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HOPF ALGEBRAS OVER DEDEKIND DOMAINS
AND TORSION IN iϊ-SPACES

ALLAN CLARK

The main purpose of this note is to show that if the loop
space ΩX of a finite dimensional iϊ-space is free of torsion,
then X itself can have p-torsion of at most order p.

§ 1 is devoted to proving a generalization to Dedekind domains of
the decomposition theorems Hopf-Leray, and Borel, and § 2 is devoted
to recalling the structure of quasimonogenic Hopf algebras over the
integers as described by Halpern. § 3 gives the proof of the main
theorem which relies somewhat on the statement and proof of Theorem
4.1 of [4].

Theorem 1.5 was included in the author's dissertation (Princeton
University, 1961) done under the direction of Professor John Moore.

I* Hopf algebras over Dedekind domains* Unless further
specified K will denote an arbitrary integral domain. By standard field
associated with K we shall mean any residue class field of K. A K-
algebra will be called monogenic if it is generated by a single element.

In this section we prove a generalization (Theorem 1.5) for torsion-
free algebras over a Dedekind domain with perfect quotient field of
the following well known theorem:

THEOREM 1.1. {Hopf-Leray-Barel). If B is a connected, com-
mutative, and associative Hopf algebra of finite type over a perfect
field K, then B is isomorphic as a K-algebra to a tensor product of
monogenic Hopf algebras over K.

Proof of the separate cases char K — 0 (Hopf-Leray) and char K Φ 0
(Borel) may be found in Milnor and Moore [6].

DEFINITIONS. A closed submodule of a if-module B is a submodule
such that for all x e B and all k e K, kxe A implies x e A or k = 0. If
A is any submodule of B, then A, the closure of A in B, is given by

A = {x e BI kx e A f or some keK9 k Φ 0}

REMARKS. A is closed in B is equivalent to A = A and to BjA
is torsion-free. Note that the intersection of closed submodules is closed
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and A is the minimal closed submodule of B which contains A. If Q
denotes the field of fractions of K and j : B —* B (g) Q is the map given
by j(b) = 6® 1, then A — ./"^[./(A)] where [i(A)] denotes the Q-submodule
generated by

PROPOSITION 1.2. If B is a i£-algebra and A is a subalgebra of
B, then the closure of A in B is a subalgebra of B. If i? is a torsion-
free if-coalgebra and A is a subcoalgebra of B, then the closure of A
is a subcoalgebra of B.

Proof. The first statement is obvious. For the second let 0 —>
A->B-*C-+0 and 0 - * A - > J 3 - > C ' - + 0 be exact sequences of K-
modules defining C and C' Let X denote XCξ)Q where Q is the
field of fractions of K. Let j : B—+B(g)Q = B as above. Then j 1 is
a monomorphism since J5 is torsion-free. Furthermore j(A) = [j(A)] & A
and C = 5/A is torsion-free so that C" —• C is a monomorphism. Con-
sider the commutative diagram

A - ^ B (g) B -^-> (5 (g) C') φ (C' (8) β)

where α and 7 are induced by the coproduct of B. Obviously jl9j29

and i 3 are monomorphisms.
dy = 0 : A is a subcoalgebra of I?, and tensoring with Q the exact

sequence 0—>A—>B—• C —>0 we obtain an exact sequence 0 —• A —>
5-C-O.

Then jβa — δyj\ — 0. i 3 is a monomorphism and thus βa — 0,
Im α c Ker β = A ® A, and α(A) c A x A.

COROLLARY 1.3. If A is a sub Hopf algebra of a torsion-free
Hopf algebra over K, then the closure of A is a sub Hopf algebra
of B.

PROPOSITION 1.4. Let A be a sub Hopf algebra of a torsion-free
Hopf algebra over a Dedekind domain K. Then A is closed in B if
and only if B is a flat A-module.

Proof. The following statements are equivalent.
(a) A is closed in B.
(b) B/A is a torsion-free i£-module.
(c) 0—> A® L—>B(g) L is exact for every standard field L as-

sociated with K.
(d) 0 —> P(A 0 L) -> P(£ (g) L) is exact for every standard field
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L associated with K.
(e) B is a flat A-module.

