A PROOF OF THE NAKAOKA-TODA FORMULA
K. A. HARDIE

If X; 1 =j=r)are objects we denote the corresponding r-tuple
(X, X;, +++,X,) by X and the (r — 1)-tuple (X,, X, -, X;_,, X;10p+ -+, X,)
by X (7). When X; (1 =<j =< r) are based topological spaces X will
denote their topological product and /I*'X the subspace of I7X whose
points have at least ¢ coordinates at base points (always denote by *).

Let a;em, (X;) n; =2,1<7 =7 r=3) be elements of homotopy
groups then we have

*a(say) = apxax « - xa, e, (I1X, II'X) ,

where n = ¥n; and * denotes the product of Blakers and Massey [1].
We thus also have '

*QU(4) € T, (1 X (2), II'X (3)) .

There is a natural map I1X (%), II'X (%) — I[I'X, II*X and we denote also
by *a(j) its image induced in =z, (/I'X, II’X). Let & denote the
homotopy boundary homomorphism in the exact sequence of the triple
(IIX, II'X, II*’X). We shall prove the formula:

orar = 3(1 = @ = r)(—1)“[a;, »a(i)] e 7, (I'X, I’X) ,  (0.1)

where e(1) = 0, &) = n;(n, + Ny + <+« + ;) (¢ >1) and where the
brackets refer to the generalised Whitehead product of Blakers and
Massey [1]. In the case of the universal example 0.1 becomes the
formula of Nakaoka and Toda stated in [4] and proved there for
r=38. I. M. James' has raised the question of its validity for » > 3
and as the formula has applications (see [2], [3]) it would seem desir-
able to have a proof available in the literature. The present argument
while inspired by [4] has a few novel features.

(1) DEFINITIONS AND LEMMAS. Let z = (%, #,, +--, 2,) denote a
point of n-dimensional Euclidean space and let

Vr = {w; 32} < 1},
St = {x; Y} =1},
Ert={xeSx, =0},
Ert ={xeS" 2, <0},

Dt ={xeV*a, =0},
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Dr={xc V"2, <0},
D ={ze V*ua =0},
D ={xe V*ux, <0}.

We recall that if Y & X then X is a closed n-cell and Y is a face of
X if there exists a homeomorphism f: V" — X such that f(E? ) =Y.
The subset X° = f(S*) is the boundary of X. If X and Y are oriented
cells we assign to X X Y the cross-product of the orientations of X
and Y,

LEmMMA 1.1. Let X, be a face of the cell X and Y; a face of the
cell Y. Then

Xy XxY)U(X xY) isa faceof X X Y.

A proof of 1.1 may be found in [1] to which the reader may also refer
for details concerning orientations. The proofs of the following two
lemmas are standard exercises in homotopy theory and will be omitted.

LEMMA 1.2. Suppose given a simplicial decomposition of a closed
n-cell F(n = 3) and a subcomplex G which is a closed n-cell oriented
coherently with F. If A is a simply-connected subset of a space Y
and if f:F—Y is a map such that f{(F—G)UG°} S A then
fiF,F°—Y, Aand f:G,G°—Y, A represent the same element of
(Y, A).

LEMMA 1.3. Suppose given a simplicial decomposition of
V*+(n = 8) and subcomplexes Fy(i =1, 2, «--, m) which are faces of
V1 with disjoint interiors oriented coherently with S™. Let A be
a simply-connected subset of a simply-connected space Y, let f: S*—Y
be a map such that f{(S* — UF)U(UF2)} S A, let f:S*—Y repre-
sent aen,(Y) and let f:F;, FP—Y, A represent a;em, (Y, A) (¢t =
1,2, ---,m). Then joa = Sa; where j:7m,(Y)— 7, (Y, A) is the injec-
tion homomorphism.

Let A be a simply-connected subset of a space Y. Let f: V?, S*'—
A, xand g: Ve S, Bt — Y, A, x be representatives of a e m,(4) and
Berm (Y, A). Let

h:Six ViUV?X B9, SP ' X By VP x S —-Y, A
be the map such that

1, 3) = fl) if (x,9)e V? X B,
= o) it @ y)eStx V.
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Then if S*~* X V?U V? x E%* is oriented coherently with V? x V¢
we recall 3.1 of [1]:

DEFINITION 1.4, & represents [, 8] € Tp1e—i(Y, A).

(2) Proof of 0.1. Let «; be represented by a map
it VL SMT S X«
with the property that
2.1) P D¥ U D) = * .

