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SOME REMARKS ON THE COEFFICIENTS USED IN
THE THEORY OF HOMOLOGY MANIFOLDS

FRANK RAYMOND

In the theory of generalized ^-manifolds (%-gms) or Cech
cohomology manifolds (w-cms), as developed principally by
Wilder, the ring of coefficients had been a field. Due to the
influence of transformation groups interest was aroused for
more general coefficient systems. However, it is usually simpler
to deal algebraically with coefficients in a field. Thus it
becomes desirable to have a theorem which implies the validity
of a result for ?ι-cms over principal ideal domains when it is
known to be valid for fields. The main result of our paper is
devoted to such a theorem.

In [1; Chap. 1], and [5], it was shown that under suitable re-
strictions X is an orientable n-cm over the integers Z if X is an
orientable n-cm over Zp, for all primes p and p ~ 0, (i.e. Zo is the
field of quotients of Z). At the time it was not clear how to proceed
to the general case of principal ideal domain L instead of the integers
Z. Theorem 1 and the Corollary, here, is the extension of this result
to the general case and is, in fact, a strengthening of the earlier
result even when L = Z. The proof is similiar to arguments of related
results in [7]. The previous argument in [5] was given only in outline
form and can be adopted, although not easily, to yield a proof of
Theorem 1. However, on the basis of what was sketched there the
argument would not be any shorter than that which we give here.

As a consequence of the method we establish (Theorem 2) the
equivalence of singular homology ^-manifolds and %-cms for a wider
class of space than was given in [7] and [8].

Before proceeding to the preliminaries we would like to illustrate
several of the advantages of Theorem 1. As was mentioned above,
arguments involving fields as coefficients are considerably easier than
those with a principal ideal domain as a coefficient system. A particular
case in mind would be spectral sequence arguments. Thus under
certain conditions the establishment of a result valid for n-cms over
principal ideal domains where it is known to be valid for fields would
be automatic by appealing to Theorem 1 and the Corollary. For example,
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Wilder's monotone mapping theorem is thereby extended. Also the
proofs of Separation and Union theorems for w-gms with boundaries
(Michigan Mathematical Journal 7, (1960) 7-21) would be considerably
simplified and the factorization theorem (Theorem 6) becomes valid for
arbitrary principal ideal domains instead of only the integers Z and
fields.

I wish to thank the referee for his helpful criticisms and sug-
gestions on improving the exposition of a somewhat entagled earlier
version of these results. I have incorporated his suggestions into the
present version.

1* Preliminaries* All spaces will be Hausdorίf. Two homology
theories will eventually be used, the Borel-Moore homology theory with
compact supports [2] and the singular homology theory. Coefficients
will be taken in the L-module G, where L is a principal ideal domain.
A superscript "s" will denote the singular homology if it becomes
necessary to distinguish the two homology theories. The pth Cech or
sheaf cohomology module with compact supports and coefficients in G
of a locally compact space X will be denoted by H?(X; G). We shall
assume familiarity with the concept of homology local connected up
through dimension n(lcn or lcs

n) and cohomology locally connected (clc),
(see [10] or [1]). For dimension of a locally compact space we shall
use the Alexandroίf-Cohen definition of cohomology dimension. Funda-
mental for the discussion will be the universal coefficient sequences.

(1.1) 0 > HP(X; L)®G > HP(X; G) > HP^(X; L)*G > 0 ,

and

(1.2) 0 > H?(X; L) (g) G > Hξ(X) G) > Hp\X\ L) * G > 0 .

The sequences are exact and functorial.

(1.3) A singular homology n-manifold (%-shm) Xover an L-module G is
a space such that

1. dimz X < oo,

2. H}(X, X - x; G) - ffi p j JJ, for each x e X,

3. There exists a covering by open sets {Ua} of X such that

j * : Hϊ(X, X - Ua; G) > H:(X, X-x G)

is bijective for each xeUa.

This is what I called locally orientable singular homology %-mani-
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fold over G in [7]. It isn't hard to see that 2 and 3 imply that X i s
locally a Peano-space and consequently condition 1 makes sense, (that
is, X is therefore locally compact and dimension is consequently well
defined). We say that X is orientable if for each open connected set
0, with compact closure, the homomorphism j * : H^(X, X — 0; G) —*
Hr

n{X, X - x; G) is bijective, for all xeO. That is, 2 and 3 say that
the orientation sheaf or the sheaf of local homology groups is trivial
in all dimensions except n and there it is locally constant. It is
orientable, therefore, if the orientation sheaf is constant.

By a generalized n-manifold over L (n-gm) we shall mean a Cech
cohomology n-maniford over L (%-cm). This is a locally orientable
generalized ^-manifold in the sense of Wilder and with coefficients
over L. See for example, [10], [1], [2], and [5].