It is obvious that (a), (b), and (c) are equivalent, (c) and (d) are
equivalent by Proposition 3.8 of Milnor and Moore [6]. That (d) and
(e) are equivalent is Proposition 6 of Moore [7].

PROPOSITION 1.5. Let B be a torsion-free Hopf algebra over a
Dedekind ring K, let A be a sub Hopf algebra of B, and suppose that
C is a normal closed sub Hopf algebra of A and B. Then A is closed
in B if and only if A//C is closed in B//C.

Proof. In view of Proposition 1.4 it is sufficient to show that
^ (X, B) ̂  ΊoτAJιc (X, B//C) for any A//C-module X.

Proposition 1.4 implies that A and B are flat C-modules and
rS (K, A) = Tor£ (K, B) = 0 for all n > 0. A change of rings C-» A

yields Tor;1 (A//C, B)^Ύor°n (K, B) = 0 since A//C = A®0K. (Cf. Cartan
and Eilenberg [3, p. 117].) A second change of rings A —> A//C yields
Toτi(X,B)f*Ίoτi"σ(X,A//C®AB). Since B//C^A//C®AB as an
A//C-module, the proof is complete.

DEFINITIONS. An integral domain K is quasίperfect if the field of
fractions Q is perfect. A torsion-free Hopf algebra B over K is quasi-
monogenic if i? 0 Q is monogenic.

THEOREM 1.6. Suppose B is a torsion-free, associative, and com-
mutative Hopf algebra of finite type over a quasiperfect Dedekind
domain K. Then as an algebra B is isomorphic to a tensor product
of quasimonogenic Hopf algebras.

Proof. Since B is torsion-free, the map j : B —> B(ξ$ Q is a mono-
morphism. B — B §§Q satisfies the hypotheses of Theorem 1.1 and we
write B ̂  ®iei£>ί where x{ generates Bi and the indexing is arranged
so that deg x{ ig deg xi+1.

There are nonzero elements kte K such that k{x{ e Imj and we
let Bt denote the closure of the subalgebra generated by i^X^xJ. Let
f (QieiBi—* B be the map induced by the injections Bi—*B. f is a
monomorphism since the diagram

QieiB* >B

is commutative and the other maps are monomorphisms.



422 ALLAN CLARK

Let Bn = ®*=1 B{. We show by induction that Bn is a closed sub
Hopf algebra of B. By Corollary 1.3 B1 = J5χ is a closed sub Hopf
algebra of B. Suppose Bn~λ is a closed sub Hopf algebra of B. We
see directly from the definition of Bn that Bn a* Bn//Bn~1 is closed in
βjjβn-i a n ( j by Proposition 1.5 Bn is closed in B.

Consequently ® i e i ^ i is a closed sub Hopf algebra of B and Coker
/ is torsion-free. But ( ® ί € Γ B,) (g) Q F* B (g) Q so that (Coker/) x Q = 0.
Consequently Coker / = 0 and / is an epimorphism.

2 Quasimonogenic Hopf algebras* Here we recall for the
special case K—Z the description due to Halpern [5] of the quasi-
monogenic Hopf algebras which appear as factors in the splitting
guaranteed by Theorem 1.6. We include some homological computa-
tion useful in applications of the main theorem.

THEOREM 2.1. (Hαlpern). Every quasimonogenic Hopf algebra B
over the integers has one of the following forms:

(a) B = E(x9 2m — 1), the exterior algebra on a generator of odd
degree, x is called a quasigenerator as well as a generator.

(b) B has a series of generators xlf , xnf of even degree
where deg xn = n degree xx which satisfy relations of the form #iXw_i =
βnxn where the βn are positive integers. Furthermore the βn satisfy
the conditions (i)-(iii).

( i ) ft = l
(ii) There are integers βϊ for each n such that /3n/3* = n.
(iii) βn I βkn and /3* | βtn for all positive integers k and n.

B will be called a partially divided polynomial algebra. Any sequence
of integers satisfying (i)—(Iii) will be called a fundamental sequence.
xλ is called the quasigenerator of B.

