them
by L%(K). Now _#; is a doubly invariant subspace of L%, (d/tx)
(with .,Q/ replacing &) and %% is dense in L*(dpg). Hence by (@)
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and (ii) above, #Zix = PKLQK(K ). We extend P to the whole of X
by defining Pg(x) = 0 outside of K.
For any two compact subsets K, K, with K, D K, we have

Py Ly, = P Lt (K) = Ay, = Cx,Crpl = C,Pr, L1 (K)

= Py,Cx, Ly, (K,) = Pr Cr L7, .

Hence Py, = Pr Cg, a.e. It follows from this that the map o: 57, —
&7 given by

o) = | Pe@p@int) ,

where K is any compact subset containing the support of @, is well-
defined. ¢ is clearly continuous with respect to the Lj,-norm and so
can be uniquely extended to the whole of L}, to be continuous. We
shall denote the extended map by 6. By Theorem 3 there exists a
weakly measurable bounded operator-valued function @: X— &7 (57, 2%)
such that

5(f) = | 0@ @iu)

for all fe L'. Then, since ¢ entends o, it is obvious that
@ | K = Py a.e.

for every compact set K; so there exists a measurable range function
P such that @ = P l.a.e.

We assert that _# =I3L}’%,. This follows from the fact that
Cx#”Z = CgPL}, for every compact set K and every fe._ is the
L?-limit (or the weak® limit if p = o) of Cf. This completes the
proof.

The uniqueness of P (for a given _#") follows from the uniqueness
established in [4] for finite measure spaces.

5. Decomposable operators. Let X, ¢, A and & be as in §4
and let 7T be an operator in L?;Z, bounded if 1 < » < o and in addition
weakly* continuous if p = o, Clearly T commutes with multiplication
by functions in A U 4 if and only if it commutes with functions in
7, and any operator T which operates pointwise (l.a.e.), meaning

(TF) (=) = T(x)f(x) l.a.e.

for an operator-valued function T'(x), clearly has this property. We
wish to prove the following converse.

THEOREM 5. If T 4s a bounded (and weakly* continuous, if
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p = ) linear map from L}, into L}, (1 = p = o) which commutes
with multiplication by functions in &7, then there exists an operator-
valued function T(x) defined a.e. with T(x)e L (57, 5F) which is
weakly measurable and uniformly bounded such that

(TF)@) = T@)f(x) a.e. (Tf)@)=T@)f(x) La.e. if p= o)

This theorem is usually stated for L%, [2; p. 162, Theoreme 1]
and as far as we are aware, the existing proofs require L}, to be
separable. We use the variant of Dunford-Pettis theorem established
by us in § 3 to get around the difficulties that may be caused by non-
separability (we of course assume that the Hilbert space 57 is separable).

Proof of Theorem 5. We first consider the case 1 < p < <o, for
convenience we assume that 7' is bounded by 1. Let fe Lf’%,,. Then

| (T)@) 1P dute) < | 1@ 1P dato)

Since T commutes with multiplication by functions in .97, this yields

| lat@ PIHTH@ 17 de@) = | |a@) 1711 7@ [P dpx)
for all e 2. From the weak* density of .97 in L=, it follows that
HTAE | S 1@ ae.

If L7, is separable, we can obtain T(x) by an explicit construc-
tion. In the general case we argue as follows:
Define a map u: 9%, — 2% by setting

wp) = | (Tp@du@), 9e.57, .

Then % is continuous with respect to the Ll%-norm on %, because

I] (rox@inw | = | 1Texe i dpe
= 9@ lap@ .

Since %7, is dense in L}, w can be extended by continuity to the
whole L}f without increasing its norm. We denote the extended map
also by u. By Theorem 3 there exists a function @(x) from X into
F(5#, 57) such that @ is weakly measurable, uniformly bounded
with [|@@)|| < |u|| =<1 and

w(f) = | 0@ f@du)
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for every fe L;z,. Thus for any @e T
|, (TP@du@) = u) = | o@e@iueE) .

Since T commutes with multiplication by functions in .&7 and every
a e .Y is continuous, we get

| a@o@e@dn@) = | o@a@e@dne)
= | (Tap)@yipe) = | a@)(To)wiue) .

By the weak* density of . in L=, this implies
(Tp)(x) = D(x)p(x) a.e.

for all pe 7. If & denotes the operator in L’;,t, defined by
@f)(@) = D@)f (@) a.e.,

then we have T@ = @@ for all pe Ty Since both T amAi d are
bounded in L}, and .57, is dense in Lj,, it follows that T = @. Now
we have only to put @(x) = T'(x) in order to get the theorem.

If p= o and T is bounded and weakly* continuous, then the
transposed map 7'* of T maps Lj, into Lj. Since T* commutes
with multiplication by functions in .7, T'* is expressed by an operator-
valued function which is weakly measurable and uniformly bounded.
Therefore T is also a uniformly bounded and weakly measurable
operator-valued function T'(x). In this case, we clearly have

(Tf)(x) = T@)f(x) la.e.
for all feLs,.
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