THE NILPOTENT PART OF A SPECTRAL OPERATOR, II

CHARLES A. McCarthy

Let T be a spectral operator on a Banach space, such that its resolvent satisfies a mth order rate of growth condition. If N be the nilpotent part of T, it is known that $N^m=0$ on Hilbert space. We show that $N^m=0$ on an L_p space $(1 . Known examples show that <math>N^m$ need not be zero even on an uniformly convex space.

We will consider a bounded spectral operator $T = \int \lambda E(d\lambda) + N$ which operates on an L_p space $(1 . <math>E(\circ)$ is the resolution of the identity and N is the nilpotent part of T [1; pp. 333–334]. We will denote by M a finite constant for which $M^{-1} \operatorname{ess}_{\xi} \cdot \inf \cdot |a(\xi)| \leq \left|\int a(\xi) E(d\xi)\right| \leq M \operatorname{ess}_{\xi} \cdot \sup \cdot |a(\xi)|$ is true for all bounded Borel functions $a(\xi)$, [1; Theorem 7, p. 330].

Suppose that T satisfies an mth order rate of growth condition on its resolvent: given any Borel subset σ of the spectrum of T, its restriction T_{σ} to the range of $E(\sigma)$ has $\bar{\sigma}$ as spectrum and we assume that for $|\zeta| \leq |T| + 1$,

$$|(\zeta - T_{\sigma})^{-1}| \leq K[\text{distance }(\zeta, \sigma)]^{-m}$$

where K and m are constants independent of σ and ζ .

It is known that in Hilbert space, this implies $N^m=0$ [1; Theorem 11, p. 337], and that in a reflexive Banach space $N^{m+1}=0$, but in general no more [2; Theorem 3.1, p. 1226; Examples 4.4, p. 1230]. However, in the case of a reflexive L_p space, we will show that in fact $N^m=0$. It is immaterial whether we show $N^m=0$ or $N^{*m}=0$, so that we may assume that $p\geq 2$. We will dispense with the continual remarks that our L_p functions x(s) are defined for only almost every s.

It is known that for any complex numbers $\lambda_1, \dots, \lambda_n$ and $p \ge 2$ we have

$$\begin{array}{ll} (\ 1\) & \left(\sum\limits_{\nu=1}^{n}\mid\lambda_{\nu}\mid^{2}\right)^{p/2} \leqq (2\pi)^{-n}\int_{0}^{2\pi}\!d\theta_{1}\cdots\int_{0}^{2\pi}\!d\theta_{n}\mid e^{i\,\vartheta_{1}}\lambda_{1}\,+\,\cdots\,+\,e^{i\theta_{n}}\lambda_{n}\mid^{p}\\ & \leqq C(p)\Bigl(\sum\limits_{\nu=0}^{n}\mid\lambda_{\nu}\mid^{2}\Bigr)^{p/2} \end{array}$$

Received April 4, 1964. This work was performed while the author was a fellow of the Alfred P. Sloan Foundation, visiting at New York University, Courant Institute of Mathematical Sciences.

where C(p) is independent of n and the choice of the λ 's [3; Proposition 1].

Given $\varepsilon > 0$, let the spectrum of T be decomposed into $n = O(\varepsilon^{-2})$. Borel subsets $\sigma_1, \dots, \sigma_n$ with each σ_ν contained in the disc $|\zeta - \zeta_\nu| \le \varepsilon$, and let $E_\nu = E(\sigma_\nu)$. For a given function x(s) in L_p , let $\lambda_\nu(s) = (E_\nu x)(s)$. For each s, apply (1) to these $\lambda_\nu(s)$ and then integrate over all s:

$$\begin{split} \int \! ds & \Big(\sum_{\nu=1}^{n} |\left[E_{\nu} x(s) \right]|^{2} \Big)^{p/2} \\ & (2) \qquad \qquad \leq (2\pi)^{-n} \int_{0}^{2\pi} \! d\theta_{1} \cdots \int_{0}^{2\pi} \! d\theta_{n} \! \int \! ds \, |\left[(e^{i\theta_{1}} E_{1} + \cdots + e^{i\theta_{n}} E_{n}) x \right] \! (s) \, |^{p} \\ & \leq C(p) \int \! ds \Big(\sum_{\nu=1}^{n} |\left[E_{\nu} x \right] \! (s) \, |^{2} \Big)^{p/2} \; . \end{split}$$

