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Probably the most promising new identity to arise in a recent
study of identities on commutative algebras [3] is

( 2) 2((x2 x)x)x + (x2 x)x2 = S(x2 x2)x .

This identity generalizes not only the power-associativθ identity, x2 x2

= {x2 x)x, but also the generalization of the Jordan identity considered
in [4]. In the present paper, we study the structure of commutative
rings of characteristic relatively prime to 2, 3, 5, or 7 satisfying (1).
This restriction on the characteristic will be assumed throughout the
paper without further mention.

There are two obvious ways in which the structure theory of
the class of rings studied here is noticeably weaker than the structure
theory of power-associative rings. First of all, given a ring A satisfy-
ing (1) containing an idempotent e, there can exist elements of A
which are annihilated by the operator (2Re — If but not by (2Re — I).
Secondly, defining the additive subgroups Aλ = Ae(X) = {x j x e A, xe =
Xx} for λ = 0, 1/2, and 1, the relations AXAO = 0 and Alt2All2 c Ax + Ao

are not valid in general. Despite these impediments, we see in §1
that A may be decomposed simultaneously with respect to a set of
mutually orthogonal idempotents in much the usual fashion. In §2
we prove that, if A is simple of degree > 3 satisfying the condition
that x(2Re - I)2 = 0 if and only if x(2Re - I) = 0 for all x in A, then
A is a Jordan ring.

1* We begin our investigation by partially linearizing (1) to obtain

( 2 ) 4((yx-x)x)x + 2(yx2-x)x + 2yxz-x + 2y(x*-x) + 2(yx-x)x*

+ yx2*x2 + 2yx x* = 12(yx-x2)x + 8y(x2-x2) .

Then, setting x = e in (2) immediately yields

4yR* - 8yRe* + 5yRe* - yRe = 0, or

(3) y[(Re - I)(2Re - I)2Re] = 0 .

Defining J51/2 = Be{l/2) = {x \ x e A, x(2Re - If = 0}, it follows from

(3) that A may be decomposed into the additive direct sum

(4) A = AX + Bll2 + Ao.
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Another additive subgroup of A which will be useful is C1/2 = Ce(l/2)
= {x 132/εI?1/2 € y(2Re — I) — x). It is easy to see that C1/2 c A1/2 c l?1/2*

THEOREM 1 Let A be a ring satisfying (1) with an idempotent
e, and let Au Ao, A1/2, B1/2, C1/2 be defined as above. Then Ax and Ao

are subrings, AXA^ c All2, A1Bm c Bίj2 + Ao, A0Bl!2 c Bll2 + Al9 A1C1!%

a Aχj2i A0C1/2 a Aλ\2, A1j2A1j2 a Ax + At/2 + AQ, A1/2C1/2 d Aλ + Ci/2 + AOr

and Ci/2C1/2 c C1/2.

To establish this theorem, we first partially linearize (2) and assume
that the new variable of degree 3 is idempotent. This gives

+ 4(ye x)Rl + A{yR2

e-x)Re + AyRϊ x + 4(y-xe)R2

e

+ 2(ye-x)Re + 2yR^x + 4(y xR!)Re + 2(yxe)Re + 2ye-x

+ Ay(xR!) + 2y(xR!) + 2y-xe + 2{yx)Rl + 2(ye x)Re

+ A(yR!)(xe) + 2(y-xe)Re + 2(ye)(xe) + 2(yx)Re

+ £{yx){xRl) + 2(ye)(xe)

= \2{yx)Rl + 2A(ye-xe)R. + 12yR?-x + \2y{xRl) ,

which simplifies to

{yx)[2Rl - 5RI + Re] + (ye-x + y-xe)[2R2

e + 2Re + I]

( 5 ) + (yRl-x + yxRl)[2Re - 57] + 20/Λe

3.α; + yxRl)

+ (ye-xe)[- 12Re + 21] + 2(yR2

e-xe + yβ-αjiKJ) - 0 .

