
MAXIMAL ALGEBRAS AND A THEOREM OF RADO

I. GLICKSBERG

l A theorem of Radό [1, 4, 6, 9] asserts that a function /,
continuous on the closed disc D — {z : \ z | ^ 1}, and analytic at all
points of the interior of D where / doesn't vanish, is analytic on all
the interior. One can of course take this as a statement about the
uniformly closed algebra Ax—the disc algebra—formed by those / in
C(D) analytic on the interior of D, and in fact it is easy to restate
the result in a form which makes sense for any function algebra. For
let T1 = {z: I z \ = 1}, and call / locally approximable at z if / can be
uniformly approximated by elements of Ax on some neighborhood of z.
Then it is clear that the result asserts that any / in C{D), locally
approximable at all z in D\{TX U/'XO)), is in Alm

Now since D can be viewed as the maximal ideal space of Alf and
T1 as the Silov boundary, we can formulate such an assertion for any
uniformly closed algebra of functions—and, needless to say, it will
fail in general.1 But under appropriate maximality conditions the result
does hold; in particular we shall show it holds for any uniformly closed
function algebra A maximal on its Silov boundary, provided the boundary
is not all the maximal ideal space of A, and for intersections of such
algebras.

This result holds as a consequence of two facts: Rossi's local
maximum modulus principle [11], and a quite elementary lemma (2.1)
which allows one to eliminate certain points as candidates for elements
of the Silov boundary of an algebra. In the original setting, where
the elementary local maximum modulus principle for analytic functions
can be used, our proof requires (beyond this lemma) only the fact that
the disc algebra Ax is a maximal subalgebra of C(ΓX) [7, 12]; no doubt
it is no simpler than the proof given in [6] However our arguments
do establish some nontrivial variants of the result in the general setting
(3.5, 3.6, 4.9), and, in particular, for functions analytic on polycylinders
in Cn; deflated to the disc algebra almost all of these follow rather
easily from Radό's result due to the topological simplicity of the one
(complex) dimensional situation and the fact that there Radό's result
can be applied locally.

One consequence of Radό's theorem is the fact that A1 is integrally
closed in C{D), i.e., any / in C(D) satisfying a polynomial equation

Received September 26, 1963. Work supported in part by the National Science
Foundation through Grant GP 1876.

1 For example, for the subalgebra of Aι of those / with /'(0) = 0; f(z) = z is locally
approximable off f~ιφ), but not in the subalgebra.
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/» + W " 1 + + a0 = 0

with coefficients in Ax must lie in A1# This extends to our maximal
algebras (§ 5), and, as a consequence, for every uniformly closed sub-
algebra A of C{^/ί)1 where ^ y the maximal ideal space of A, properly
contains the Silov boundary of A, we have a larger subalgebra a
with the same Silov boundary which is integrally closed in

Another consequence of one of our variants of Radό's theorem is
the analogue, for intersections of maximal algebras, of the elementary
removably singularity theorem for analytic functions (§ 6); from this
one also has an analogue of the elementary facts on the behavior of
analytic functions near isolated singularities, valid for functions locally
approximable on ^ less a point.

Finally, the main portion of our argument can be applied to yield
an abstract version of Schwarz's lemma: for any algebra A, if /, g e A
and fig is bounded on ^£\g~\ϋ) then it is bounded by its supremum
over the Silov boundary. Various consequences of this are given in § 4.

The author is indebted to Kenneth Hoffman and John Wermer for
many helpful comments; in particular it was Wermer who observed
that the author's original version of 2.2 could be used to prove Radό's
theorem, and suggested its use to obtain integral closure.

We shall use C for the complex numbers, R for the reals, and F°
for the interior of a set F.

2. In all that follows C{X) will denote the Banach space of all
bounded complex continuous functions on the space X, and A will
denote a closed separating subalgebra of some C{X), containing the
constants. In general we shall view any such algebra A as a closed
subalgebra of C{^f), where ^€\s the maximal ideal space of A; when
there is any necessity we may write ^JtA for ^£. A closed subset X
of ^£ is a boundary for A if every f in A assumes its maximum
modulus over ^// on X; any boundary is just a superset of the Silov
boundary d of A.

Let X be a boundary for A, and let F be a closed non-void subset
of X. An / in A will be said to peak within X on F if f(F) — 1
while I/I < 1 on X\F. As is easily seen a point m of X lies in the
Silov boundary d of A if and only if for every open neighborhood V
of m in X there is an / in A which peaks within X on a nonvoid
subset of V. The following lemma is fundamental to our considerations.

LEMMA 2.1. Let Xcz^f be a boundary for A, and V a {rela-
tively) open subset of X. Suppose geA peaks within X on a nonvoid
subset of V, and let a = sup | g(X\ V) | {which is necessarily <1).
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Then any feA vanishing on V also vanishes on the nonvoid open
subset U = {me^Jt : | g(m) | > a} of

Proof. Suppose | g(m) | > a and f(m) Φ 0. Let μ be a (normalized,
nonnegative, regular Borel) measure on X representing m, so h(m) =

Yhdμ for all h in A [7, p. 181]. Let v be the complex measure (ί/f(m))fμ
(the ordinary product of function and measure), which again represents
m since

\hdv = —λ— \hfdμ = —1— h(m)f(m) , he A.

Now set h = (l/g(m)) g e A; since | g(m) \ > a = sup | g(X\ V) | we have
h(m) = 1 > sup I h(X\ V) |. Replacing fe by a sufficiently high power
of itself we can suppose sup | fc(-3Γ\F) | < l/(2||v||), where | |v | | is the
total variation norm of v, while h(m) is still 1.

Since /(V) = 0 the measure v = (l/f(m))fμ is carried by X\ V, so

1 = Mm) = \hdv = \ hdv <
J )χw 21b I

the desired contradiction.
Our main applications of 2.1 will be made via the following corol-

lary, and usually with the set ^ a singleton.

COROLLARY 2.2. Let I c F c ^ be boundaries for A, V a
relatively open subset of X, and j ^ ~ any subset of A. If V is con-
tained in the topological boundary in Y of Π/e^r/'XO), then V Π 9 = φ.

Suppose V Π d Φ Φ, so some g in A peaks within X on a nonvoid
subset F of F. Then each / in JF must vanish on the open subset
Z7of ^£ given in 2.1, and Fa U, so F lies in the interior of Γ\fe&f~\0)
in Y, not in its boundary.

For a boundary X for A, A is called analytic on X if every / in
A vanishing on a nonvoid relatively open subset of X vanishes identi-
cally (on X, hence on d, hence on all of ^£). In [5] an example was
given of an algebra A analytic on d but not on ^fί\ the original
purpose of 2.1 was to prove

COROLLARY 2.3. // A is analytic on ^£, A is analytic on d.
Indeed it feA vanishes on a relatively open subset V of d then

some g in A must peak within d on a nonvoid subset of F, so that /
vanishes on a nonvoid open subset of ^J? by 2.1. Thus we have the
more general assertion of
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COROLLARY 2.4. For any algebra A, an f in A vanishing on a
nonvoid relatively open subset of d vanishes on a nonvoid open subset
of ^£'.