For each choice of θ_{ν} we have (since $\Sigma E_{\nu} = I$)

$$|M^{-1}| |x| \le |(e^{i\theta_1}E_1 + \cdots + e^{i\theta_n}E_n)x| \le M|x|,$$

so that upon performing the integrations in the middle of (2) we have

(3a)
$$\int ds \left(\sum_{\gamma=1}^{n} | \left[E_{\gamma} x \right] (s) |^{2} \right)^{p/2} \leq M^{p} | x |^{p}$$

and

(3b)
$$M^{-p} |x|^p \leq C(p) \int ds \Big(\sum_{\nu=1}^n |[E_{\nu}x](s)|^2 \Big)^{p/2}$$
.

Now in (3b), replace x by $N^m x$ and apply the Holder inequality to the sum on the right hand side to obtain

$$\begin{array}{c} \mid N^{\,m}x\mid^{\,p} \leq C(p)M^{\,p} \!\int\!\!ds \sum\limits_{\nu=1}^{n} \mid [E_{\nu}N^{\,m}x](s)\mid^{\,p} \cdot n^{(\,p/\,2\,)\,-\,1} \\ \\ = C(p)\,M^{\,p}n^{(\,p/\,2\,)\,-\,1} \sum\limits_{\nu=1}^{n} \mid N^{\,m}E_{\nu}x\mid^{\,p} \,. \end{array}$$

It is a standard computation that

$$|N^m E_{\nu} x| \leq 2 \cdot 3^m K M \varepsilon |E_{\nu} x|$$
.

For completeness, we digress for a moment to include a proof: Let Γ $(=\Gamma_{\nu})$ be the contour $|\zeta - \zeta_{\nu}| = 2\varepsilon$, so that any point of Γ is at least ε away from σ_{ν} , but no point of σ_{ν} is further than 3ε from any point in Γ . Then we have

$$N^{m}E_{
u}=rac{1}{2\pi i}\int_{arGamma}d\zeta(\zeta-T_{\sigma_{
u}})^{-1}\!\int_{\sigma_{
u}}\!(\zeta-\xi)^{m}E(d\xi)$$

and thus

$$egin{align} \mid N^{\,m}E_{
u} \mid & \leq rac{1}{2\pi}\int_{arGamma} \mid d\zeta \mid Karepsilon^{-m}M(3arepsilon)^{m} \ & = 2\cdot 3^{\,m}KMarepsilon \; . \end{split}$$

We now insert this estimate in (4) to obtain (with lumping all inessential constants together)

$$egin{aligned} \mid N^m x\mid^p & \leq C(p) M^p n^{p/2-1} \sum_{
u=1}^n (3^m K M arepsilon)^p \mid E_{
u} x\mid^p \ & = C n^{p/2-1} arepsilon^p \int \! ds \sum_{
u=1}^n \mid [E_{
u} x](s)\mid^p \ & \leq C n^{p/2-1} arepsilon^p \int \! ds \Bigl(\sum_{
u=1}^n \mid [E_{
u} x](s)\mid^2 \Bigr)^{p/2} \ & \leq C n^{p/2-1} arepsilon^p \cdot M^p \mid x\mid^p . \end{aligned}$$

Now we need only remember that $n = O(\varepsilon^{-2})$ to see that

$$|N^m x|^p = O(\varepsilon^2) |x|^p$$
.

Since ε may be arbitrarily small, $N^m x = 0$ for all x, so $N^m = 0$ as was to be proved.

REFERENCES

- 1. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
- 2. C. A. McCarthy, The nilpotent part of a spectral operator, Pacific J. Math. 9 (1959), 1223-1231.
- 3. ———, Commuting Boolean algebras of projections, II Proc. Amer. Math. Soc. 15 (1964), 781-787.

UNIVERSITY OF MINNESOTA