First, letting x, yeAίf this reduces to (yx)[2Rl - R\ - SRe + 21] = 0.
Since 1 is a root of this operator but 0 and 1/2 are not for any char-
acteristic, we have yx ε Alf or AXAX c Aλ. Similarly, if x, y ε Ao,
(5) reduces to (yx)[2Rl — 5R2

e + Re] = 0, which gives AQA0 c A*. And,
choosing yeAlf xeA0 in (5) yields (yx)[2R\- ZR2

e + hRβ - 21] = 0, or
Λ I-AQ C Λiy2

Suppose next that yeAt and cc 6 Bll2. Letting w = x(i?e — 1/21)̂
we have xe = l/2α? + w, we = l/2w, cce e = 1/Ax + w, (xe e)e — 1/Sx +
8/4w, and (5) becomes (yx)[(2Rs

e - 5i2^ + Re) + (SR2

e + 3i?e + 3/2J) +
(5/2Re - 25/47) + 9/47 + ( - 6Re + I) + 3/27] + (yw)[2R2

e + 2Re + I +
2Re - 57 + 3/27 - 12i2e + 27 + 47] = 0, or

( 6 ) (^)[272e

3 - 2R! + JL i?eJ + (^^)[2Λe

2 - 872e + -17] = 0 .

Taking w — 0 in (6), we see that AxAll2 c Bll2 + Ao. But then (yw)

ε Bll2 + Ao in general and the component of (6) in At is —(yx)x = 0,
Δ

giving AJSll2 c Bιl2 + Ao. This shows that the first term in (6) is zero,
which implies that (yw)[(2Re - 7)(72e - 7/27)]=0, or AxCll2 c A1/2. Similarly,
letting yeAQ, xe 7?1/2 in (5) yields



A GENERALIZATION OF POWER-ASSOCIATIVITY 1369

(yx)[2R! - J- Re - | - / ] + (j/w)[2^2 + 4Λ. - - | l ] = 0 ,

from which one gets AoBll2 c ΰ 1 / 2 + Ax and ΛA/2 c A1/2.
Finally, let x, y e £1 / 2, a;(i2e - 1/21) = w, y(Re - 1/21) = z in (5)

to get

(yx)[(2R! - 5RΪ + R.) + (2R? + 2Re + /) + (i?. - JLj) + A. J

3#e +JL ή + 1. j ] + (yW + zx)[(2Rl + 2i?e + /)

+ (zw)[(- 12Re + 21) + 4/] - 0 ,

or

( 7 ) (yx)[2R! - ZRl + Re] + (yw + zx)[2Rl - 2Re]

+ (zw)[- 12Re + 61= 0 .

Taking w = z = 0 in (7), we obtain first the relation A1/2A1/2 c Ax +
i41/a + Ao. If only 2 is zero, then the component of (7) in J51/a is
{{yx)nl2Re - I] + 2(yw)ll2}(Re - / ) β e = 0, showing that A1/2C1/2 c Aτ +
C1/2 + Ao. If neither w nor z is zero, we may apply the operator
(2Re - I) 2 to (7) to get (zw)(2Re - I ) 3 = 0, or C1/2C1/2 c Bll2. But since
Cί/Λ/2 c Λ/2CΊ/2 c Ax + C1/2 + Λ , we have C1/2C1/2 c C1/2 to finish the
proof of Theorem 1.

By constructing examples, it is not difficult to show that the re-
lations given in Theorem 1 cannot be improved. To illustrate this
proceedure, we shall show that the relation AXAQ c Alj2 cannot be im-
proved. Consider the commutative algebra spanned by the four ele-
ments e, au α1/2, α0 over any field F, and let multiplication be defined
by e2 = e, α ^ = α1/2, ea{ = ία< (i = 0, 1/2, 1), where all other products
of basis elements are assumed to be zero. To show that this algebra
satisfies (1), it is sufficient to show that the complete linearization of
of (1) is satisfied for all ways of replacing the variables by basis ele-
ments. If either four or five of these variables are replaced by e, the
equation is satisfied by (3). If exactly three of the variables are re-
placed by e and the other two variables by at and a0 respectively, then
the equation reduces to (axa0)[2Rl — SR2

e + 5Re — 21] = 0 as in the
proof of Theorem 1, and hence is satisfied. If any other combination
of basis elements is substituted into the linearized form of (1), it is
clear that every term will vanish, and the identity will be trivially
satisfied.

Suppose now that a ring A satisfying (1) contains two orthogonal
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idempotents u and v. Although the elements of of Aυ(ΐ) are not in
general orthogonal to the elements of AJX), we can prove that v is
orthogonal to Au(ϊ).