(1.4) In [2], Borel and Moore defined a homology theory for locally
compact spaces. This can be regarded as a single space theory in
terms of Eilenberg and Steenrod [3; Chap. 10]. However, by looking
at the homology theory as a relative homology theory (see below) we
shall easily reformulate the definition of (Borel-Moore) homology mani-
folds to one that is analogous to that already given for singular
homology manifolds. This enables us to use a single argument for the
proof of Theorem 1 valid for both homology theories. Furthermore,
the comparison between singular homology manifolds and homology
manifolds there, in a sense, reduces to a comparison of the respective
homology theories (Theorem 2). (An alternative would be to reformu-
late the definition of singular homology manifold in terms of locally
finite singular homology leaving intact the Borel-Moore definition. But
for various reasons we do not think this procedure is preferable.)

Let U be an open subset of the locally compact space X. Define
the relative group

HP(X, X- U G) to be HP(U; G) ,

where Hp( U; G) denotes the Borel-Moore homology theory with closed
supports, [cf. 2; 3.8 and § 5]. Thus, from the single space theory of
Borel-Moore homology we obtain a homology theory, in the sense of
Eilenberg and Steenrod, defined on the category of closed locally
compact pairs and proper maps. We now follow Eilenberg and Steenrod
and extend the relative theory on compact pairs to arbitrary Hausdorff
pairs.

Let (X, Y) be an arbitrary Hausdorff pair. Define

H;(X, Y; G) to be Dir limλ Hp(Xλ, Ak; G)

where (Xλ, Aλ) runs through all compact pairs (direction is given by
inclusion) in the arbitrary pair (X, Y). This procedure extends the
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homology theory from compact pairs to arbitrary pairs. See [3; p. 255]
for outline of details. In particular, if X is locally compact and Y a
subset whose closure is compact then

( i ) Dir l\mUz>τHp(U) = Dir l i n w HP(X, X - U) = Hi(X, X- Y),
where U runs through the open neighborhoods of the subspace Y.
Clearly,

(ϋ) HP(X, x-U) = H;(X, X-U),
when X is locally compact, U is open and £7 is compact, (use excision).
We shall call this homology theory, Hi, defined on arbitrary Hausdorff
pairs and continuous maps the Borel-Moore homology theory with
compact carriers. For the pair (X, Y) we have, of course, the exact
sequence

(iii) > H;{ Y; G) - ^ H}(X; G) - ^ > H;(X, Y; G)

-*->HUY;G) >.
For locally compact spaces homology n-manifolds (n-hm) over an

L-module G are defined exactly as singular homology %-manifolds over
G were defined in 1.3. The homology to be used is the Borel-Moore
homology theory with compact carriers. Putting Y — point in (i) above
we easily see that the definition is equivalent to that in [2; 7.5] when
X is lc0.

Poincare duality holds for homology manifolds. The form of duality
we shall need is that with compact supports. Thus it is necessary to
identify the Borel-Moore homology with compact carriers with the
homology of the Borel-Moore chains with compact support. If U is
an open subset of the locally compact space X we have the exact
sequence of Borel-Moore chains with compact support

0 > ΓC(^Π(X; L)\U®G) >

X; L)\U®G) > 0

where C#H{X\ L) denotes the standard sheaf for homology on X of
[2; § 3]. The derived homology sequence is analogous to (iii) above,
with Y replaced by U, compare [9; 2.2]. However, more is true. The
chains with compact support in U, ΓC(^H(X; L) \ Z7(g) G), can be
identified with the direct limit, directed by inclusion, of all the chains
of X whose support lie in compact subsets of U. On the other hand,
the chains of X whose support lie in a compact subset, F, have homology
functorially equivalent to the homology of F. See [2; 3.4] and [9]
for details. Similarly we may identify Hζ(X, U; G) as the homology
of the chains of X with compact support mod those chains of X whose
support, again compact, lies in U.

In what follows we shall only use the Borel-Moore homology theory
for locally compact pairs (X, U), U open in X, and with compact
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carriers (or the equivalent, with compact supports). Therefore we shall
simply abbreviate Hl(X; U) to H*(X, U).

(1.5) Let q stand ambiguously for a prime ideal, Φ 0, or any of
its generators of a principal ideal domain L. The ideal is maximal and
the residue class ring is a field and will be denoted by Lq. Denote
the field of quotients of L by Lo. Define the family of all fields
determined by L to be the collection of fields just described. Denote
the collection by

(1.6) The following statements are well known consequences of
elementary properties of tensor and Tor functors applied to L-rnodules.

Suppose that G is an L-modiUe and that G (g) Lo — 09 then G
contains only torsion elements.

Suppose that G is L-module, and q is a prime in L. Then G
contains q-torsion, if and only if, G*Lq Φ 0. Hence, if G and H
contain q-torsion, G*HΦ 0, because G contains a cyclic submodule
isomorphic to Lq and Lq*H —> G*H is injective.

