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In [5] we defined an irreducible -B(J)-cartesian membrane and an
excluded middle membrane property EM, and used these to characterize
the ^-sphere. There the class B(J) was of (n — l)-spheres contained
in a compact metric space S. Since part of the proof does not depend
upon the fact that elements of B(J) are (n — l)-spheres, we consider
the possibility of other entries in the class B(J). Recent developments
in this direction have been made by Bing in [2] and by Andrews and
Curtis in [1]. In [3] and [4] Bing constructed a space B not homeo-
morphic with E\ which has been called the dogbone space. By Theorem
6 of [2], the sum of two cones over the one point compactification B
of B is homeomorphic with S\ This sum of two cones over a common
base X is called the suspension of X.

In [1] Andrews and Curtis showed that if oc is a wild arc in Sn

that the decomposition space Sn/a is not homeomorphic with Sn. They
proved, however, that the suspension of Sn/a is always homeomorphic
with Sn+1 for any arc aczSn. The reader will easily see that a class
B or of Sn/a as described will satisfy the conditions for a class B(J)
for which an ^-sphere will have property EM.

The results below were obtained in considering such spaces, and
Theorem 1 below is a weaker characterization of the ^-sphere than is
Theorem 2 of [5]. We find it difficult to determine the properties
JeB(J) must have for S to have Property EM, as is shown by our
Theorem 4 below.

I* Definition and basic properties* Let S always be a compact
metric space and let B(J) be a class of mutually homeomorphic
subcontinua of S. We put conditions on this general class B(J) in
our theorems below.

We define a J?(J)-cartesian membrane as we did in [5] and [6].
Let F be a compact subset of S containing JeB(J). Let M be a
subcontinuum of F,beM and C be homeomorphic to J. Denote by
(C x M, b) the decomposition space [10: pp 273-274] of the upper semi-
continuous decomposition of the cartesian product C x M, where the
only nondegenerate element is taken to be C x b (intuitively the
decomposition space is a sort of generalized cone with vertex at the
point C x b). With this notation we give:
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DEFINITION 1. We say that F is a B(J)-cartesian membrane from
b to J (or for brevity with base J) if and only if there is a homeo-
morphism h from (C x M, b) onto F for some M such that:

( i ) for some a e M — b, J = fe(C x α),
(ii) for all qeM-b, h(C x g) e £ ( / ) , and
(iii) Λ(C xb) = b.

If Af is irreducible from a to δ, then we prefix the above definition
by irreducible. Whenever F is a β(J)-cartesian membrane and F =
fe(C x m, 6), /& is assumed to be a homeomorphism from (C x M, b)
onto i*7 with properties (i), (ii) and (iii). We say b is the vertex of F
and J is the base of JF7.

The definition of -B(/)-cartesian membrane is rather general; for
example, a point or any continuum can be taken as a I?(J)-cartesian
membrane. We shall place restrictions on the space S to limit possi-
bilities such as these when the need arises. The excluded middle
membrane property of Theorem 2 in [5] is the following:

Property EM. We say that the space S has Property EM with
respect to the class B(J) if the following hold:

( 1 ) The class B(J) is not empty;
( 2 ) For each JeB(J), S = Fλ + F2 where Fx and F2 are irreduci-

ble 2?(J)-cartesian membranes with base J, such that Fτςt.F2 and
F2ςtF1 and whenever S is such a union and F3 is any other B(J)
cartesian membrane containing J, then Fz contains Fτ or F2 but not
both; and

( 3 ) If Je B(J) and pe S — J, then there exists a B(J)-cartesian
membrane from p to / .

Below F, Fr, Fx and F2 are always irreducible i?(J)-cartesian
membranes.

We proved in [5] that when B{J) is a class of (n — l)-spheres
and n > 1 that:

(A) A necessary and sufficient condition that S be an w-sphere
is that S have Property EM.

