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1. Introduction. Bergman [l]-[6], [11] has considered the ellip-
tic partial differential equation,

(1.1) TS[Ψ]= ΘW + A(r> t t -g^ + C(r*)Ψ = 0 , (μ = 1,2,2)

where A(r2), C(r2) are analytic functions of the real variable r2 = x^Xμ.
[μ = 1, 2, 3] (Repeated indices mean the summation convention is used.)
In this paper we shall investigate the four variable analogue of this
equation, TA[W] = 0, and show that many of Bergman's results carry
over to this case. Here, we need in many instances, the methods of
several complex variables in order to find the natural generalizations.

In Bergman's theory,1 the integral operator B3 [/] plays an im-
portant role in studying the solutions of (1.1). In our case, there is
an analogous operator [7]~[1O], which is a four-variable analogue to

H[X] = BJif] s - _ L - j \j!t ψf(u; V , ξ ) , X^ (x19 x%, xs, x,)

(1.2) . . *,(l + 1.) + ix,(l - Λ.) + x,(i- - 1 |

and D — {| ξ \ — 1} x {| η \ = 1}. The operator S4 [/] maps analytic func-
tions of three-complex variable onto harmonic, function-elements of
four-variables. One may realize how analytic functions are transformed
into harmonic functions, by considering the powers of u, which act
as generating functions for the homogeneous, harmonic polynomials,

mm
(1.3) un - Σ H»[X]ξ-kTι

fc,l=0

The polynomials H%ι(X) [k, I = 0,1, , n; n = 0,1, 2, •] form a
complete, linearly independent system [13] [7] [8]. From the Cauchy
formula for two complex variable we have an integral representation
for these polynomials given by,
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1 See Bergman [1], Chapter II.
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(1.4) H»[X] = --L.\ \ u ξ'

It is clear then, that the analytic function,

(1.5) f(u;η,ξ) = Σi Σ an9u
n=0 m,p=0

is mapped onto a harmonic function,

= Σ Σ
0

defined in the small in the neighborhood of the origin, [X] = (0). We
shall refer to (1.6) as the normalized associate of H[X] with respect
to B4 (see Bergman [1] pg. 62, Kreyszig [14] and Gilbert [8]).

2- The derivation of a Bergman integral operator generating
solutions to T4 [Ψ] = 0. We shall establish the following theorem,
which is four-variable analogue of Bergman's [5].

THEOREM 2.1. Let H{r, τ), | r | ^ 1, be a solution of

(2.1) (1 - τ*)Hrτ - τ-\τ* + l)Hr + rτ(Hrr + ^-Hr + Bfl) = 0 ,

where

(2.2) B= — I Λ - 2 A — ^ A 2

αnc? jffr/rτ is continuous at r = τ = 0.

(2.3) Γ(X) = X?[/]

(2.4) E(r, τ) = exp ( — i j] Ardr)fl"(r, r) ,

is α solution of (1.1).

The proof of Theorem 2.1 follows closely the proof given by
Bergman for the three-variable case. First, we list several formal
relationships which exist between the variables:



(2.6)

(2.7)

(2.8)

and

(2.9)
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du dE _ du dE dr = du dE
dxμ dxμ dxμ dr dxμ dr dr

dE M dr dE dE
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Xu
dxμ dr dr '

du

dxu

Now, using relations (2.5)-(2.9) we compute formally, that

dΨ = _ J _ f da f di ^ f[u{1 __ τ 2 ) ;

dXμβXμ 47Γ2 J |-*?I=X Ύ] )\ξ\=l ξ Jr=-1

X
Qτ

\dτ,

and consequently

d2E
1=1 7] Jl?i=i f

(2.H)
U dτ

= ϊ_f dη[ dξ_ί+1 J

ArEr - A

9r

d(τ - —)—Er\ τ / r
dτ

[dτ

In order to verify that is a solution of T^Ψ] — 0, we show that the
terms in the brace of the integrand (2.11) vanish identically. By
setting E(r, τ) = H(r, r)exp ί—1/2 I Ardrj, and computing the terms
involved we obtain

(2.12)

- U ( l - τ*)Hrτ - τ~\τ* + l)Hr + rτ(Hrr + *-Hrrτ I V r

~A -2A + ^ )iϊ} exp (-i = 0
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consequently, if a solution H(r, τ) exists to (2.1), then (2.3) represents
a solution of T4(SF) = 0.