In particular if f~x(0) is nowhere dense in ^ then f~\0) Π 8 is
nowhere dense in d. Both 2.3 and 2.4 remain valid if ^£ is replaced
by any boundary for A, but neither need hold if d is enlarged to an
arbitrary boundary; for example both fail for the disc algebra Alf

with d replaced by X = T1 U {0}, and {0} the relatively open subset
of X.

As we shall see later (4.2), 2.1 yields some further information
on zero sets of elements of algebras with ^ Φ d.

Some simple variants of 2.1 are of interest, but will not be needed
in what follows. For example

COROLLARY 2.5. Let U and V be as in 2.1. Then any bounded
sequence {fn} in A converging pointwise to zero on V converges
pointwise to zero on U.

For θ > 1 let Uθ = {me^ : | g(m) | ^ θcή. Then any bounded
sequence {fn} in A converging uniformly to zero on V converges
uniformly to zero on Uθ.

Proof. For the first part, suppose fn(m) -/> 0 for some m in U;
replacing {fn} by a subsequence we can assume fn(m) —• c φ 0. Let μ
again represent m, and let / be any weak* cluster point of {fn} in
IΌO(/0 Since a subnet of {fn} converges weak* to / we have

h(m)[fdμ = [hfdμ , h e A ,

while c = lim/n(m) = lim \fndμ = \fdμ. So for h = glg{m) we have,

for all n,

c = h{m)λfdμ - \hnfdμ .

But by dominated convergence, for any / ' in Lλ{μ) vanishing off

V we have [f'fdμ = lim [fuf'dμ = 0, and thus / = 0 a.e. μ on V.

So, since sup | h(X\V) \ < 1,

c = lim [ hnfdμ = 0 ,
)χ\v

our contradiction.
The second assertion is entirely elementary. With me Uθ, and μ

and h as before, we have | h \ ̂  1/| #(m) | g 1/̂ α on X, and ^ α/^α =
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1/0 on X\V. Thus

Jx\v

since θ > 1 the last term will be <ε/2 for some large k, and choosing
n^ N will then force the sum below ε.

We might note that there are trivial variants of this second
assertion which allow {fn} to be unbounded, provided the sequence

approaches zero rapidly enough. For example, if

as is easily verified.

3* Let X be a boundary for A. We shall call a function /,
defined on part of X, locally approximable (within2 X by A) at xe X
if, for some neighborhood U of x in X, f is defined on U and is
uniformly approximable there by elements of A; alternatively3

f\Ue(A\ U)~, the closure in C(U) of A\U. We shall say / is locally
approximable on Y c X if / is locally approximable at each point of
Y; note that by definition the set of points of X at which a given
function is locally approximable is open in X.

We have ^ c l c ^ . Call A relatively maximal in C(X) if
A\Xφ C(X) and no closed proper subalgebra B of C(X) containing
A I X has dB — dA. (Since dA c ΘB necessarily, we are requiring properly
larger subalgebras of C(X) to have properly larger Silov boundaries.)
Note that A is relatively maximal in C(dΛ) if and only if A\ΘΛ is a
maximal closed subalgebra of C(dA); on the other hand if X ψ dA it
follows quite simply from Zorn's lemma that there is a (necessarily
proper) closed subalgebra Bi) A oί C(X) with the same Silov boundary
which is relatively maximal in C(X). (As we shall see later, an example
of an algebra which is relatively maximal in C(^C) but not maximal is
the algebra of functions in C(Dn), analytic on the interior of Dn, the
unit polycylinder in Cn.)

The following simple observation will extend the range of our
results.

LEMMA 3.1. If A is relatively maximal in C(X) and I c Y<z.^£A

then A is relatively maximal in C(Y).
2 We shall omit these terms when the algebra and boundary are clear.
3 / | U is the restriction of / t o Ut A \ U= {g \ U: ge A}. Trivially the uniform

closure (A\ U)~ of A\ U in C(U) is isometrically isomorphic to the closure of A\ U~
in C{U~), and at times we may write (A\ U)~ where (A\ U~)~ might also be used.
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Suppose B is a larger subalgebra of C(Y) with dBcdAf so that
dB = dA c X. Then B \ X is closed in C(X), and since we can assume
X Φ Y, BI X Φ C(X) since each point of Y\X provides a multiplicative
linear functional on B \ X. But A is relatively maximal in C(X), so
A\X = B\X, and each f in B coincides on dB = 9̂  with a # in A;
since Y" can clearly be viewed as a subset of ^€n, and / — g e B must
vanish on all of ^tB since it vanishes on dB, f = g on Y, and B = A.

The following is our direct extension of Radό's theorem.

THEOREM 3.2. Suppose A is relatively maximal in C(^fA) with
^£A φ dAf or, more generally, is an intersection of closed subalgebras
of C{^fA) each having a Silov boundary which is a proper subset of

fA and each relatively maximal in C(^fA).
Then any f in C{^Ά) which is locally approximable on

is in A.

Proof. Consider first the special case in which A is relatively
maximal in C(^?A), and let us write Λ€, d for ^/ίA, dA. Let B be
the closed subalgebra of C{^) generated by A and /.

For each m in U = ^f\(d U /-1(0)) we have an open neighborhood
Um of m contained in U for which f\ Ume(A\ Um)~, so clearly
h\ Um £ (A I Um)~ for any h in B. As a consequence m g dB; for other-
wise some h in B must peak within ^/ί on a subset of the open set
Um, so for some m' in Um

\h(m')\>suv\h(U-\Um)\ .

Since h\ Ume(A\ Um)~ this contradicts Rossi's local maximum modulus
principle [11] (which asserts that θu π)- c U~\U for any open Uc^t\d).

Similarly for any m in /-1(0)°, the interior of /^(O), mid, we
have a neighborhood ?7m c ^ \ 9 on which /1 ?7m = 0 e (A | Ϊ7W)", and
we again conclude that m$dB. $>odBcd{j F, where .F is the. topological
boundary of f~\ϋ) in ^ C

Now F\d is a relatively open subset of the boundary X = F[Jd
for B, and F\0 lies in the topological boundary F of /-1(0) in the
subspace Y = ^ f of ^ ^ so 2.2 applies, showing (FV?) Π dB = ^,
whence dBad. Since d ^ ^/έ, B is proper in C(^#), and since A is
relatively maximal in C(^€), B = A. Thus / e i a s desired.5

For the more general case6 let A = Π A*, where θAa £ ^ , and
each AΛ is relatively maximal in C{^t). Clearly dcdA , and ^ is

4 Actually A | X =£ C(X) is redundant if JΓ Φ dA, as will usually be the case.
5 Radό's theorem for Ai now follows from Wermer's maximality theorem [7, 12].
6 Our discussion here (and in later sections) would be considerably simplified if one

had a positive answer to the following open question, raised some time ago by Kenneth
Hoffman: if AczBczC(^A) and dB = dA, must ^B = *A?
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a subspace of ^Acύ properly containing dAa, so dA Φ ^tA(jύ. Let
pa : ^Aoύ —* ^ be the map dual to the injection of A into AΛf which
we can of course view as a retraction of ^A(Λ onto its subspace Λf\
finally let h—>ίi denote the Gelfand representation of Aa — for h in
A, in particular, h = hopa.