We observed in our proof of (A) that if S had Property EM with
respect to a class of mutually homeomorphic continua, we were able
to prove:

(B) That whenever S = Fx + F2 where Fx and F2 have base
J, ί\ F2 — J;

(C) If F = h(C x M, b) was an irreducible I?(J)-cartesian membrane,
then M was always a simple continuous arc with b as endpoint; and

(D) If S = i*7! + F2 where J?\ and F 2 have base J and JP8 is any
other irreducible i?(J)-cartesian membrane with base J, then Fλ — F^
or F2 - FΛ.
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In the first paragraph of the proof of Theorem 2 of [5], (D)
appeared easily as result (Rι); then by a long proof we showed that
Fx Π F2 = J, which is (B) above, and we note this long proof only
depends upon J being a continuum, not on J being an (n — l)-sphere
Finally, the following argument show that (C) holds. Let S = Fx + F2,
where Fx and F2 are irreducible I?(J)-cartesian membranes with base
J. By (B) F1*F2 = J, and so every element of B{J) separates S.
Then if F1 = h(C x M, b) where M is irreducible from a to 6, and if
ze M — a — b, h(C x z)e B(J) by (ii) of Definition 1 above. Hence
h(C x z) separates Sf and therefore separates Fλ. This implies z
separates M, and so M is a simple continuous arc, as desired in (C).

I L Characterization of the ^-sphere, for n > 1* We give now
several lemmas that will enable us to characterize the ^-sphere.

NOTATION. For a subset K of S, we will use cl{K) to denote the
closure of K in S, and for an open subset U of S, we will use Fr( U)
to denote the set cl(U) — U.

LEMMA 1. If S has Property EM, then S is homogeneous.

Proof. Let x9y e S, x Φ y, and let J be an element of B(J) such
that J c S — x — y. By (8) of Property EM there exists an irreducible
i?(J)-cartesian membrane F = h(C x M, x) from x to J and by (D)
and (2) of Property EM, S = F + Fr, where F' has base J. Now
by (B) each J' eB(J) separates S, hence by (ii) of Definition 1, some
Jo = h(C x q) separates x from y. Then by (2) of Property EM, S=
F1 + F2 where Fτ and F2 have base Jo From (D) and (3) of Property
EM there exists hλ and h2 such that JF\ = hλ(C x il^, a;) and F2 =
fe2(C x Λf2,7/). From (C) Λfj and M2 are simple continuous arcs and x
y are endpoints of Mx and M2 respectively. Hence from (B) there
exists a homeomorphism from S onto S that carries α? onto y; therefore
S is homogeneous [10: p 378].

A topological space X is invertible [7] if for each nonempty open
set U in X there is a homeomorphism A of I onto itself such that
h(X - U) lies in £7.

LEMMA 2. //* <S Λαs Property EM then S is invertible.

Proof. For any open set U in S and any point x e U, some
JeB(J) separates x from Fr(U); then if S = i^ + F2 where ί\ and
F2 have base J, we can find a homeomorphism as in Lemma 1, that
maps S onto S such that Fx maps onto 2^ and F2 maps onto ί\, hence
(S - U) into ί7.
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THEOREM 1. Let n > 1 and let each element of B(J) contain a
point at which it is locally euclidean of dimension (n — 1). Then S
is an n-sphere if and only if S has Property EM.

Proof of the sufficiency. Let JeB(J) and let x be an element
of J at which / is locally euclidean of dimension (n — 1). Let U be
an open (n — l)-cell neighborhood of x in J. Let F = h(C x M, b)
have base J. By (C), M is an arc, and if V is an open subinterval
of M containing a point y, h(U x V) is an open n-cell neighborhood
of h(x, y) in F. Since h(U x V) misses J, h(U x V) is open in F — J,
and hence in S. By Lemma 1, S is homogeneous; hence every element
of S has an open n-cell neighborhood, and so S is ^-manifold. Doyle
and Hocking in Theorem 1 of [7], have shown that if S is an invertible,
^-manifold, then S is an n-sphere; hence by Lemma 2, S is an n-sphere.

The proof of the necessity is identical to that of Theorem 2 in [5].
Because 0-spheres are not connected the above proof does riot hold

for n — 1. We refer the reader to Theorem 1 of [5] for a character-
ization of the 1-sphere by an excluded middle membrane principle.

Ill* Related results*

LEMMA 3. If S has Property EM then S is locally connected.

Proof. We note that if F is an irreducible i?(J)-cartesian
membrane with base J, then F — J is an open connected set in S,
and proceed as in the proof of Lemma 2.

LEMMA 4. If S has Property EM and Je B(J) then J is locally
connected.

Proof. Let S = F1 + F where Fx and F have base J and F =
h(C x M, 6), where M is an arc from a to b; and h(C x a) = J as in
(1) of Definition 1. Since S is locally connected, the open set
F — J — b is locally connected. We define f(h(cf m)) = h(c, a), where
h(c, m) is a point in F — J — b; then / is a projection onto J and can
easily be proved to be continuous and open. Since F — J — b is
locally connected and local connectedness is preserved under open,
continuous mappings, J is locally connected.