If wedenote VX V"X oo X V" by Vand VX V"-1x V't oo X V'r
by V(7) then xa and *a(t) are represented by maps

J:V, Ve— X, II'X ,
¥(1) : V(3), V(1)° — II'X, II’X
such that

Y@y + oy ) = (Pol@1), * o5 P(2)
(2'2) "/"(i)(wlr ey iy Lit1y ** %y xr)
= (Py(®,), + oy Pia( @i,y *, Vi01(@ir), oo oy V(@) (€ V™),

Let 0;: V" x V() — V be the map such that
loi(xir (xly sty Limqy Limgy = ° %y x'r)) - (wlr Lgy **°y wr) .
As an easy consequence of our orientation convention we obtain:

LEMMA 2.3. The degree of p; is (—1)*?,

..................................

1({1(1]0 1|—|—|—

1111110 —]|—]|—
1({1|—|1 O|—|—|—

11— — o|—|—
1l1|— — — of|—|—

1|— — — — 0|~
1|— — — — — 0|—

- - — — — — 0
_—-——_——0 ---------------------

r even ’ r odd

The proof of 0.1 depends on the construction of certain closed
cells G; & V() (1 =¢ = r). Consider the two infinite arrays illustrated



1252 K. A. HARDIE

in the diagram. They contain between them exactly one centrally

situated 7 X r matrix. Let 7(¢, k, r) denote the symbol in the (¢, k)
position of this matrix. We define

Gi = H :(lfi,k,r) ’
where topological product II is taken over all values of %k (in ascend-

ing order) except those for which 7(¢, k, r) = 0.

ExAmMPLES If r =5 then G, = D* x D;* x D" x D,
If r =6 then G, = D™ x D x D x D™ x D,
Certainly G; & V(i). We shall refer later to the following property
of the G; which is obvious from the diagram.

LEMMA 2.4, If 2+ <j<vr them there is an integer k with
1 # k # j such that G; has a factor D and G; a factor D™*,

The proof of the following lemma we postpone.

LemmA 2.5. For each v =1,2, -+, r, there exists a face T, of
G; and of V(i) such that if G; has a factor D'* then the projection
of ©; on D* does not intersect D’* and such that if G; has a factor
D™ then the projection of v, on D * does mot intersect D;*.

In view of 2.1 and 2.5 we have (i)(z;) = *. Moreover 2.1 and
2.2 imply that

FEUVE) — Gy UG} S II'X .

Thus applying 1.2 (we may assume II’X simply-connected for this is
certainly so in the case of the universal example) we obtain that

("l"(?:) I Gz) : Gi’ thy T, — HIX’ Hsz*

2.6 .
(2.6) represents *a(7) .

‘We now define
Fi = pS8™™ X G, U V™ X 1) I=i=n)

and prove later:

LeMMA 2.7. The F; are faces of V with disjoint interiors. The
map (yvo;| 0i'F;) has the property that

o)  if (@, y)e Vixc,,
@) (Y) if (,9)eS" X G, .

If we orient F; coherently with V and 0;'F; coherently with V"ix V(3),

(yo;| 07 Fy)(x, y) =
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1.4 implies that (40; | 0i'F;) represents [a;, xa(t)].

Since 0, is of degree (—1)*?, (40| F;) represents (—1)*“[a;, xa(7)]
and hence applying 1.3 the formula 0.1 follows in view of the com-
mutativity in the diagram

7 (X, I'X) —— 7, (I'X, I’X)
/
[
ﬂ'.n—l(HlX)

where d denotes the boundary homomorphism in the homotopy sequence
of the pair (IIX, II'X).

Proof of 2.5. Let D and D} denote the subsets

1 1
Dg‘:{xe V”;xlg? and xan},

DQ:{oceV”;ocléi and wnél}
2 2

Let D S G, have a factor D,* for every factor D;"* of G; and a factor
Dy* for every factor D"* of G,. Then certainly z; = DN V(¢)° has
the desired property.

Proof of 2.7. If o, is the face of G; complementary to 7; then
it may be observed that F; is the face of 0,(V™ X G,) complementary
to p(V" X ;). Thus

FP = 08" x o, U V" x 9) .
Suppose ¢ < j and let

H=p,8"" x G) N p(8™" x Gy),
H' = 08" x G)Np(V" X 7)),
H" = p(V" x ;) N pAS"7" x Gy) .
2.7 will follow when we have proved that HS F° N FP, H = Q

and H’ = Q. Since the images of H under the projections into V™
and V" are contained in S™ and S"™™ respectively we have

H< (8™ x G?) N pS™™" x G?) .

2.4 asserts the existence of an integer k with % %= k # j such

that G; has a factor D;* and G; a factor D’*. Hence 2.5 implies
that
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HNeS" ' xt)=HNP;8" ' x1;)=0Q
and hence that
HS 08" X (G — ) NPAS™ ™ X (G? — 7)) S FP N F? .
2.5 also implies that H' = H” = Q which completes the proof of 2.6.
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