One can show the existance of an absolutely, and uniformly con-
vergent solution,

(2.13) H(r, τ) = 1 + Σ τ2nVn)(r) ,
n=l

where the {b{n)(r)} are sequences of functions defined by the recurrence
formulas

/&<» + TB = 0

(2.14) j(2n - l)¥r

n) + rbϊ^ - (2n - 5)6^-1} + rBδ(—1} = 0 , (w=2,3, •)

and where | r | 5* 1, and r ^ p < P0lV~2 (distance of the first singularity
of B from the origin). The recurrence formulas are obtained by sub-
stituting the series (2.13) into (2.1), and the convergence may be proved
by the method of dominants as Bergman has done in the case of
three-variables [5].

As an illustration of the above method we consider the Klein-
Gordon equation

(2.15) • Ψ - mΨ - 0 ,

which describes the motion of massive, free elementary- particles, of
spin zero. Here our recursive formulae become

(2n - ΐ)¥r

n) + rblr1' - (2n - 5)6^~x) - rmΨ^ = 0 , (n ^ 2)

b? + rm*, δίΛ)(0) = 0 ,

which have the solution,

(2 16) &<•> = 2

(n~1)(mr)2n~2 + (mr)2n

V ' } (2n - 1)! (2n)\ '

Consequently,

E(r, τ) - H(r, τ) == 1 + Σ τ2ψn)(r)

(2.17) '
= (1 — τ2) cosh (mτr) + sinh (mτr) .

mr

3* A Class of vector solutions* In an earlier paper [8] we

introduced a class of harmonic vectors H[X], whose components were
given by
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where iVμ is a component of the vector,

and u — N X. In the same way we introduce a class of solutions to
TJ[¥] = 0 by setting

(3.3)
5 I f *Z. f dfj^ft, f) Γ JS7(r, τ ) / N l - τ2); 97, ξ]dτ .

Aπ2hv\=i Ύ] Jιeι=i £ Jτ=-i

If X is chosen so that the integrand is absolutely integrable we may
exchange orders of integration and write (3.3) as

Ψμ{X) = - J J + 1 E(r, τ)\ \ ^^Nμ{η, ξ)f[u(l - τ2); η, ξ]dτ

[ + 1 , τ)Hμ[X(l - τ2)]dτ .[
Jo

We next consider the line integral,

(3.5) ( Ψ^X^dx^ = 2 ( dxμ, ^E{r, τ)Hμ[X(l - T2)]dz ,
J% 1% Jo

where £ lies on the hypersphere, | |X| | = i2.
Here we may interchange orders of integration and write

Hμ[X(l - τ^d

l
where

(3.7) g s {ΓI Γμ = (1 - τ2)α;μ; jei = 1, 2, 3, 4; I e

Now as Bergman [1] [5], and later Mitchell [16] have done in the
case of the equation TS[Ψ] = 0, we assume the associate of Hμ(X) is
rational,

(3.8) /(., v, ξ) =
p,(u, η, ξ) PIX; η, ξ]

and then
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i ϊ μ (X[l -

(3.9)
=i η ξ

It has been shown in Gilbert [9], that the integral (3.9) may be
evaluated in terms of Weierstrass integrals of the first, second and
third kind [18]. (see also [1], [16], [10]).

With this in mind, let us define the families of sets,

βi(τ) s {XI P β [X(l - τ2); η] = 0;

T) = S-Λ.

= {χ

-τ*)];y) =

(3.10) @2(τ) s @?(τ) U €5(τ) U

where

F ( X ; ^ ) = Π U β (X; 7)

is the Vandermonde determinant associated with the equation,

(3.11) P2[X; y,ξ] = ± PV[X; VΨ" = 0 ,
vov=o

and R(f, g) is the resultant of / and g.
The genus p[X(l - τ2)] of the Riemann surface $ϊ[X(l - τ2)] which

lies over the f) plane and is associated with the algebraic equation
P2[X(1 - τ2); 7), ξ] = 0 (τ-fixed) is constant for

Furthermore, let

(3.12) HJΣ(1 - τ2); 7, f], JΪJX(1 - τ2); 7 f f], ff[X(l - τ2); 9 v , fVf 7 , ξ]

be Weierstrass integrands of the first, second, and third kind respec-
tively, associated with the Riemann surface 5ft[X(l — τ2)], and let their
periods taken over p[X(l — τ2)] cycles Kβ[X(l — τ2)] be given by

2«UX(1 - r2)], 2 % β [X( l - τ2)], Ωβ[X(l - τ2)]
( } OS = 1,2, . . ,p), (α = l ,2, . . . , p ) r

and their periods over the conjugate cycles Kβ[X(l — τ2)] be given by

(3.14) 2ώΛβ[X(l - τ2)], 29 β[X(l - τ2)], Ωβ[X(l - τ 2 ) ] .