Now trivially foP*€C(^fAJ is locally approximable (by AopΛ,
hence) by A2 on ^1Λ\(Θ U (/ojθΛ)-

χ(0)), so certainly on
^ ^ α V ^ U ί / o ^ ) - 1 ^ ) ) . Since A* is relatively maximal in C ( ^ C J by
3.1, fop^eA* by our special case, whence f = (f°pΛ)\^ is in
A^ I ^ ^ = Aa\ since this holds for every a, fe A, completing the proof
of 3.2.

The argument of the special case of 3.2 is central to all that
follows (and will be needed again). There, in distinction to the more
general case, the only property of ^ that is used is the local maximum
modulus principle; Λ€ could just as well be any boundary X fo which

(3.1) ΘUΊT)- c U~\U, for all relatively open U in X\(θ U F) ,

where F is the boundary of /-1(0) in X. Moreover 3.2 evidently yields
a positive assertion about any algebra A with ^ C Φ d; it will be
worthwhile later to combine these observations in the following corollary
to our proof, in which ^/ί can be taken as X.

COROLLARY 3.3. Let fe C(X), where X is a boundary for A for
which (3.1) holds. Let f be locally approximable (within X) on
X\(d \J f~\ϋj) and let B be the closed subalgebra of C(X) generated
by A and f. Then

(a) dB = θ (so that B — A if A is relatively maximal in C(X))r

and
(b) local maximum modulus applies to B on X, i.e., for an open

UcX\d,

d(B]U)-a U~\U.

If X = d the assertions of 3.3 are of course vacuous, (a) is of
course proved in 3.2, and also follows from (b), whose proof is simply
a modification of that of 3.2. For if x e U is not in F, the boundary
in X of f-\0), then x has a neighborhood Ux with U~ c U\F for
which /1 Um e (A \ Ux)~, so h | Ux e (A \ Ux)~ for any h in (B \ U)-, thus
%£d{BU)- as in 3.2. On the other hand if x is in F then x$d{B-π)-
by 2.2, so (b) follows.

3.3 has the following consequences.

THEOREM 3.4. Let ^fA Φ dΛ. Then there is a closed subalgebra
B of C(^A) containing A, with dB = dA, for which any f in
locally approximable by B on ~^fA\(dA[Jf~1(0)), must lie in B.
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Consider any chain of closed subalgebras B of C{<^fA) which have
the same Silov boundary as A and to which local maximum modulus
applies on ̂ £r

A\dmm-(zTJ"\U, for U open in ^tA\dA. By just the
argument used in 3.2, if J50 denotes the closure of the union of the
elements of the chain then d{BfiW)-CL U~\U for any open U(Z^fA\dA,
so ΘBQ = dA and local maximum modulus applies to Bo on ^ A . By
Zorn's lemma then we have a closed subalgebra B of C(^Ci) maximal
with respect to these properties, with AcB. But now for an / in

which is locally approximable (within ^A) by B on
/^O)) we have by 3.3 precisely the same properties for the

algebra generated by B and /; thus the latter coincided with J5, and
feB.

The following extension of 3.2, which allows us to replace 0 by
a countable subset of C, merely adds a category argument to that of
3.2. In the original setting of Radό's theorem it can be obtained by
a local application of that result (and category).

THEOREM 3.5. Let A be relatively maximal in C(^/t) with
Φ d. Let E be a countable subset of C, and {Fn} a sequence of

nowheYe dense hull-kernel closed7 subsets of ^t. If fe C{^) is
locally approximable on

(3.2) ^\(dϋf-1(E)[J(UFn))

then feA.
If A is only an intersection of relatively maximal subalgebras

of C(^f), each having its Silov boundary proper in ^f, then the
same assertion holds if \JFn is closed, in particular if {Fn} is finite.

Proof. Suppose first that A is relatively maximal, and let B be
the closed subalgebra of C{^€) generated by A and / . Actually / is
locally approximable on an open subset W of ^€\d which contains
{3.2), and also contains the open sets f~\ey\d, eeE, as well; and so
for each me W we have a neighborhood Um of m, Um c ^ \ d , for
which f\Ume(A\ Um)~, whence h\Ume(A\ Um)~ for all h in B. Since
W is open we can conclude from the local maximum modulus principle
that dB Π W = Φ as before.

Suppose medB\d, so medB\(d\jW). Since W contains (3.2) and
each set / " W ^ , such an m must lie in U Fn9 or in /"'(^AUβe^/" 1^) 0,
which is contained in the union of the boundaries of the sets f~\e).
Thus dB\d is contained in a countable union of closed subsets of

and, by category, if θB\θ Φ Φ one of the sets Fn n (9B\d) or

7 Recall that a subset of -^ — # Ά is hull-kernel closed if and only if it is of the

form r\^^g-\ϋ), where



MAXIMAL ALGEBRAS AND A THEOREM OF RADO 927

(boundary f~\ej) Π (dB\d) has nonvoid interior V in the locally compact
space dB\d, hence in dB.

Now if Va (boundary f~\e)) n (9B\d) then e — f is an element of
B which vanishes on the relatively open subset V of dBf while V
lies in the boundary in ̂  of (e —/)~1(0), so that 2.2 implies V ΐ\dB = φ,
our contradiction. Similarly if VcFnΓ[(dB\d), then since Fn is hull-
kernel closed it has just the form of the intersection in 2.2; since FΛ

is nowhere dense in ^ί, V lies in boundary Fn = Fn9 so 2.2 again
yields a contradiction, and we conclude that dB c d, whence B = A
a n d / e A .

For the final assertion of 3.5 we consider ^£ as a subspace of
^Άa as in 3.2, with pa our retraction of ^ d Λ onto ^ ^ Since now
p^Fn need not be nowhere dense in ^Aoϋ, we let Y = ~^tA}\Jp«\Fn)\
and let Ba be the closed subalgebra of C(Y) generated by (the re-
strictions of) A2 and f°pΛ.

Our hypothesis that Fn is nowhere dense implies ^// c Y since
P«\Fn)° Γl^ cFi = φ. And our hypothesis that (J ̂  is closed implies
K = \Jρ~1Fn = p-1 (U •f'J is closed so that

U

is an open subset of ^A}PA contained in the subspace Y of oί

Trivially f°pa is locally approximable by A2 on an open subset of Y
which contains all points of U except (possibly) those lying in the
boundaries of (f°pa)~1(e), eeE. But now any m in U at which fop^.
is locally approximable has an open neighborhood Um in ^Af\pAa with
U~ c U for which h\Ume (AΛ \ Um)~, he B; since Um is open in ^€Aol)r
we know m£dB by just the argument of 3.2.