Let g e G, and (g) be the cyclic submodule generated by g. From
the exact sequence

G/(g)*G > (g) <g> G > G ® G ,

and the fact that G/(g)*G is a torsion module, (g) can not be isomorphic
to L if G — 0. Hence, if G (g) G = 0, then G contains only torsion
elements. In particular, if G ® G = 0 and G Φ 0, then G*G Φ Q.

(1.7) Let X be locally compact, U and V open subsets of X such
that 7 c U, and V is compact. Suppose that X is homology locally
connected up through dimension n in terms of the Borel-Moore homology
theory with compact supports and coefficients in L, lcn (respectively;
X is lcs

n over L). Then the images of the homomorphisms

Hi HP(V;L) > HP(U; L)

j* : HP(X, X-V L) > HP(X9 X - ϋ; L)

are finitely generated, for all p ^ n in terms of the Borel-Moore
homology theory with compact supports (respectively; in terms of the
singular homology) o

Proof. This argument has been communicated to the author by
C. N. Lee. Both the Borel-Moore homology with compact supports and
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the singular homology theory satisfy the Mayer-Vietoris sequence in
terms of open subsets. The absolute case for singular homology then
becomes an exact copy of the absolute case for the Borel-Moore ho-
mology theory which is proved in [2; 6.8]. The relative case now
follows from exactness and a little diagram chasing.

2* The family .Sf *. Each field Lpe^f(p = 0, or q) is a vector
space over the rationale or the integers modulo a prime. This is
determined, of course, by the characteristic of each Lp. Denote the
corresponding collection of fields isomorphic to the integers modulo a
prime and possibly the rationals by Jίf *. Clearly, Lp is a L* module.

Let %{L) denote the characteristic of L. In general we have
three cases:

1. χ(L) = m, m Φ 0.
2. χ(L) = 0, χ(Lp) = 0, for all Lp e &.
3. χ(L) = 0, χ(Lp) Φ 0, for some Lp e j£f.

The structure of jSf * for these three cases are respectively:
1. Zm — S^*:, and L is additively a vector space over Zm.
2. Zo = jSf*, and L is additively a vector space over Zo.
3. Zo and all Zm for which there exists an LpeJ?f for which

χ(Lp) = mΦ0.
It is the presence of the third case which causes the difficulties

in the main theorems.
The first observation to be made is that dim^ X ^ dimz X9 for any

L-module G. Also, if G is free over L, then dim^ X = dimz X. This
is a direct consequence of 1.2. Hence, dimz X — dimz* X, and, in fact
for Cases 1 and 2, dimz X = dim z Z, for all L% ε£f*.

The next proposition is also an easy consequence of the universal
coefficient Theorems 1.1 and 1.2.

(2.1) PROPOSITION. A space X is a w-cm, w-shm or an w-hm over
L (respectively; orientable) where L is a field of characteristic m, if
and only if, X is an n-cm, w-shm or an w-hm over Zm, (respectively;
orientable).

3* A dimension lemma* This section is concerned with the
determination of dimz X when one knows dimz?) X or dimz^ X for all
Lp e mSf, or all L* e £f *. Define dim^ X = maxz € ^ {dimz/x}. This
will be called the field dimension of X. Clearly, d im^*X= dim^, X,
where dim^ X is defined analogously.

(3.1) LEMMA. Let X be locally compact. Then dimz X ^
(dim^,* X) + 1. Furthermore, the strict inequality holds for Cases 1
and 2 of 12.
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Proof. By the remarks in §2, dimz X — dimz* X — dimz X —
dim 2.* X for Cases 1 and 2β

Suppose now that n = dim^* X < dimz X. (We are necessarily in
Case 3). Then Hc

n+k (U; Lp) = 0, for all Lp e Sf? all open [ / c l , and
all k > 0. By 1.2, ^ + f c (Z7; L) (g) Lp = 0 and Hr

n+k+1(U; L)*LP = 0,
for all L . e ^ . Hence by 1.6, Hΰ

n^k+1(U; L) = 0, for all A; > 0, and
all open subsets U, UaX. But if Hc

n+1(U; L) = 0, for all U, then
dimz X g ^. Therefore, there exists some open subset U such that
Hc

n+1(U; L) Φ 0. This implies that He

n+1(U; L) is a torsion module. (In
fact, H?+1(V; L) is a torsion module, possibly trivial, for all open
subsets V of X.) We observe that if dimz X > dim^* X = n, dimz X =
n + 1. Hence, there exists an Lq e Sf such that dim^* X — dimz X
and there exists an open subset V such that iί c"

+ 1(F; L) has nontrivial
g-torsion. Note also that if dimZp X < dimZo X for all Lp e J*f, Lp Φ Lo,
then dimz X = dimZo X = dim^,* X.