For each fixed value of X, and τ we may evaluate the integral
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(3.9) by first integrating with respect to ξ,

- r2); η, ξ,] N ^

(where -S^-(τ) is that subset of {| 571 = 1} for which the root ξσ 3
i4,r[X(l — r2); 57] lies inside {| ξ \ = 1}, and then by using the Weierstrass
decomposition theorem [18], [1], [10] to write,

- r2); η, ξ]Nμ(y, ξ)

dξ

= Σ CW[X(1 - τ2)]Hμ[X(l - r2); yv, ξv; y, ξ]

(3.16)
V (g* LXYl r2)li3" ΓJΓίl r 2) v <?!

x ^ [ X ( l - r2); 57, f ]}

- r2); 57, ξ]\, Σ CW[X(1 - r2)] = 0 ,
J v=i

+ 4JΣ
where |0 = p[X(l — τ2)], r = r[X(l — τ2)] is the number of infinity points
of the integrand (4.15), and the FV[X(1 — τ2); ηf ξ] are rational func-
tions of 7]f ξ. Using Theorem 1 from Gilbert [9] we then may express
Hμ[X(l - τ2)] in the form,

Hμ[Σl - τ2)] =
σ=lλ

x log
B ^ [ X ( l - τ2); η^\ ξ™ ηv, ξv; ηt, ξ0]

(3.17) + ^ ^ L i C (1 )j log

- r2)] log M
£ 7 [ X ( l - τ2); %2λ-», ?̂ 2

- Fμv[X(l - r2);
V = l

Here we have assumed that I ? @ 2 ( τ ) for Vτ 6 [0,1].
We next introduce the families of sets,

) s {X\V[X(1 - τ2); 57] - 0; V?e \η\ = 1}

τ) = {X|PO[X(1 - τ2); 7 ] = 0; V? e 171 - 1}

for each fixed I0@ 2 (τ)3 only a finite set {τk}

c (0, 1) 9 X G (^^3(τΛ) u ^\τk)) , (A? = 1, 2,
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Let us define the intervals on (0,1),

where we take τ0 == 0, and τn == 1; for Vτ3 τ e Δk[X]k (where X is fixed
and ί@2(τ)) there can be no poles of ηξPJ^μJdPJdξ (defined on the
Riemann surface associated with P 2 = 0), which coincide with the path
of integration | η | = 1. Another way of saying this is that,

X0 U ^\τ) (for k = 1, 2, . . , N[X]) ,

hence for each k, the number of poles, rk[X] inside {| TJ | = 1} remains
constant for all τ e Δk\X\ We designate these values of rj as the set
of points

(3.18) Nk[K] = {^χ]};=i, r =

From the definition of the set {τκ} it also follows that

I ? U ^ ! ( r ) (fc = l ,2 , . . . ,2V[X]) ,

hence the Riemann surface

R[X(1 - r2)] associated with P2[X(1 - τ2); 97, ξ] - 0

[equation (3.11)] has constant genus for all τeJk[X]. Consequently,
our evaluation of Φμ[X] is made by computing a term (3.17) for each
τ-interval Λk[X], where

p = ρ[X(l - τ2)] = pk (a constant) for τ e Jk[X] ,

r Ξ r[X(l - r2)] = rfc (a constant) for τ e 4k[X] ,

and summing the integrals

2V(X) Cτk

(3.19) ?Γμ[X] = 2 Σ \ E(r,
k=l hk-!

We now return to evaluate the integral (3.7), where 3/ is a closed
curve lying on the hypersphere ||-X"|| = R,

Z' = {X\ Xμ = xμ(s); 0 ^ s ^ 1} ,

and g ' is the image of %' under the mapping, y^ — (1 — τ2)α?μ, for r
fixed, and 0 ^ τ ^ 1. The integration involved on the right-hand-side
of (4.7) is then over the two-dimensional region,

(3.20) g 2 E= {Y\ yμ = (1 - τ*)xμ(s); O ^ β ^ l , O ^ r ^ l }

We assume further, that £ ' is chosen such that for r-fixed
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V Π {^£\τ) U

is a discreet set of points {Xfc(τ)}?=1; consequently, as τ varies the
points Xk(τ) trace out curves Γ'k. This construction (see Mitchell [16])
suggests a subdivision of the s-interval such that for

s e (sμ, βμ+1), [0,1] = Σ k*-i> «/J

there are a constant number of intersections of the curves Γk (k =
2, , M) with the ray{X\ X = (1 - τ2)X(s); 0 ^ τ ^ 1, 5 fixed}. ££
is that subset of 2/ for which s e (s^l9 Sμ), and Nμ is the number
of τ-sub-interals [0,1] is broken into such that for τe/lk[X], Z e ϊ μ ,
the number of poles r*k and the genus pH will remain constant. This
leads us to consider the line interval broken up into the sum,

(3.21) Σ Σ p + 1 { P E(r, τ)H

the superscript a in the integrand indicates, that for each (sa-l9 sa)
interval we must perform a different Weierstrass decomposition (3.17).