LEMMA 1 If u and v are orthogonal idempotents, then Au(l) c

For the proof of this lemma we linearize (2) so that two of the
x'a in each term become u's and the other two become v'&. This gives

4:((yu u)v)v + 4((yu v)u)v + 4{(yu v)v)u +

+ A((yv'U)v)u + &((yv v)u)u + 2{yu v)v + 2(yv u)u

+ 2(yu u)v + 2(yv v)u + yu v + yv u

Taking yeAJX) and using the relation yv u = Ij2yv which follows
from Theorem 1, this becomes {yv v)[4:Rl + SRU + 31] = 2yv9 or

(9) (yv-v)](2R% + I)(2RU + 3/)] - 2yv .

Since yveAJl/2), we see from (9) that (yv v)e -4,(1/2) also. But then
(9) reduces to 8yv v = 2yv, or (yv)[ARυ — I] = 0. Thus, yv = 0 and
Au(ϊ) c Av(0) as desired.

We are now ready to consider how the decomposition of A with
respect to the idempotent u + v is related to the decompositions with
respect to u and v separately. We shall prove.

THEOREM 2 Let u and v be orthogonal idempotents in a ring A
satisfying (1). Then RuRυ = RVRU and

Au+υ(l) = Au(l) + Bu (-1) n Bυ ( i ) + AΌ(1) ,

BU+V ( 1 ) - 5W (1.) n Λ(0) + Λ(0) n B, ( l

Aw+ϋ (-1) - A. (i.) n Λ(θ) + A(θ) n Λ ( |

cw+υ ( i ) - cu (-1) n Λ(θ) + Λ(0) n σ. ( |

Au+υ(0) = AM n Λ(θ).

For the proof of Theorem 2 we shall need

LEMMA 2 If U and v are orthogonal idempotents and if ye
Bn(l/2) Π ̂ (1/2), then yveBu(ll2) Π £,,(1/2), yu-v = yv-u = l/4#, and
yeAu+υ(ΐ). Hence, AJXI2) Π Bβ(l/2) - Λ,(l/2) ΓΊ A.α/2).
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By Theorem 1, we have yv e Bu(l/2) + Au(ϊ) and hence {yv){2Ru —
J ) 2 G Λ ( 1 ) C Λ ( 0 ) . On the other hand, yveBυ(l/2), giving (yv)(2Ru-
I)% e Bυ(ll2) + AΌ(1). Thus, (yv)(2Ru - If = 0, or (yv) e £.(1/2), to give
the first assertion of the lemma.

From Theorem 1 we also get the relation y(2Ru — I)Rυ(2Ru — 7) = 0,
or 4:(yu v)u = 2yu v + 2yv u — yv. Using this relation and Ayu u —<
Ayu — y, equation (8) with y e Bu(l/2) Π 5,(1/2) becomes

2(yu*v)v

— yv v + 2 ( ^ /^)v + 2(yv v)u — yv v

~ yv v + 2(yu v)v + 2(̂ //y ^)u + 2{yu u)v

— yv v + 2(2/w φ ; + 2(yv u)u + 2{yu v)v

— 12(yv u)v = 0 ,

or

8(yu v)v — 4:(yv'U)v + 8(yv*v)u + 2(yv-u)u — 8(yu*v)u

+ 2(yu u)v + yu v + ^ ^ ~ 5yv v — ί/u u = 0

Eeducing this equation again given

8yu-v — 2yu — 27/̂  v — 2yv>u + yu + 8yv u — 2yu + 2yv u

— —yv — Ayu v — kyv u + 2 ^ + 2̂ /u i; — —yv + 2/w v

5 1
+ j/v % — 5yv + -—-2/ — yu + —2/ = 0 ,

4 4

or 52/M t; + 5yv u — 4ί/^ — 4=yv + 3/2j/ = 0, which may be put in the
form

y[(B, - ίή(SR, - ±ή + (R, - ίifaR. - |/)] = 0 .

If y e Au(l/2) Π 5,(1/2), then (10) reduces to y(Rv - 1/2I)(5RU - 3/21) = 0,
or, yeAυ(l/2). Thus Au(l/2) n 5,(1/2) - -4.(1/2) Π Λ(l/2). But then
y e Bu(l/2) f] Bυ(l/2) implies that y{Ru - 1/21) e Au(l/2) n Aυ(l/2) and
y(Ru - l/2I)(5Rυ - 3/21) = ^(E u - 1/21). Using this relation, (10) re-
duces to y[Ru - 1/2/ + Rυ - 1/2/] = 0, or ye Au+υ(l). Since
l/2/)i2, - l/2^(i2. - 1/2/), we also have yu v = l/2»v +
l/4i/ = l/2ί/(% + v) — l/4# = 1/4̂ /. And finally, yv-u = 1/έy by sym-
metry.