Halpern shows that every sequence of positive integers {βn} satisfy-
ing (i)-(iii) gives rise to a quasimonogenic Hopf algebra whose dual
Hopf algebra comes from {/S*}. When βn — l for all n, the resulting
Hopf algebra is the polynomial algebra on the primitive generator x19

If βn = n for all n, the Hopf algebra associated with the sequence
{βn} is the divided polynomial algebra on the primitive generator xλ.
If we set

βj = β» A and βm,n = βm+nVβJβJ ,

then the product and coproduct in the algebra associated with {βn}
are given by the rules

= Σ
i+j-n
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where β*,n = β*+nyβiWiΊ. Note that βnW:t = nl and therefore
fim,nfit,n = ίmt w] the binomial coefficient.

To illustrate how one might construct a fundamental sequence we
observe that if (m, n) = 1 (m and w are relatively prime) it follows
that βmn = βmβn. To see this note that (ii) implies that (βm9 βn) =
1 = Ψlβl). By (iii) /3m/STO | /3m, and /9*/9ί | 0 ^ . But βJ3*βJ3* = mn =
βmnβtn consequently βmβn = βTOΛ. As a result if m = mx mg is the
decomposition of m into primary factors, we can write βm = /Smi βmgW

LEMMA 2.2. Leέ am denote the greatest common divisor of the
quasibinomial coefficients βk,m^k, 0 < k < m. Then am = 1 unless
m — pn and βm = p/5TO/j) m which case am — p.

Proof. βk,m-k divides ί^M and therefore αm divides qm9 the great-

est common divisor of the binomial coefficients ( ,. j for 0 < k < m.

By Lucas's theorem (Adem [1, Theorem 25.1]) we see that if m Φ pn

for a given prime p, then ( , ) Φ 0 mod p for some k, 0 < k < m. Con-

sequently if m Φ pn for any prime p, then qm — 1 and am = 1.
Let e(w) denote the number of factors of p in pn\ Then a simple

counting argument shows that ε(n) — pe(n — 1) + 1. We know that
qpn — pr for 0 < r by the argument above. Writing

pnl \ _ / pn \({p — l)pn~ls\ /2pn~Ί

I aΊ) \ f a\and nothing that Lucas's theorem implies * x ) = ( 1 ) Ξ£ Omodp, we

see that (S-i) has as many factors of p as (p%!)/(pn~1!)2), namely just

one. Consequently qpn — p and apn — 1 or avn — p.

Writing /3[α, b] for /Sα>6 we find that, for (α - l ) ^ - 1 ^ k < apn~x

(0 < a < p),

β[k, pn-k] = /9[fc, α p 1 1 " 1 - * ] ^ ^ - 1 , ( p - α ) ^ - 1 ] / ^ ^ - 1 - ^ , ^ - ^ ^ - 1 ] .

Then β[k, apn~x — A:] divides \ \ ) ΐ θ modp (by Lucas's theorem)

and similarly /Sfαp^"1 — k> (p — a)pn~1] ^ 0, so that p divides β[k, pn — k]

if and only if p divides β[apn~\ (p — a)pn~1]. Taking k = pn~\ it follows

that am = p if and only if βip71^1, (p — l)p?ι~1] Ξ 0 mod p. However

β[p«-\ (p - l )^- 1 ] = ΨtJβ^MP*-1 - 1, (P -

and /^[p^-1 — 1, (p — l)^^"1] Ξ£ 0 modp by the usual argument using
the theorem of Lucas cited above. Thus am — p if and only if p
divides β Jβ n-u or in other words, if and only if β n = pβ n_λ.
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THEOREM 2.3. Let B denote a torsion-free, even dimensional,
quasimonogenic Hopf algebra over the integers with generators {xn}
and with fundamental sequence {βn}. Let Sp = {pn | β — pβ n~ύ for
a given prime p. Then:

(1) Among the generators {xn} the indecomposable ones are xτ

and the xjs for which me Sp for some prime p.
(2) The relations among these indecomposable generators may

all be derived from the relations of the form

where m and n are consecutive elements of some Sp or else m — 1
and n is the smallest element of some Sp.