The end points βμ. are found to be those s-values for which Γf

k

coincides with f$2 Π {s — Sμ} for a finite number of τ-subintervals.

4* Considerations from the theory of algebraic surfaces*
Using (3.1) the line integral (3.5) may be written as

, = 2 ( dxμ, ΫE{r, τ)iίμ[X(l - τ2)]dτ

= -±\ dxΛlE(r,τ)\ \ *L*Lf(u(l-?),v.
2π2Js' Jo Jiui=iJiίi=i Ύj ξ \

x NM ξ)dτ

&\V, ξ, τ) is the image of 2/ under the map v = ^[X; 57, f](l - τ2)
where η, ξ, and r are held fixed, and the integrand is assumed abso-
lutely integrable.

If f(u, V, ξ) — p^u, η, ξ)/p2(u9 η, ξ) is rational, then we may evalu-
ate (3.22) by the theory of algebraic surfaces [19] [17]. For instance,
let us consider the algebraic surface S defined by

(4-2) P%(u, V,ξ) = t (Φl, S)ug-V,
v=o

where the av{η, ξ) are polynomials in η, ξ and q is the degree of u in
p2. Furthermore, if pz — (Θ/du)P2(u, η, ξ), then the resultant of p2, ps

with respect to u is [12],
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(4.3)

α0

< * 1
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0 σα

(q - I K

0

α0

0

0

0

0

qa0

a,

0

(q

«„

0

0

(which is also the discriminant of p2 with respect to u); the w-roots of
p2 = o, w = %(^, £), may be found by computing

(4.4) « = M.I'M. = _^./^_ = etc.
9α2

P*{u, V> ξ) m a y be expressed as factors of its w-roots as

P%(u, y, f) = αff U [u - tφi, ξ)] .
V = l

The roots uv(η, ξ) (v = 1,2, , g) are distinct for all

For each fixed value of τ we may determine a set of values {rj, ξ) for
which Uy(η9 ξ) lies inside (S1^, ξ, τ) and the set for whicn the root lies
outside. For instance, setting η — eia, ξ — eiβ, and using the para-
metrization Xμ. = xμ(s), (0 ^ s ^ 1) we may determine when the root
%v lies on (§? by taking the real and imaginary parts of the equation,

(4.5) u{s; a, β} = u[X(s); - τ2) = uv(eia

f e*) =

and then eliminating s to obtain α = Φ{/](β; τ), (Λ = 1, 2,
gives us a subdivision of the α-interval, say,

, N). This

such t h a t for aeΔ^{β, τ) = ( α ^ , α^ + i ) t h e root wv lies inside &. A
fur ther subdivision may then be made such t h e same set of roots
{uv}v 6 I(β, τ) lie inside S 1 for all a e Jμ(β9 τ). Consequently we have
for (4.1).

(4.6) - I f 1 E(r,τ) Σ f Γ
2π 2 Jo 1 — τ 2 ve/φ,τ) j ss«,r) J ιξi=i

dξ dηdτ

ξη, ξ) ξ η
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Here JSf(ξ9 τ) is the union of certain closed subintervals on the unit
^-circle,

(4.7) jSf(ξ9 τ) = U {V = eia; a e A™(β, τ)}
V

Next, we wish to obtain a subdivision of the s, and τ intervals
similar to the one obtained in the previous section. Essentially, the
problem is the same, to find the subintervals (τμ, τμ+1) and $ί(τ) =
(Yv(τ), Fv+i(r)), where Yv(τ) are end points on the curve,