Thus m e 0B\ΘAa implies m lies in the boundary in Y of some
{f°P<*)Λe), or in K\\JpΛFJ^U{pΛFn)W(FJh i.e., in the boundary
of onp of the sets p«\Fn) (Ί Y in Y; and now the argument of the
special case shows 8 5 c 9 v By 3.1 A2 is relatively maximal in C(Y"),
so BΛ = iCI Y, and since ^ ^ c Y, Ba\ ̂ £ = A2 \ ^ = AΛ, and / e AΛ+
Hence feA, completing the proof of 3.5.

As noted, the only point in the proof of the special case of 3.2
in which ^€ had to be the full maximal ideal space of A, rather than
a subset properly larger than the Silov boundary, was in the application
of local maximum modulus. In some special situations classical local
maximum modulus can be applied, and we can then avoid using all of
the maximal ideal space. For example, for X G I , a boundary for A,
call a non-constant map px of the open disc JD° onto a subset of X
containing x an analytic disc through x if gopx is analytic for each.
a in A. Then
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THEOREM 3.6. Let X Φ d be a boundary for A, and suppose A
is relatively maximal in C(X). Let feC(X) and let F be the
topological boundary of f~\0) in X.

Suppose that for every x in U = X\(d U F) there is an analytic
disc px through x for which f°px is analytic on D°. Then fzA.

As before, define B to be the closed subalgebra of C(X) generated
by A and /; for every disc px in our hypothesis we have hopx analytic
on D° for he B as SL uniform limit of analytic functions.

Now if dB n U is nonvoid then [10, p. 138] the open set U must
contain a strong boundary point x of B, and since px is non-constant
some g in B must peak within px(D°) on a proper subset containing x.
So gopx assumes its maximum modulus at a point of D°, yet is non-
constant and analytic on D°; we conclude that U{\dB is void, and
dB c d U F. Now the remainder of the proof of 3.2 applies.

Other variations of this sort can be obtained. We have pointed
out 3.6 mainly to note an apparently nontrivial variation of Radό's
theorem which it yields for the polycylinder algebra—the algebra An of
all functions continuous on the polycylinder Dn in Cn and analytic on
its interior. Recall that for An, ^ — Dn and d = Tn; moreover if
X is any closed subset of D% containing the topological boundary of
Dn in Cn (and thus a boundary for An) then8 An \ X is relatively maximal
in C(X).

COROLLARY 3.7. Suppose X is a closed subset of Dn containing
the topological boundary of Dn in Cn. Suppose fe C(X), and through
each point of X\Tn where f does not vanish we have an analytic disc
in X on which f is analytic.

Then f is an element of the polycylinder algebra An restricted
to X.

(Note that we of course have analytic discs on which / is analytic
through points of /^(O)0. Here an analytic disc is simply an analytic
map of D° into X, which need not be (1 — 1), let alone bianalytic.)

Finally we should note that something slightly weaker than local
8 This is no doubt well known; the proof for n = 2 is as follows, with A = Ai \ X.

Suppose i c ΰ c C ( I ) , and dB = dΛ = T2. Each disc Do = {(z, wQ):\z\ ^1} with | wo \ = 1
lies in X and is a peak set of A (hence of B), since (z, w) -> (1/2)(1 + ϊΰow) peaks there.
Consequently [8, p. 227] B\D0 is closed in C(D0) and dB\DQc:dBnDo=T2nDo=dA\DQ.
Since A \ Do is the relatively maximal disc algebra and we now have dB\D0 = QA\DQ, we
conclude that A \ Do = B \ Do; thus z -> b(z, wo) is analytic on \z\ < 1 for b6B, \ Wo\ = 1.
Similarly w -> b{zo, ω) is analytic for | r̂o I = 1. But now

= 0

for n or m > 0, so b = ge A on dB = T2, whence b — g must vanish on
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approximability can be used in its stead in 3.2-3.5: rather than insisting
that / be uniformly approximable by elements of A on Um (hence
necessarily on U~) as we have done, we need only insist on uniform
approximation on

(3.3) K = {m} U (U-\Um) = {m} U boundary Um.

For example, in 3.2, f\Ume(A\Um)~ was used only to show
{^/ί\d U/^O))) Π 9B = φ, and since [10, p. 138] strong boundary points
are dense in dB while ^f\(d U f~\0)) is open, it suffices to show
m e ^ / ^ U / " 1 ^ ) ) cannot be a strong boundary point. But if m is
a strong boundary point and / is uniformly approximable on (3.3) then
h I Ke (A I K)~ for all h in B while some h in B must have

(3.4) I Mm) I >sup\h(U~\Um)\

since m is a strong boundary point not in U~\Um. Now some In! in
A satisfies (3.4) (since h \ Ke (A \ K)~), contradicting local maximum
modulus again.

It may be worthwhile to note what this yields for the disc algebra
A,: if fe C{D), and for each z in D\{Tλ U/^O)) there is an rt, 0<rz^
dist (z, T1 \J f~\ϋ)) for which / can be approximated uniformly by
polynomials on {z} U {zr: \ z' — z \ = r j , then feAlm (Deleting f~\0)
everywhere, we have here simply a corollary to Wermer?s maximality
theorem for A± and the density of strong boundary points in d; from
this the more general statement follows by Radό's theorem. Actually
we can limit our z's to a dense countable set in DXiT1 {Jf~\O)) if we
also assume that rz > k dist (z, T1 U/""1^)) for some fixed k > 0.)

4* Schwarz's lemma* Our argument can also be applied to certain
functions defined and continuous only on part of ^ , for any algebra
A. In particular, we have the following generalization of Schwarz's
lemma (for A = A19 take g{z) = z), which has several consequences.

THEOREM 4.1. Let f and g be in A and suppose f/g is bounded
on Λr\g-\ΰ). Then

(4.1) sup = sup
g

(In fact the assertion applies to the Gelfand representatives of any
commutative Banach algebra.)

Proof. For each m in U = ̂ £\{d U sn^O)) let Um be an open
neighborhood of m with compact closure contained in U, chosen so
small that OeC does not lie in the closed convex hull of g(U~). Then
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we have polynomials Pn for which Pn(z) —• z~ι uniformly on g(Um), so
that (Pnog) I Um - (II g) \ Um in C(Um), and thus (Jig) \Ume(A\ Um) \

Letting Bo be the uniformly closed subalgebra of
generated by AQ = A \ {^f\g~\ϋ)) and f/g, we have

(4.2) h\Ume(A\Um)~

for all h in Bo and m in U.
Now let X be the closure of ^\g~~\ϋ) in ^tBo, so that X is a

boundary for the algebra B^ of Gelfand representatives of Bo. Set
B — B^ \X; B of course contains a continuous extension to X of each
ft in Ao, and of //#, and we shall let h* denote the extension of
h I (^\g-\0)), for he A.

g* cannot vanish on ^\g~\0). On the other hand g* must vanish
on X\y£\ for since ^Jt\g~\ϋ) is dense in X, |flr*(a?) | ^ ε > 0 implies
x is in the closure of {me^f: \g(m)\ ^ ε}, which is already compact,
so a e ^ . Consequently ^*~1(0) = X\y#. Again since Λ?\g~\ϋ) is
dense in X, g*"1^) = X\J? must coincide with its boundary in X.