Proof. (1) If m > 1 and m$Sp for any prime p, then by 2.2,
am = 1. Consequently there exist integers λ/c for 0 < k < m such that
Σik=i^kβk,m-k — 1, a n d t h e r e f o r e

m ~ Ί

8m = ( Σ *>kβk,m-k pm = Σ

and xm is decomposable.

(2) Clearly the relations given do hold between the generators
involved. On the other hand from the relations given we may easily
obtain the relations (βnl)xn — {x^)n for ne Sp for some prime p. From
these we may obtain the relations (βnl)xn = (Xχ)n for any integer n, xn

being written in terms of indecomposable generators. Finally we can
obtain the relations x1xm^1 = βmxm which characterize the algebra B.

REMARK 2.4. The relations in B are all derived from relations of
the form xpq — pRy where x and y are indecomposable, p is prime,
and R ^ 0 since for m and n consecutive elements of Sv we have that
p divides {βnΊ)l{βmΎ)nlm precisely once which is easily proved by an
argument similar to that of 2.2.

3* Application to torsion in ίf-spaces*

THEOREM 3.1. Let X be a pathwise connected and simply con-
nected H-space of finite homological type and dimension whose loop
space is torsion-free. Then X can have p-torsion of at most order p.

Proof. The hypotheses imply that H*(ΩX;Z) is a torsion-free
Hopf algebra of finite type, and furthermore H^(ΩX Z) has no ele-
ments of odd degree since H^ΩX Q) is even dimensional by [8, §7,
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Theorem III]. Therefore 1.6 and 1.7 imply that H*(ΩX;Z) is a tensor
product of partially divided polynomial Hopf algebras. In each factor
the relations among generators are of the form xpq = pRy where p is
prime and R Ξ£ 0 modp, as remarked in 2.4. It follows easily that
H*(ΩX;ZP) is a tensor product of polynomial and truncated polynomial
algebras—either from a direct computation using the structure of
H*(ΩX;Z) or applying the decomposition theorem of Borel to
H*(ΩX Zp) which has no elements of odd degree by the remark above.

The classifying space BΩX has the same homotopy type as X by
Corollary 9.2 of [9], and there is a homotopy equivalence of chain
complexes B(C{ΩX)) —> C(BΩX) from the bar construction on the chains
of ΩX to the chains of the classifying space BΩX. Therefore the
homology of X may be computed as the homology of the bar construc-
tion on the chains of ΩX.

Let x e H2m(ΩX Z) and suppose that xpq = pRy is one of the re-
lations in H*(ΩX;Z), x and y being indecomposable elements. Let a
and b denote chains of ΩX which represent x and y respectively.
Then ap9 — pRb + dc. Then the element [a9^1 \ a] + [c] is a cycle mod p
and its homology class z is called the transpotence of xf, where xf

denotes the reduction of x mod p. Clearly βz = Rs*y', where β denotes
the Bockstein, and s* denotes the suspension homomorphism in homology
mod p, and yf denotes the reduction of y mod p.

From the proof of Theorem 4.1 of [4] it follows clearly that every
primitive generator of even degree in H*(X;ZP) is such a trans-
potence z of some generator xf in H*(ΩX Zp).1 See also, S. Gitler,
Nota Sobre La Transpotencia de Cartan, Bol. Soc. Mex. 1963, 85-91.
Furthermore by Theorem 4.1 of [4] it follows that s*yr Φ 0 since
άegy' ΞΞ 0 mod p. (For p = 2 it is true because deg yf = 0 mod 4).
Therefore the primitive generators of even degree in H*{ΩX Zp) have
nonzero Bockstein while those of odd degree have zero Bockstein since
ΩX is torsion free and suspension commutes with the Bockstein.

The remainder of the proof is a simple exercise in spectral sequences
of Hopf algebras showing that in the Bockstein spectral sequence, E2

is an exterior algebra on generators of odd degree, and that therefore
E2 = E°°. Since the higher differentials in the Bockstein spectral
sequence may by identified with the higher order Bockstein operations,
it is immediate that X has p-torsion of order p at most.

Bott [2] shows that a compact, connected, and simply connected
Lie group satisfies the hypotheses of 3.1.

1 See also, S. Gitler, Nota Sobre La Transpotencia de Cartan, Bol. Soc. Mex.
1963, 85-91.
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