Returning to the proof of the theorem, let y be an arbitrary ele-
ment of Au+υ(l) and let y = y± + y^% + y0 be its decomposition with
respect to u. Then the equation y(u + v) — y gives yx + y^jίμ + v) +
yov = Vi + Via + VQ, which breaks into the two equations yll2(u + v) — ylf2
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and yQv = y0 since y1/2(u + v) e BJ1/2) + AJX) and yov e 4 ( 0 ) . Thus,
2/o G 4 ( 1 ) and y1[2(2RΌ - I) = - ^,,(222. - /) e 4(1/2) ΓΊ 4 + , ( l ) , leading
to y1/f(21^ - / ) 2 = V«%(2R, - /)[2(i?% + Rυ) - I - 2RU] = ylf2(2Rv - /)
( I — 2RU) = 0 and y1 / ae 5,(1/2). We have shown that Au+υ(ϊ) is con-
tained in Au(l) + BJ1/2) Π 5,(1/2) + 4,(1). Conversely, 4 ( 1 ) and 4 ( 1 )
are clearly in 4+«(l)» while 5M(l/2) Π 5,(1/2) is in by Lemma.

Next, suppose that y e Bu+v(l/2) and let y — yx + yl!2 + y0 again
be the decomposition of y with respect to u. Then,

0 = (y1 + ylfl + yo)[(Ru + Rvy - (Ru + Rυ) + i / ] -

2 -RU + ~I+ RURΌ + Λ,i?w + Rl - i?

-Rυ+ 1/] ,

and breaking this equation into components gives 1/4^ +
JRA + βv

2 - JR,] = 0, and yQ[Rl - Rυ + 1/4J] = 0 or yQ e 5,(1/2). Let-
ting yll2 — wx + wlf2 + w0 be the decomposition of ylti with respect to
v, the former equation becomes 1/4^ + Wi/2[β«lϊβ + Λ,i2M + i2v

2 — i?,] = 0.
But 1/42/χ is the only term in the last equation with a component in
A,(0), so that j/j = 0 and yll2e Bu+v(l/2). By symmetry, wx = 0 and
w0 € J5tt(l/2), giving w1/a = (i/1/2 - w0) e 5w(l/2) Π 5^(1/2). Then Lemma

0 = wll2[RuRυ + RυRu + Rϊ - Rυ] = wll2\ JLj + - i J -- JLj ±.Wlft ,
L4 4 4 J 4

showing that y1/a = w0 € 4 (0 ) . This proves that 5w+,(l/2) is contained
in 5.(1/2) Π 4 ( 0 ) + AM Γ) 5,(1/2), and the converse is immediate.

If y e Au+JXf2), the argument above shows that y = yll2 + y0 where
yll2 e 5.(1/2) Π 4 ( 0 ) and y0 e 4 ( 0 ) Π 5,(1/2). Then, 0 = (yll% + ^ [ Λ . +
Rυ - 1/2/] = yll2{Ru - 1/2/) + %(JB, - 1/2/), and breaking into com-
ponents gives y1}2 e 4(1/2) and y0 e 4(1/2). Hence 4+^(1/2) is contained
in AJ1/2) Π 4 ( 0 ) + AM Π 4(1/2), and the converse is obvious. If
z e Cw+,(l/2), then there exists an element y e Bu+υ(l/2) such that z =
y[Ru + Rυ- 1/2/]. But then z = (yll2 + yo)[Ru + Rυ- 1/2/] = yll2(Ru -
1/2/) + yQ(Rv - 1/2/) e CJ1/2) n 4 ( 0 ) + 4,(0) Π Cβ(l/2), and the con-
verse is again obvious.