(4.8) %\τ) = {ΓI yμ = (1 - τ>μ(β); O ^ s ^ l ; τ~fixed} ,

such that the Γ\ intersects %\ in a constant number of points.2 We
consider a point Γ(τ)€$ϊ(τ) for τ e (τμ, rμ + 1). If Γ ^ e Γ i , then
Γ(τ) 6 ^€\τ) U Λ~\τ); returning to our definition for ^\τ) and
^V\τ)f we realize that this implies the existence of an 7j(τ) with
I η{τ) I = 1, such that either Y(τ) e ^£\τ\ η(τ)] or Y(τ) e ^ 3 [ τ ; η(τ)]*
Now, in order to find the τ-subdivision we note that Y(τ) either inter-
sects ^ z (or <yK*z) in a finite number of points (as τ-varies) or in a
finite number of τ-subintervals.4 In the latter case, this gives us [one
of the s-points of subdivision in the previous section] a F(τ)-point
subdivision or as we have shown above a point of subdivision of the
integration path | η \ — 1. The τ-interval is now subdivided so that
there are a constant number or intersections in each subinterval. One
obtains then the following sum of integrals for (4.6).

(4.9) ^ 1 £ £ Σ I" E(r'Z) [ \£ £ Σ I [ \ dτ
λ=0/x=0vεlλμ(£) J r λ . i 1 — Z*2 J 2 μ(r) J 1*1=1 PB(VV, 7J, ξ) ξ 7)

over d£v, rj, ξ) = 0. 7^(2) is the index set of those roots, v, of p2 = 0
which lie inside K1^, ξ, τ) where the others remain outside; Uf=o(^-i, ?*) =
[0,1] is the subdivision of the τ-interval and %(τ) (μ — 1, 2, , Nλ)
are the points on | η \ — 1 which correspond to the iVλ, y-points on
either ^£\τ) or <yί^\τ) for τ e (τλ^19 τλ).

The cartesian product {| ξ \ = 1} x jSfμ.(τ) (for fixed τ) is a tubular
chain [16] on 8. On 8 pλ{v, y, ξ)/Pι(v, η, ξ) may be represented as

(4#10) -£*- =

where J?(p2, pz) = d(i;, ^, f)pa + Ca(v, ^, f)j>8» Ci> ̂ 2 are polynomials [19]

2 This construction of subintervals is due to Mitchell [16] who employed it in the
three-variable case.

3 ^3[ τ ; 9j>(τ)] i s a restriction of *^3(τ); see definition of ^ 3 (τ) .
4 In the definition of ^ 8 ( r ) , and ^ 3 ( r ) the I-variable does not appear, hence it plays

no part in our subdivision. Because of this we may make a similar subdivision as in
the three-variable case [16].
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[10], and v is given by (5.4). If we designate the polar curves Dσ

on 8 by

then we may rewrite (5.9) as,

(4.11)-J-ΣΣ Σ Γλ E{r'τ)\ I

which may be reduced by partial fractions and subtraction of certain
improper integrals [19] [10] to the form,

(4.i2) - Λ Σ Σ Σ Γλ ^ 4 ( t

The functions,

W (v V t) -
Λ ' V > ξ) ~ ζ) '

dξ

are algebraic functions defined on the Riemann surface Sfto associated
with the polar curve Dσ; consequently Wσ(v, ~η, ξ) has a Weierstrass
decomposition such as illustrated in (3.16)

Wσ(v, η,ξ) = Σι dσaHAV<r«, ξ<r»; V, ζ)
α > = l

(4.13) - Σ{KβHσβ(7}, ξ) - KβHσβ{η, ξ)}

where the terms have a similar meaning as before in (3.16). Each
jSfμ.(τ) is the union of intervals on the unit ^-circle, ^fμ(τ) =
UΓϋWW^ίfliίτ)), hence using a result from Theorem (2) of Gilbert
[10] we have for (5.9)

- J - Σ Σ Σ Γv E(r'τ)

27Γ2λ=oμ=ovei λ f A(%)Jτ λ_i 1 — Γ 2

ώ ώ l i Λ l o g

ώ ώ l i i Λ - l o g

+ Σ(^iog^^^-αgiog.

2-i K-F σωVhi+lt S 2i+i) •? σ avhi 9 $2i
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From the above discussion we have proved the following theorem,
which is the four-variable analogue of results by Bergman [1] [5] and
later Mitchell [16].

THEOREM 4.1. Let Ψμ{X) = Ωμ[f] be the μth component of a vector
solution to T4[Ψ] — 0, where f(u, 7], ξ) is a rational B^associate of a
harmonic function H[X]. Let % be a simple, closed curve on the
hypersphere \\X\\ — r meeting the above discussed conditions. Then
the integral of (3.21),

Σ Σ \\ E(r, τ)H« »[X(l - τ*)]dτ\dxμ

Xcύ+1

may be evaluated in terms of an expression (4.14).
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