THEOREM 2. If S has Property EM and Je B(J), then J contains
a 1-sphere.

Proof. Let J e B(J), and F = h(CxM, b) have vertex b = h(Cxb)
and base J. Since J is locally connected, C must contain an arc /;
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and by (C), M is an arc. Then the set E' = h(I x M, b) is a closed
2-cell contained in F. Let E be any subset of Er that is homeomorphic
to euclidean 2-space E2.

Let bi (i — 1, 2, •••) be a sequence converging to b in If. Then
the half open intervals Mt = 66̂  — 6; form a basis of open sets in M
at b, and the sets Ui{b) = /&(C x Mif 6) form a basis of open sets in
F at b. These open sets have the property that Fr(Ui(b)) is homeo-
morphic to J.

Choose xeE, then as g /. By the homogeneity of S there exists
a basis of open sets Ut(x) which have the property that their boundaries
are homeomorphic to J. Now fix i such that U = Ui(x) !£ has a
compact closure in E. Let F be the component of U that contains x.
Since # is locally connected, V is open in E. Also 2<V(F) cFV(E7i(aj));
therefore without loss of generality we can think of Fr(V) as being
a subset of J. Let V be a component of E — cl(V). Then V is an
open connected subset of E and ίy(F ; ) czFr(V). Since JPV(F') is
closed and Fr(V) compact, Fr(Vr) is compact. By Theorem 25 of
[10: p 176], Fr{V) is a continuum. Then by Theorem 28 of [10: p
178], JFV(F') is not disconnected by the omission of any point.

Let r, se Fr(V'), and let Y be an arc from r to s in J. Let
qeY — r — s; now g does not separate r from s in Fr{V); hence g
does not separate r from s in J; then there exists an arc Yf from r
to 8 in J that does not contain q, and F + Yf must contain a 1-sphere.

REMARK. Since J is locally connected, J is arcwise connected and
as such cannot be an indecomposable continuum; by Theorem 2, J
cannot be hereditarily unicoherent. A simple proof using the Brouwer
Invariance of Domain Theorem [9: p. 95] will show that J cannot be
a closed w-cell

LEMMA 5. Let S be an n-sphere having Property EM with respect
to some B(J). (1) If G is an (n — 2)-sphere in JeB(J), then J — G
is not connected; (2) if E is a closed (n — 2)-cell in J, then J — E
is connected.

Proof. (1) Suppose J — G is connected. Let S = Fx + F2 where
Fλ and F2 have base J; by (B) and (C) we can find hλ and h2 such that
F1 = hλ{J x Λfi, &!>, F2 = &2(J x Ma, 6a) and ^ | (J x α) = h2 \ (J x α) where
Mx and M2 are arcs from a to &i and a to 62 respectively. Then K =
^ ( ( J - G) x (Mi - 60) + Wί T" -G)x (Ma - 6a)) is connected. But
S — K = hλ{G x Mi, 6J + ΛaίG x Ma, b2) is an (n — l)-sphere is S and
must disconnect S by the Jordan Separation Theorem [9: p. 101].

The proof of (2) is similar to that of (1).
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THEOREM 3. A necessary and sufficient condition that S be a
3-sphere is that S have Property EM if and only if B(J) is a
collection of 2-spheres.

Proof. The sufficiency follows from Theorem 2 of [5].
By Theorem 2, every JeB(J) contains a 1-sphere, and by (1) of

Lemma 5 every 1-sphere in J separates /. By (2) of Lemma 5 no proper
subcontinuum of a 1-sphere in J separates J; and by Lemma 4, J is
locally connected; therefore by Zippin's Characterization in [11: p. 88]
J is a 2-sphere. The rest follows from Theorem 2 of [5].

We need Hypothesis:

(H 1) If Fc, Fb and F" are irreducible J5(J0)-cartesian membranes
with base Jo then Fc + Fb + F" is contained in some E3;

(H2) If Sx = Fz + F" is a 2-sphere in E\ x is vertex of B(J0)-
cartesian membrane Fx and t'a = hc(ca x M", x) {cω e C) is a projecting
arc from x to J through a point y e int (Sx, E*), (the interior of Sx in
EB), then ζ - x c int (Sx, #

3); if g e int (S.f £J3) J - J', then β e cl (J - J')

THEOREM 4. Let S /wive Property EM, let (H 1) and (H 2) Aoid
ami let there exist a region Rin S such that J R contains a 1-sphere

Jo and R* J is embedded in the euclidean E2; let there exist qeJ — R.