Finally, let y e Au+υ(0) and let y = yx + yx\2 + y0 be the decomposi-
tion of y with respect to u. Then 0 = y(u + v) — yx + y1/2(u + v) +
VoV = 0, giving y0 e AM and ^x + ylf2(u + v) = 0. If y1/a ~ wx + wll2 +
w0 is the decomposition of ylj2 with respect to v, the latter equation
gives yx + w1 + wlί2(u + v) + w0^ = 0, and the component of this equa-
tion in 4 ( 0 ) is y1 + wou = 0. But then w0 e 4W(1) + 4 ( 0 ) , so that
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0 = y1/a(4i22 - ARU + I) = w1 + wll2(iBi - 4RU + I) + w0. The com-
ponent of the last equation in A,(0) is w0 = 0, implying that yx = 0
and that y1/2eAβ+1,(0). By symmetry, we also have w1 = 0, so that
2/1/2 - w1/a e 5.(1/2) ΓΊ Bυ(l/2) c A.+ β(l). Thus, yll2 = 0, and A.+β(0) c
Au(0) Π 4,(0). The The converse of this inclusion is trivial.

The relation RuRυ = RυRu was shown to hold on elements of
Bu(l/2) Π Bυ(l/2) in Lemma 2, and it is easy to check that it also holds
for elements of each of the other additive subgroups into which we
have decomposed A.

Now that we have established Theorem 2, it is an easy matter to
decompose A simultaneously with respect to any number of mutually
orthogonal idempotents.

THEOREM 3 Let el9 e29 , en be a set of orthogonal idempotents
in a ring A satisfying (1) whose sum is the unity element of A, and
define A, = Au(l), Ai3 = AH(l/2) f] AH(l/2)9 Bi3 = B9i(l/2) Π Bβ,(l/2),
and Ci3 = Cβ|(l/2) Π Cej(l/2) for 1 < i, j <n and i Φ j . Then A is
the additive direct sum of the A/s and the Bi/s, and AiAi c Ai9

AiAj c Aij9 AiBij c Bi3 + Aif A4C<y c Aij9 Bi3Bi3 c A, + Bi3 + Ah

Ai3Ai3 aAi + Aiά + A3f Ai3Ci3 c A< + Ci3 + Ad, Ci3Ci3 c Ciz, BikBjk c
Bik, Ai3Ajk c Aik, Bi3Cjk c Cikf and Ci3C3k - AiBih = £ „ £ « = 0 for
1 <i,j,k,l < n and i, i , h, I distinct.

The first eight inclusion relations listed in this theorem follow im-
mediately from Theorem 1. To show Bi3Bjk c Bik, we let u = β< + ê
and w = 0; + e.,- + efc and observe that Bi3Bjk c ί?w(l/2) + Au(0) and
BiiBijfe c Aw(l), leading to Bi3B3k c 5 ί f c + B3k + A t . But, by symmetry,
we also have Bi3B3k c Bik + J5i:f + Ak. But, by symmetry, we also
have Bi3B3k c Bik + Bi3 + Ai9 giving Bi3B3k c Bik. This same calcula-
tion also shows that Ci3C3k c Bik. However, Ci3Cjk e CβJ(l/2) Π Aw(ϊ) =
C<i + C^, giving Cί3Cjk = 0. Looking at the product -Aii?.̂  with re-
speot to the three idempotents ei9 e3-, ek9 we get that this product is
contained respectively in Ai3 + Aik9 B3k + Bi3 + Aj9 and B3k + Bik +
Ak. Since the mutual intersection of three is zero, AiB3k = 0. Ob-
serving that Bi3Bkl c Au(ΐ)Bkl for u = β< + βy, we also have 5 ^ 5 ^ = 0.

For the two remaining inclusion relations given in Theorem 3, we
must make a little longer calculation. Linearing (2) completely and
setting two of the variables equal to ei9 and the other three equal to
e39 x9 y respectively where x e Bi3 and y e B3k9 we get

^{{yerx)ei)ei + ̂ {{y-xe^e^ + Myixe^e^ +

4:y((xerei)ej) + ̂ {{xe^e^ + ̂ {{xe^e^ + 2y(xei-ej)

2(yej x)ei + 2(y-xej)ei + ttye^xe^e^ + 2(yes)(xei)

— 2k{yerxei)ei
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Using the relation xe^e^ — xβj βi — 1/Ax from Lemma 2, this reduces to

(yerx + xej-y)[4,R!i + 2EH]

xe^e^ + 2(yej)(xei) — 2A(yej-xe)ei = 0 .