Now ^//\g-\ϋ) = X\fif*~1(0) is open in X; on the other hand the
imbedding of ^ ^ ( O ) into X is a homeomorphism,9 so that the rela-
tively open subset U — ̂ t\(θ U g~\0)) of ^\g~\0) is in fact relatively
open (hence open) in X. Consequently each Um is open in X and (4.2)
suffices to show no m in U is in ΘΛ, as in 3.2. So

, θsczX\Ua ( X W ) U (%-χ(0)) c (JΓ\^r) u i^7,

where F is the closure in X of ^ r ^ O ) , and 0ΛCβr*-1(O) U F.
If the relatively open subset dB\F of 95 were nonvoid, then, since

it lies in flf*"1^), hence in the boundary in X of this set, 2.2 would
imply dB f] (ΘB\F) = ^ = S^F; so dB\F =Φ,dBc:F and trivially (4.1)
follows. (Since the result applies to A~—with 1 adjoined if necessary—
for any commutative Banach algebra A, the final assertion follows,
easily.)

Our first corollary to 4.1 gives some information about zero-sets-
which is quite familiar for the disc algebra: a (non-void) zero set
g~\0) (g e A) disjoint from the Silov boundary has a smallest neighbor-
hood on which elements of A can vanish, while no / in A vanishing
on ^~α(0) can tend to zero faster than every power of g unless / vanishes,
on a neighborhood of flπ^O).

We first observe that (4.1) can be trivially improved to have
^(/"'(O) U fΓ'ίO)) in place of d\g-\0) on the right side of (4.1) (since
f/g vanishes on /

9 Trivially BoC.C(^\g~K^)) implies the map of ^\g"ιΦ) into < B 0 is continuous,
while the map of ^B0 into •* dual to the injection of A into 2?o-restricted to the image
of *\g~ι(ff)- in *<B0-provides a continuous inverse.
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COROLLARY 4.2. Let f and g be in A, with Φ Φ fir^c/^O),
and suppose inf | g(d\f^(O)) | = δ > 0 (which will of course be the case
if g~λ(O) Π 9 = Φ). If fjgn is bounded on ^/?\g~ι($) for every n^l
then f vanishes on

(4.3) g-\D%) ,

where Dδ° is the open disc about 0 of radius δ.
In particular, if g~λ(0) is nonvoid and disjoint from the Silov

boundary, then any f in A vanishing on a neighborhood of g~x(0)
vanishes on (4.3) with δ — inf | g(d) |.

By (4.1), modified as indicated,

g n ^ sup
g n

on ^//\g~\ϋ) so that

= sup

#(m)
δ

- 0

if 0 Φ I g(m) \ < δ. By hypothesis f(m) — 0 if g(m) = 0, so / vanishes
on all of (4.3).

For convenience let us say g eA divides feA if / = gh, he A.

COROLLARY 4.3. Suppose A is analytic on ^// (§ 2), and g eA
has ^-1(0) nonvoid and disjoint from the Silov boundary. Then if
g divides a nonzero element f of A there is a largest integer n for
which gn divides f.

Otherwise f/gn is bounded for every n, and / must vanish on (4.3),
hence on all of u / .

COROLLARY 4.4. Suppose A \ d is an intersection of maximal closed
subalgebras of C(d), f and g are in A, and10 ^/S Φ d {] g~\0). If f/g
is bounded on ^\g~x($$), and on θ has an extension in C(θ), then
f = gh for some h in A.

10 This hypothesis is superfluous if g does not vanish anywhere on d, but in general
is essential to the result. For let ^ be the subset ({0} xD) U {(r, z) : 0 ^ r ^ 1, | z | = 1}
of R X C, and A all functions continuous on ^ and analytic on {0} X D°. Then ^A. =
•Λf, dΛ = ^r\({0} X D°) and setting /(r, z) = rz, g(r, z) - r we have fjg(r, z) = z so f/g 0 A.
(If O£g(d) and ^ y = d{Jg~Kfy t n e n each of the complementary sets d and gr"1^) i s °Pen
and closed; by a result of Silov, or in fact by 3.2, the characteristic function of ^ - 1(0)
is an element of A. Since it vanishes on d we conclude that g~Kty = Φ a n d t n e assertion
of 4.4 is vacuous.)
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We shall only sketch the proof, which is quite similar to that of
4.1. Suppose first that A | d is actually maximal. Let ft0 be an extension
of f/g to Y- θ U C^f\g-\0)) with ho\deC(d); we now let BQ be the
uniformly closed algebra of bounded functions on Y generated by A | Y
and ft0. Of course we have ft \ d and ft \ (^^\g~\0)) continuous for
ft G Bo, and this implies the (1 — 1) map of Y into ^tBo is continuous
when restricted to d or ^\g~\ϋ)\ we can view F as a subset of
c^C0, d as a compact subspace.

As in 4.1 we let X be the closure of Y in . ^ 0 , B — B^\Xy and
ft* the element of B corresponding to heBQ. If #*(#) ̂  0 then for
some ε > 0, x lies in the closure in X of { m e ^ T : |#(m) | ^ ε}, which
is already compact in X as the continuous image of a compact subset
of ^\g~\fy. So X\g*-\ΰ), an open subset of X, is contained in Y;
thus tX'\flr*-1(0))\9 is another subset of Y which is open in X. This
last set is clearly the open subset U = Y\d = ^ \ ( 9 U ̂ (O)) of Y,
and Z7 is open in X.

Now the imbedding of U into X is a homeomorphism (exactly as
before; see footnote 9)), so any subset of U, open in ^£, is open in X.

Consequently if we select, for me U, an open neighborhood Um

o f m i n ^ with U~ c U (as in 4.1) for which ft* | Um - h \ Um e (A | Um)~,
h e JB0, then since Um is in fact open in X the argument of 3.2 and
local maximum modulus show dB Π Um = Φ.

Thus 8 Λ c ί \ ί r = X\(y\θ), so ΘB\ΘcX\Γ. But X\Ycff*" 1 ^), as
we have seen, so X\Γc^*~1(0)\δ>, and ^ c ^ - ! ( 0 ) \ 9 . Since F\9 =
. ^ \ ( 9 U flΠ^O)) is dense in X\δ> while ^* cannot vanish on this set,
we clearly have g^^Oyψ contained in its boundary in X. So 2.2 applies
to show dB\d = φ, whence dBcd and 5 [ ^ is closed in Cφ).

By hypothesis ^\(θ U ̂ ""̂ O)) ^ ^ , s o 9 5 c 9 is proper in ^/fB; thus
AI 0 c I? I d £ C(0), and by maximality A 19 = J51 a. Hence h0 = ft on
9 for some ft in A, whence f — gh on 9, hence on all of ^ ^ .