Then J contains a closed 2-cell with JQ as boundary.

Proof. By (2) of Property EM there exist irreducible B( J)-cartesian
membranes such that S = h(CxM, b) + h'(CxM', V) where h | (Cxa) =
h'\ (C x α) and Λί, Λf' are arcs from a to δ and α to b' respectively;
since J D JO, there exists C o c C homeomorphic to e/0; let ^(Co x M, b) =
F δ and fe'(C0 x M', 6') = 2^", where then F 6 and F" are irreducible
β(J0)-cartesian membranes from Jo to 6 and bf respectively. Let Sb =
JP6 + F' f ; by Theorem 2 of [5], Sδ is a 2-sphere.

By hypothesis there exists qeJ~R; thus g ί Sb, and so by (H 2)
the projecting arc from b to q does not contain a point of int(S6,1?8);
let c be an element of this projecting arc. By (8) of Property EM,
there exists an irreducible B(J0)-cartesian membrane Fc = hc(C0 x Mc,c)
with base Jo, a subset of an irreducible 2?(J)-cartesian membrane
hc{C x Mc, c) from c to J; by the choice of c, feβ(C.x Λfc, c) = λ(C x Λf, 6)
and thus Sc = Fc + F" is a 2-sphere

Since c ί int (Sb9 E
d), there exists a region R' about c such that

cl{Rr) Sb = Φ; then by Lemma 3 of [6] there exists an irreducible
£(J>cartesian membrane FQΰ = hc(C x Af/,c), for M'caMc, such that

.P C . i e ' z) F O C .
Let {tac\ be the class of all projecting subarcs from c to J which
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are contained in (Sc - (FOc - J/)) + int (Sc, E*) - (FOc - //), where
Jo is the base of FOe; that is tΛ0 is an arc from J to FOc in and on Sc.

Let Z' = U ί*c and let Z = Zf - J. Suppose Zf = Z/ + Za' separate
[11: p. 8], Since each tae is connected, each is contained wholly in
Z[ or in Z[\ this is also true of Jo and so of Fc — FOc; so let Z/ ^ Fc —
FOc ID C/Q.

By Theorem 5.37 of [11: p. 66] Sc is arcwise accessible from the
embedding Es; hence there exists an arc cbr such that cbf — c —
b' c int(S c, E

z). But cV contains a point of int(S 6, Es) and a point c
of S — int (Sb, E3) — S6; hence cV contains some v e Sb, because by
the Jordan-Brouwer Separation Theorem [11: Theorem 5.23, p. 63] Sb

separates E* into two domains. Hence by (2) of Property EM there
exists a projecting arc from c to J through v, and so some t^ ID V and
Zf Z) tac. Let Zi — Zl- Z(i = 1, 2), where by agreement Zx Z) Jo. By
hypothesis J 72 is contained in some euclidean E2, and so let E be
the 2-cell bounded by Jo in this E\ Thus Jo + Ez) Z, and because
of v above E-Z Φ φ. If jeJ-E, by (H2) the projecting arc cy is
such that cj — c c int (Sβ, S'3). Thus i e Z, and so Z = Jo + J- E =
Zλ + Z2 separate. Hence J = {Zι + (J — E)) + Z2 separate, which is a
contradiction, since / i s a continuum. Therefore Z and Zf are connected.
By Lemma 4 J" is locally connected, and so by (H2) Z is also.

Since Z is closed, Z contains all of its boundary points in the space
J. By the Torhorst Theorem [10: p. 191, Theorem 42], the boundary
of any complementary domain of Z in E must be a 1-sphere Jo'. Using
Jo' in place of Jo, one obtains a 2-sphere Sj with poles c and 6' and
with Jό as a base in Sc\ Thus an arc 6c' above exists such that
cV — c — br c int (£/, 2?3) and there exists a point ve Sb- cb'; also there
exists tac as above, now contained in the int(S«f, E3); hence an endpoint
of tωc is an element of int (Jo, ^ 2 ) ; thus a point of Z is in the comple-
mentary domain above of Z in E, which is a contradiction. Therefore
Z = E, and so J contains a closed 2-cell.

If (H 1) and (H 2) hold, J cannot be a plane universal curve.
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