Letting a βy = Ij2x + w and j/e^ — l/2a/ + £, and noting that xe{ — x
a ^ = l/2cc — w and that zw = 0, our equation becomes

l - 2RH] + (zx)[AR^ - 10R.t + 21]

+ {yw)[4,R2

H + URH - 6/] = 0 .

Since yx, zx, and yw are all in Bik, we may replace 4J?e

2. by 4i2eί — /
here, giving

(11) (yx)[2RH - J] + (zx)[- 6RH + I[ + (yw)[18RH - 71] = 0

Applying the operator (2Rβi — I) to (11), we get

(zx)[- 12RI. + 8RH - I ] + (yw)[36Rϊ. - S2RH + 71] = 0 ,

which reduces to (zx)[— &Rei + 21] + (yw)[4:Rei — 21] = 0, or
zx) e Aik. On the other hand, we may set e = e{ in (7) to obtain

(yx)[2Re; - 3i2e

2. + RH] + (yw + zx)[2R!. - 2RH] = 0 ,

which simplifies to (yx)[l/2Reι - 1/4/] + (yw + zx)[- 1/21] = 0, or (yw +
zx)eCik. Thus, #w and zx are both in Aik, and (11) reduces to (yx)
[2RH — I] — 2zx + 2yw = 0, or (yw — so?) e Cik. We finally have CT e Cik9

giving the relation BiaCak c Cik. The remaining relation — Ai5Aik c
Aifc — may be derived by taking z = w = 0 in (11).

2. This section will be devoted to the proof of

THEOREM 4. Let A be a simple ring satisfying (1) and contain-
ing two orthogonal idempotents u and v such that u + v is not the
unity element of A and such that Bu(lj2) = Au(l/2) and Bυ(l/2) —
Aυ(l/2). Then A is a Jordan ring.

If A doesn't contain a unity element, then we may adjoin one
and the resulting ring will still satisfy the same identity [3, Theorem
1], It is therefore sufficient to prove the theorem for a ring R which
contains a unity element and which is either simple or is the result of
adjoining a unity element to a simple ring. In the latter case, every
ideal of the augmented ring contains the original ring [1, Lem. 2, p.
506], and in either case, the idempotents ex — u9 e2 = v, and e3 = 1 —
u — v are mutually orthogonal idempotents of R which add to the
unity element. Adopting the terminology of Theorem 3, we see from the
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last sentence of Lemma 2 that the remaining hypotheses of Theorem
4 are equivalent to the relations Bi3 = AiS for 1 < i, j < 3 and i Φ j .

We must next deduce more information from our identity about
the products of elements from different components of R. Linearizing
(1) completely, replacing two of the variables by the idempotent e = β<
(i = 1, 2, 3), and assuming that the other three variables satisfy xe —
Xxf ye = μy, and ze = vz, we obtain

[yZ'X + yx-z + xz-y]R2 + [(yz-e)x + (yx e)z + {xz*e)y\Re

+ (λ + μ + v - S)[(yz e)x + (yx-e)z + (xz e)y]

+ [(yz)Rl x + (yx)Ri-z + (xz)[R!-y]

(12) +Uμ + v -6X + —^(yz-x) + (x + μ - 6v + —\yx-z)

+ (λ2 + μ2 + v2 + Xμ + Xv - 6μv + — X

+ — μ + —v\yz-x + (λ2 + m2 + v2

+ Xμ + μv - 6Xμ + -1-λ + ^ + ^-v)yx-z
Δ A Δ /

+ (x2 + μ2 + v2 + Xμ + μv - 6Xv + — X + —μ
\ 2 2

+ —vjxz y — 0 .
Δ /

We first set λ = μ = 0, v = 1 in this equation to get

(yz x + xz y)\R? + - | ^ + 1^1+ [(yz Φ + (xz e)y][Be - 21]
L Z Δ -*

+ (yz)R!-x + (xz)R! y + (yx z)\R! - ϋi? e + Ajl = o ,

which reduces to

(yz x + xz-y)[Rϊ + 2Re + - | l] + (yx-z)[R; - ^Re + J-l] = o .

Separating this equation into components and using the convention
that the subscript 1, 1/2, or 0 indicates the component in Ae(ϊ), Aβ(l/2),
or Ae(0) respectively, the last equation yields

(13) 2[yz x + xz-y]1/2 = yx z .