Now if A\d = Π(A* 19) where each Aa \ d is maximal in C(d), then
the preceding argument applied to Aω (with / and g taken in C(^C α ))
shows ft01 d e A* \ d; thus hQ\d ~ h\d for some ft in A, whence / = gh
on ^ ^ as before.

COROLLARY 4.5. Let A\d be an intersection of maximal closed
subalgebras of C(d), and let g be an element of A with ^>£ Φ d U g^iO).
Then any f in C(^/ί) with fgeA coincides on ^£\g~x{$$) with an
element of A.

For fg/g is bounded on ^\g~\*S) and on d has the extension /1 d
in C(d), so that fg = gh for some ft in A by 4.4.

(If A is analytic on ^£ (see §2), / e A; for then ^(O) is nowhere
dense in
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Bishop [3, § 2, Lemma 3] has recently shown that (for any A) a
point m in ^/f\d is represented by a (not necessarily unique) Jensen
measure on d, i.e., there is a probability measure μ carried by d for
which Jensen's inequality holds:

g | / | d / i , feA.

(Applied to f—e±g,geA, this yields Reg(m)—VRegdμ so that μ

represents m on A.) As a consequence the argument of 4.4 yields

COROLLARY 4.5. Suppose f, g eA and f/g is bounded on ^#\g~\0)
and on d has an extension h0 in C(d). Then for each m in
^/f\(d U flΠ^O) \Jf~L(0)) there is a Jensen measure μ on d representing
m for which

log I g I dμ - log | g(m) | ^ J log \f\dμ - log |/(m)

When (as in 4.4) f/g is actually the restriction of an element h of
A, 4.5 follows trivially from Jensen's inequality for any Jensen measure
μ representing m; for

log |/1 dμ - log I f(m) \ = I log | gh \ dμ - log | gh(m)

g\g\dμ - log I g(m) | J

while the last term is nonnegative. In general we can construct the
algebra B of 4.4, obtaining dB = d as there. Thus m e ^//\{d jj ^-1(0)),
which provides an element of ^^pBί is represented on B by a Jensen
measure μ on dB = d by Bishop's result. So

log <

and

-co < log I g(m) I ̂  (log \g\dμ .

From the last we have d Π g^iO) a /J-null set so

log |/(m) I - log I g{m) \ = log -^-(m) ^ I log -£- dμ



934 I. GLICKSBERG

yielding 4.6.
If A\d is not an intersection of maximal subalgebras of C(d) and

/, g are as in 4.4 one would not in general expect f/g to have an
extension in C(^f)— or even an extension to ^ continuous at all
points of d. However this is the case if A has unique representing
measures.11

COROLLARY 4.7. Suppose each m e ^ is represented by a unique
(probability) measure on d. Let f,geA, with f/g bounded on
^\Q~\^)J

 and suppose that, on d, fig has an extension in C{d).
Finally, suppose ^ Φ d\J g~\$).

Then fig has an extension in C{^£).

Exactly as in 4.4 we form the closed subalgebra B of C(X)\ X
contains (a homeomorph of) d and a continuous (1 — 1) image of
^£\g~~\ϋ) as before. Again we obtain dB c 0, so that each m e ^/ίB

is represented by a probability measure μm on d, which is necessarily
multiplicative on AcB, hence represents an element mr of ^€\ the
map m—*mf is of course nothing but the continuous map on ^£B into
^ f dual to the injection of A into B. But since representing measures
for A are unique m - ^ m ' is 1 - 1 : for if mu m2 both map into m'
then μmi = μm2, whence m1 = m2.

Thus ^€β is homeomorphic to a compact subset of ^// which
necessarily contains {^€\g~\ϋ)) U d, so that h0 (see 4.4) has a continuous
extension to the closure of this set, hence to ^ \

Actually in 4.1, 4.4 and 4.7 various other combinations of / and
Q (e.g., / exp (1/g)) could be used in place of f/g. More generally f/g
could be replaced by any h in C(^€^\^~1(0)) which is locally approximable
on Λ?\(d U ̂ (O)), as is clear from their proofs. Thus

THEOREM 4.8. Let geA and suppose he C(^f\g~\G)) is locally
approximable on ^t\(d U βΠ^O)). Then

sup I h(^\g-\§)) I = sup I h(θ\g-\(ή) \ .

Suppose that ^/ί Φ d U ̂ ( O ) , while h | d has an extension in C(d).
Then

(i) If A\d is an intersection of maximal subalgebras of C(d),

11 More generally we could insist on uniqueness of the Jensen measure for each m
(see [3, §2, Lemma 3]). An example where the assertion of 4.4 fails is the following
which was pointed out by Wermer. Let X = {(z, w)e C2: \z\ = 1 = | w |}, and A the
closed subalgebra of C(X) generated by the coordinate functions z, w, and all the
functions wm/zn with m > n > 0. Then >* = {(z, w) G C 2 : | w \ ̂  | z \ ̂  1}, the coordinate
function g = z vanishes only at (0, 0) in -#, and w/z is bounded on • \̂flf~1(0), but has
no continuous extension to **\
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h is the restriction of an element of A.
(ii) If each m in ^ has a unique representing measure on d

then h has an extension in

With sufficiently strong hypotheses we can also obtain an analogue
of Radό's theorem in which continuity need not be assumed everywhere.

THEOREM 4.9. Suppose A\θ is maximal in C(d), ̂  Φ d. Let
F be a relatively closed subset of ^f\d, E a countable subset of C,
and K a countable union of hull-kernel closed sets (for example,
points) contained in F. Suppose feC(^f\F), f is locally approxi-
mable on ^f\(d (J F), f~\e) is nowhere dense in ^£\F for each e in
E, and for every m in the boundary Fo of F in ^tf, m£K, the cluster
values of f at m lie in E, i.e..

where the intersection is taken over all neighborhoods of m.
Then f is the restriction of an element of A.

Proof. Again for each m in U = ^/f\(d (J F) we choose an open
neighborhood Um with f\ Um e (A | Um)~, and let BQ be the closed
subalgebra of C{^/\F) generated by A \ {Λ\F) and /; thus

(4.4) h\Ume(A\Um)~

for all m in Uand h in Bo. We can again view Y — ̂ \F = 0 U(^£\F)
as a subset of ^tB& and d as a compact subset. Let B be the re-
striction of the Gelfand representatives B^ to the closure X of Y in
^CJ 0 , and p the restriction to X of the map ^ ^ o —• ^ dual to A —> Bo.
Trivially p(X) is the closure, in ^J?, of Y.

Now p is 1 — 1 on p~λ Y, so p~x Y = Y; for each h in Bo is con-
tinuous on Y while for each x in X, h(x) is a cluster value of h at
ρ(x). Thus ρ(x) =yeY implies h(x) = h(y) = h(y), and x = y. (Since

each Um is open in ^#, hence in p(X), this implies Um = p~ιUm is
open in X.)