Next, setting λ = μ = 0, v = 1/2 in (12) gives
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(yz x + xz y)\R!
L

Re + j ] + {yxzίs: %R. +
2 J L 2 Δ

+ [(y« β)α? + (xz-e)y][Re - 5/2/] + [(yz)R2

e x + (»«)#/•»] = 0 ,

which becomes
+ 2i2β - I ] + [(ys)1/a α + {xz)ιlt-y][R*

+ S/2Re - 1/21] + (yx-z)[Rϊ - 5/2i2e + 1/21] = 0 .

This separates into the two equations

(14) 2[{yz)ll2-x + (α?«)1/2 y]i = [i/a-st,

(15) [(y«)i » + (xz\ y\ + 2[(y«)1/a ίB + (^)1 / 2 y]1/2 = 2[yx z]li% .

The equations that we have just derived may be put in operator
form by defining for each xeAe(0) the mappings Sa: Ae(ϊ) —> Ae(l/2),
Tx: Ae(l/2) -• Ae(l), and ϋ . : Ae(l/2) -> Ae(l/2) by the equations (zJS. =
«OJ, (^/,)Γβ = (zx)lf and (zl!2)Ux = (3x)i/2 respectively. In this notation,
equations (13) — (15) become

(16) i-8vm = S,Um + S9U9,
Δ

(17) - |-ΓM = U,T. + UXTV ,

(18) Uvx =UyUx+ UxUy + ±(TySx + TxSυ) .
Δ

We shall make use of these relations to prove.

LEMMA 3 In the ring R, A^A^ c i i + As for 1 <; i, j < 3 and
i Φj

Choosing e to be that one of eu e2, e3 which is neither et nor ejf we
see that Ae(0) = Aύ + Ai3- + As. Consider the subalgebra of Ae(0) defined
by D={x\xeA0, Sz= Tx = 0}. By (18), the mapping x — ϋ . defines a
homomorphism of D into the Jordan ring of all endomorphisms of Ae(l/2)
w i t h k e r n e l C ~{x\xeA0, Sx =T9 =Ux=^0}. I f xeC a n d ye A o , t h e n
Syx = 2;, = 17^ = 0 by (16), (17), and (18), so that C is an ideal of
Ao. Furthermore, CAe(l) = CAe(l/2) = 0 by the definition of S, Γ,
and ί7, showing that C is an ideal of R. But i? contains no nonzero
ideals lying within Ae(0), implying that C = 0 and that D is a Jordan
ring.

Since e{ and e, are contained in D, we have D = Dt + Di5 + Djf
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where A c Ai9 Ώi5 c Aijf and D3 c A3-. The fact that D is Jordan
implies that A/Ai c A + A c ^ + A> But since A^^CL) = 0
and AidAe(l/2) c Λ,(l/2), we see that A{j c D, giving A{i c A/ and
AijAij c AyAi c i ί + As.

In order to prove our next lemma, we need to compute two more
special cases of (12). Using Lemma 2, we may now assume that
Ae(l/2Ae(l/2) c Ae(l) + Ae(0). First, taking λ = 0, μ = 1/2, v = 1 and
saving just the component in Ae(0) gives

— — —yx-z -\ xz y + —yx z + — xz y]0

2 L 2 2 J o L 4 4

+ \-yz-x + —yx-z + -|-^ 2/Ί = 0 ,
L 2 2 Jo

or

(19) 2[y1/&0 zι + αvvyi/Jo = (»i/A)β *β

Secondly, setting λ = 0, μ — v — \\2 in (12) and keeping just the
component in Λ,(0), we get

L 4
+ (yχ)ι-z + —ixz)m y

4

[ 1 5 5 Ί

——yz'X + —yx z + —xz-y = 0 ,
2 4 4 Jo

which simplifies to

(20) 2[{yll2xQ)ll2 z1}2 + (zll2xQ)ll2 yll2]0

LEMMA 4. Lei Go δe ί/̂ e additive subgroup of Ao = i4e(0) generated
by all elements of the form O/i/2Zi)o αwώ {yll2zll2\. Then either Go = Ao

or we mα# adjoin e3 ίo Go ίo obtain Ao.