Each m in p(X)\Y lies in the boundary Fo of F, clearly. Since
each Um is open in X, by local maximum modulus and (4.4) we have
dBf\ U=Φ, so dBcX\U; since ρ~Ύ = 7 and Y = d \J U we have
p(dB)c.ρ(X)\Ucd{J(p(X)\Y)c:dUF0, so β ^ c β U r W For each
x in p~\F^), f(x) is a cluster value of / at p(x), so that either f(x) e E
or p(x) e K = UΓ=i ̂  (where K{ is hull-kernel closed). Thus the locally
compact space dB\d c ρ~\K) U (f~\E) 1Ί X), a countable union of closed
subsets of X. By category, one of the sets ^ ( i Q Π (0Λ\0) or
f~\e) fl (^\9)? e G E* h a ^ a nonvoid relative interior V in 9^8 if
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Suppose p~\Ki) n {®j\&) has nonvoid relative interior V. Then if
S = {heA: h(Ki) = 0}, K{ = ΓϊhesΛ"x(0), and since / = hop on X, we
have /o-1(JE<) = n*6β^"1(0). Trivially ^ ( i Q is all boundary in X
(since p~\Ki) f]Y — Φ and Y is dense), so 2.2 applies to yield the
contradiction V = dB Γ\ V = Φ.

Again if f~\e) Π (ΘB\Θ) has nonvoid relative interior V in θB\d, then
(β — /)"1(0) contains V, and coincides with its boundary in X since
(e — Z)" 1^) Π ? is nowhere dense in Γ = ^£\F by hypothesis, hence
has a dense complement. Since this again yields V = V ΓίθB = Φ by
2.2, we conclude that dB\d = #.

The remainder of the proof is now clear.

COROLLARY 4.10. Suppose that the hypotheses of 4.9 are satisfied
except for the requirement that A\d be maximal in C(d). Then the
closed subalgebra of C{^€\F) generated by f and A\{^\F) has the
same Silov boundary as A.

5. Integral closure. For a boundary X of A we shall call A
integrally closed in C(X) if, when α0, alf , αw_x are in A and fe C(X)
then

(5.1) p(f) =fn + a^J"-1 + + α0 - 0 on X

implies feA. We shall see that algebras to which 3.2 applies have
this property for12 X = ^ f as a consequence of 3.2 and the implicit
function theorem for analytic functions on Cn.

Recall that if F is analytic near (z°, w°) = (z°, . , z°n, w°) in Cn+\
F(z\ w°) = 0 and (SF/βw) - Fn+I(z°, w°) Φ 0 then, for some δ > 0 and
neighborhood V of 2° in Cn, there is a unique function ψ on F for
which

= 0 a n d | <p(z) -w°\<δ;

and φ is analytic on V. Consequently if

(5.2) F(a19 •.-,«„/) = 0

on a neighborhood of me^?, where α l f •••, α^e A,fe C(^f), and
α^m) = z°if f(m) = w°, then

near m. Thus / can be uniformly approximated by a power series in
au ---,an near m, and for some neighborhood Um of m, /1 Um e (A \ Um)~.
So we have

12 The same argument, using 3.3, yields this for any boundary X for which local
maximum modulus applies to Λ on X, if 4 is relatively maximal in C(X),
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LEMMA 5.1. Let a19 , ane A,fe C{^€), and suppose F is
analytic on a neighborhood of (a^m), , an(m),f(m)) in Cn+1 while
(5.2) holds on a neighborhood of m. Then f is locally approximable
at m if F^ajjn), , an(m),f(m)) Φ 0.

We can now easily obtain the integral closure of the algebras in
3.2. Slightly more generally we have

THEOREM 5.2. Suppose A is an intersection of relatively maximal
subalgebras of C(^t) with Silov boundaries proper in ^ . If
fe C(^/έ) is locally approximable on ^f\d outside the set where (5.1)
holds then feA; in particular A is integrally closed in

Proof. /, and so p(f), is locally approximable on ^f\d except
where p(f) — 0, so that p(f) = aeA by (3.2). Changing aQ, we can
thus assume

v(f) =fn+ α-i/-1 + + a0 = 0

everywhere on ^'. But now / is locally approximable off the set
where

p\f) = nf*-1 + (n - l)an^fn~2 + + θχ = 0

by 5.1, so p'(f) is locally approximable off p'ify^O), and pf{f) e A by
3.2. Continuing we finally have (n\)f + aeA, and feA.

COROLLARY 5.3. Suppose A satisfies the hypothesis of 5.2, while
feA does not have an nth root in A for some n > 1. Then ̂ /ί\f~x($S)
is not simply connected (and if ^ is locally connected, some com-
ponent of ^\f~\G) is not simply connected.)

Finally, if A is also analytic on ^ , ^t\g~λ{$i) is connected for
each g in A.

If ~^t\f~\ϋ) were simply connected we could find an h in
C(-^\/-2(0)) with hn=f on ^€\f~\®)\ setting fc-Oon f-\0) we
obtain an wth root of / in C(^£), and h e A by 5.2. (Similarly if the
components of ^f\f~\G) were simply connected we could find such an
h on each component, and, if the components are open, we can combine
these to again obtain an wth root in C(^t).)

Finally if A is also analytic on ^f, and ^f\g~\0) = U U V Φ Φ,
with U, V open and disjoint, then

g on U U g-'iO)

—g on V
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defines an h in C{^£) which lies in A by 3.2; since h + g or h — g
vanishes on a nonvoid open set ( F o r U) one vanishes identically.
But h = g implies V= Φ, h = — # implies U ~ Φ, so ^^\g"\ϋ) must
be connected.

Actually if A satisfies the hypothesis of 5.2 and is analytic on ^
then A is algebraically closed in C(^C) in the obvious sense. More
generally such an A is analytically closed in C(^C) in the following
sense.

Let al9 , an e A, fe C(^)9 and let F be a function analytic on
a neighborhood in Cw+1 of the range of the map

p:m-> (α^m), , an(m), f(m))

despite our earlier notation we now let Fk = [(d/dzn+1)
kF]opf k ^ 0.

Clearly F is not "independent of zn+1 on p(^f)" if and only if Fk(m) Φ 0
for some m and k ^ 1, and so we shall call A analytically closed in
C{^) if, for such aiff and JP, with Fk(m)φ0 for some fc^l and m,

(5.3) ^(α,, •• ,α n ,/) = 0

implies feA.

THEOREM 5.4. If A is an intersection of relatively maximal
subalgebras Aa of C(^t) each having its Silov boundary proper in

and A is analytic on ^C, then A is analytically closed in C(^/έ).

For / is locally approximable on ^\(d U -Pf̂ O)) by 5.1, so that
Fx is also, and F1 e A by 3.2. Of course we may have Fτ = 0, but
even then we know / (and so F2) is locally approximable on
^t\(d U Ff^O)), so that F2eA by 3.1; since not every Fk = 0 we have
some Fk a nonzero element of A, and choosing k least, / is locally
approximable on ^€\{d U i^O)) .

But now the final portion of 3.5 applies, with E void and Fςι(ϋ)
our (single) hull-kernel closed subset of ^ (which is necessarily
nowhere dense since Fk Φ 0 and A is analytic on ^).

For an algebra to which Radό's theorem applies the preceding
argument shows (5.3) implies FkeA for all k, and clearly we can
replace î YHO) in the proof by K = f}k F^iO), with / locally approxi-
mable off this set; thus the hypothesis that K is nowhere dense is an
adequate replacement for the analyticity of A on ^£, yielding the
first half of

THEOREM 5.5. Suppose (5.3) holds with F appropriately analytic
and fe C{^//). Let K = Γ\F^(0).

(1) If A satisfies the hypotheses of 5,2 and K is nowhere
dense, feA,
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( 2) If A I d is maximal in C(d), and ^// Φ d U K, then f coin-
cides with an element of A off the interior of K.

Since FkeA for all k, and / is locally approximable off K, (2)
follows from 4.9 (with E void, and K the K of 4.9). Of course we
could assume, as in 5.2, that 5.3 holds wherever / is not known to be
locally approximable.

Actually any algebra A with ^ Φ d is contained in a subalgebra
B of C(^f) given by 3.4 to which (1) applies, as is easily seen. In
particular, B provides an integral closure of A in C{^f).

THEOREM 5.6. Suppose ^ A Φ dA. Then A is contained in a
subalgebra B of C(^/fA) which is integrally closed in C(^fA) and has
dB r=z dA. Thus, in particular, if fzC(^i€A) satisfies (5.1) for a{ in
A, the subalgebra of C(,^fA) generated by A and f has dA as its Silov
boundary.

With B given by 3.4, the proof is precisely that of 5.2, with B
in place of A.

Finally we should note that something stronger than integral
closure in C(^/έ) holds for our intersections of relatively maximal
algebra—we could require only that (5.1) holds locally on ^f\d, i.e.,
that each m in the (non-compact) space ^C\9 has a neighborhood on
which an equation of the form (5.1) holds. Then, rather than invoking
3.2, we could simply show that for B, the subalgebra of C{^£)
generated by A and /, one has dBcd. (Indeed if me dB\d and we
choose p as in (5.1) of least possible degree with p(f) = 0 on a
neighborhood Um of m, then / and pr{f) are locally approximable on
ί^w\p'(/)~1(0), so m cannot lie in this open set—nor in its boundary by
2.2. Thus m is interior to p'ifY1^), so p'{f) vanishes near m, contra-
dicting the assumption that p had least degree.)

6* Removable singularities* We next note an analogue of the
elementary removable singularities theorem for analytic functions.

THEOREM 6.1. Suppose A\d is an intersection of maximal
subalgebras Aa of C(9),mey/\9, and f is a bounded continuous
function on ^f\{m} which is locally approximable by A on

U {m}). Then feA\

For each affopa is locally approximable by A2 on Λ0ΆJ\(P*1('M') U fy9

while p^im) is a hull-kernel closed set13 contained in Λ?A\pA = ^ A \d.
13 For {m} is hull-kernel closed in ^ and pa : ^AΛ -> -^ is continuous even when

hull-kernel topologies are used,
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Thus by 4.9 (with E = φ, F = K - p?(m)), fo poύeA2\ ( J i l p W so
/ e A« I (^r\{m}) and / e A \ (^\{m\).

Trivially {m} could just as well be any hull-kernel closed set in
^f\d. The result yields immediately an (imperfect) analogue of the
elementary facts on behavior of analytic functions near isolated singu-
larities.

COROLLARY 6.2. Suppose A\d is an intersection of maximal
subalgebras of C(d) and f is a continuous function on ^f\{m},
which is locally approximable on ^\(d U (m}). Then either

(a) feA\(^/\{m})
(b) / = const. + l/#, g e A, and g~\0) = {m},

or
(c) for each (deleted) open neighborhood V of m there is a compact

K in C for which f( V) is dense in C\K.

Suppose (a) fails, so / cannot be bounded by 6.1. Let V be as in
(c) and take K = f(^\( V U {m})) which is compact. If (c) fails for
this K then for some z e C\K, z — f is bounded away from zero on V;
since it is also bounded away from zero on ^/έ\( V U {m}) (by the
distance from z to K), g = (l/(z — f)) e C(^f\{m}), and is locally
approximable on ^t\(d U {m}), so we can take g to be an element of
A by 6.1. But now to obtain (b) we need only see that ^ ( O ) = {m};
evidently g cannot vanish elsewhere, and if g(m) Φ 0 then g has a
bounded inverse, whence / is bounded, contradicting our hypothesis
that (a) fails.

Remark (Added in proof.) Wermer has pointed out the following
completely elementary proof of 2.2, which actually applies if A is
merely a multiplicative subsemigroup of C(X). (For simplicity we
shall suppose ^ — {/}, a singleton):

For x e V we have a net {ys} in Y converging to x, with f(yδ) Φ 0
for each d. Fixing d, for geA we have

\fg(V*) I ̂  sup I M X ) I = sup \fg(X\V) \

so I g(y8) I ̂  cδ sup | g(X\V) |, all g in A. Replacing g by its kth power
and taking kth roots

whence | g(yδ) I ̂  sup | g(X\V) |. Since this holds for any δ,

\g(χ)\S:BVφ\g{X\V)\,geA,

go X\V is a boundary, and V f] d = ψ<
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An even shorter (but nonelementary) proof can be obtained using
Bishop's result on the existence of Jensen (representing) measures [3],
as Bishop observes in his forthcoming paper "Conditions for analyticity
of certain sets" (§3).

REFERENCES

1. H. Behnke, K. Stein, Modification komplexer Mannigfaltigkeiten und Riemannscher
Gebiete, Math. Ann., 124 (1951), 1-16.
2. E. Bishop, A minimal boundary for function algebras, Pacific J. Math., 9 (1959),

629-642.
3. E. Bishop, Holomorphic completions, analytic continuation and the interpolation of

seminorms, Ann. of Math., 7 8 (1963), 468-500.
4. H. Cartan, Sur une extension d'une theoreme de Radό, Math. Ann., 125 (1952), 49-50.
5. I. Glicksberg, A remark on the analyticity of function algebras, Pacific J. Math.,

13 (1963), 1181-1185.
6. E. Heinz, Ein elementarer Beweis des Satzes von Radό-Behhnke-Stein-Cartan uber

analytischen Functionen, Math. Ann., 131 (1956), 258-259.
7. Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood

Cliffs, N. J., 1962.
8. K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta

Math., 103 (1960), 217-241.
9. T. Radό, Uber eine nicht-fortsetzbare Riemannsche Mannigfaltigkeit. Math. Z., 20

(1924), 1-6.
10. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, 1960.
11. H. Rossi, The local maximum modulus principle, Ann. of Math., 72 (1960), 1-11.
12. J. Wermer, On algebras of continuous functions, Proc. Amer. Math. Soc, 4 (1953),
866-869.

UNIVERSITY OP WASHINGTON