If #0 is any element of Ao, we see from (19) that (ih/A)o &o ^ s i n

Go and from (20) that (Vu&ώo Xo is in Go. Thus, Go is an ideal of A*.
Defining the ideal Gx of Ax analogously, we now consider G = Gx +
All2 + Go. But GAλ = GxΛ + (Λ/2ΛX/2 + (A1/2Λ)0 + Λ Λ c Gx + A1/2 +
Go + Alί2 = G, and similarly (M1/2 c G and G40 c G. Thus, G is an
ideal of R and is nonzero since Alί2 c G. It follows from the defini-
tion of R that either G = R or we may adjoin e3 to obtain i2. In
either case the lemma holds.

We shall assume hereafter that i, j, k form a permutation of 1, 2, 3,
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and we shall indicate in which part of the decomposition of R an ele-
ment lies by attaching the appropriate subscripts. Then, taking e = e5

in Lemma 4 yields the following.

COROLLARY. Aik is generated by the elements of the form (yi3 zjk)

and Ai is generated by e$ and by the elements of the form (y^-z^i and

{Vista)*.

LEMMA 5. The following relations hold in R: xik{yijZj)iBAk9

*) = 0, and xik(yijZiS)i e Aik.

To establish this lemma, we observe first that x^iy^z^i e AikAi c
Aik + Ak. On the other hand, using (19) with e = es gives #»(%;£;)< =
2[Va%ik Zj + VikZrVij] = ZVijtoik Zje AjkAd c Ajk + Ak, and combining the

two relations gives Xndy^z^i e Ak. Secondly, taking e = ek in (13) gives
VkiVifiid) = 2[xkyirziS + xkZirVis\ = ° A n d finally, setting e = es in
(20) yields Xi^y^z^ = yi5xik-zi5 + z^x^y^e Aik.

LEMMA 6. 1/ α̂  is an element of At such that XιAik c Aikf then
XiAi5 c Ai3 . Similarly, XiAik c Λfc implies XiAiό — 0.

Suppose that a^Aίfc c Aik. Then (20) gives

to show that a?^^ c A^ On the other hand, if XιAik c Afc, then (20)
yields (Xi(yίkzjk) = (Xiyik)zjk e Akzjk c Ajk + Ak. However, we also have
XiiVikZjk) e XiAi:} c Ai5 + A, , and thus x ^ = 0.

We are now in a position to prove.

LEMMA 7. 1% tΛβ ring R, AiAiά c A ί y and AiAj — 0. Hence
Ai + A<y + Ay is a Jordan ring.

By the corollary to Lemma 4, A< is generated by e< and elements
of the form (y^z^ and (y^^i. Then {y^z^iA^ c A* by Lemma 5
and so (y^z^iA^- — 0 by Lemma 6. On the other hand, Lemma 5 also
gives (yiάzi3)iAik c Aik, which implies {yiάZidΛi3 <= A^ by Lemma 6.
Hence, A {A { i c Aih (y^z^i = 0, and Ai is generated by β4 and elements
of the form (y^z^)^ But then A{Ak — 0 by the second relation of
Lemma 5. The relations which we have just established show that
the Jordan ring D = {x \ x e Aejc(0), xAe(l) = 0, xAeje(l/2) c Ae&(l/2)} used
in the proof of Lemma 3 is all of Ae/,(0) = A{ + Ai5 + A3 .

Now that Lemma 7 has been proved, equation (15) yields the three
special cases
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(21) zijxi yik = z{j Xiyik , zikyiS α?< = zik yiύxi ,

while (20) yields

(22) [yjk%ij-zik]i = [yjkZijc-Xidi.

Since A< + A^ + Ay is a Jordan ring, we also have

(23) yijZij-Xi = [^i^ ^ύ + ZijX

Theorem 4 may now be established by verifying that the linearized
Jordan identity is satisfied for all possible ways of choosing the argu-
ments in the various components of R. These calculations all proceed
easily using Theorem 3, Lemma 3, Lemma 7, and equations (21)-(23).
However, this computation may be avoided by appealing to [2, Theorem
5], which states that a certain set of hypotheses implied by the pro-
perties that we have established for R implies power-associativity. It
should be remarked that Mrs. Losey's theorem is stated only for simple
algebras in which the decomposition is well behaved with respect to
any idempotent in the algebra. However, her proof actually establishes
the theorem for simple rings containing a unity element or with unity
element adjoined in which properties about the decomposition with re-
spect to an idempotent are only assumed for three particular idempot-
ents which add to the unity element.
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