Actually the lemma is stronger than we need. We shall only use
in Theorem 1 the fact that dimz X < co if dim^* X < co. However,
it can be used to simplify and/or extend several arguments in dimen-
sion theory. The following is a sample of such a situation.

COROLLARY. (Bockstein, and Fary [4].) Let X he a locally com-
pact Hausdorff space such that dimz X = n < oo, Then dimz X

k — kn
or k(n — 1) + 1. The latter case holds, if and only if, dim^*X<dim zX.

Proof. If dimz X = dim^ X, then dimz X
k = kn = dinw* Xk. (It

is known that dimz X x Γ g dimz X + dimz Y, see [1, p. 15]. There
are other published proofs of this fact that seem to be incomplete;
however, they can be completed if one assumes dimz X x Y < co.
Now, d i m ^ Xk ^ k dim^* X follows from repeated use of the Kunneth
theorem and dimz X

k = k dimz X from the fact that dimz X^ ^ dim^*Xfc).
If dimz X

k Φ kn, then dim z X > dim^* X. Then there exists some
"prime" q e L such that dimz* X = dim< *̂ X = n — 1.

In particular we can find an open subset Ua X such that H^( U; L)
contains g-torsion. Thus, for k — 1, the theorem is proved. We
proceed by induction. Assume H£{n~1)+1(Ur; L) has g-torsion, for all
r < k. Then

H:{n~1)+1(Ur) L)*H?(U; L) Φ 0 , by 1.6.

Hence, by the Kunneth theorem Hr

c

[n-1)+ι+n~\Ur x U; L) Φ 0. Setting
r = k - 1, we obtain Hkin-1)+1(Uk; L) Φ 0. Since dim^* Xk = k(n - 1),
dimz X

k = k(n - 1) + 1.
It is easily shown that the latter case cannot hold if X is clc over

L, the point being dimz X = dim^* when X is clc.
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4* The main results*

THEOREM 1. Let X be lcn (respectively; lcs

n) over L. Then X is
an n-hm (respectively; an n-shm) over L, if and only if, X is an
n-hm (respectively; an n-shm) over each L%ej^f*. Moreover, X is
orientable, if and only if, X is orientable over each L*ej?f*.

THEOREM 2. Let X be lcn (respectively; icL) over L, then X is
an n-cm, if and only if X is an n-hm (respectively; n-shm) over L.
Moreover X is an orientatable n-cm if and only if X is an orientable
n-hm (respectively; n-shm).

COROLLARY. Let X be lcn over L then X is an n-cm over L if
and only if X is an n-cm over every L* e,

Summarizing these results we have:
Under lcn over L, n-cmz<=)>n-cm^*<(=)>^

<=> n-hm^ <=> n-hm^*.
Under lcs

n over L, n-shmz< — > n-shm _^*<==>n-shm^.
Under Icto over L, n-cmz<(=)>n-cm^*<(=^>n-cm^ ( = ) ^ - h m z

*S=yn-shmL

Proof of Theorem 1. If X is an n-hm (respectively; an n-shm)
over L, the universal coefficient theorems immediately imply that X is
an n-hm (respectively; an n-shm) over each LpeSf, and over each

For the converse we shall not distinguish the two respective cases
as the arguments are identical. The homology groups are to be inter-
preted as the singular homology or the Borel-Moore homology with
compact supports as the case may be.

Assume that X is an n-hm (or an n-shm) over each L ^ G ^ 7 * .
Then as Lp is a vector space over L*, we can (universal coefficient
theorems) assume that X is an n-hm (or an n-shm) over each LveSf.

Next, we show that dimZί) X = n, for all p. Hence by § 3,
dimz X ^ n + 1. In fact, after we show that X is an n-hm (or
n-shm) over L, we may conclude that dimz X — n. These statements
follow from the lemma:

Let X be lcQ over the principal ideal domain L or have a countable
base for its topology (respectively: no assumptions if the singular
homology is used). If X is an n-hm (respectively: n-shm) then
dimz X = n.
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The proof of this general proposition depends upon the fact that
for finite dimensional spaces over L, dimz is a local property. That
is, one need only check the vanishing of the cohomology modules for
sufficiently small subsets of X. The hypothesis guarantees that the
( —l)st-homology modules for the Borel-Moore homology theory are 0
for open subsets of X. We now use Poincare duality, (Poincare duality
is proved for singular homology manifolds in [7]), and obtain that
Hc

n+k(U; L) = H_k(U; L) = 0, for all open subsets U within an orientable
part of X and all k > 0. This completes the proof of the lemma.

Let x G X, then Hk(X, X — x; Lβ) — 0, for all k Φ n. In particular,
Hk(X, X - x; L) (g) Lo = H^X, X - x; L)*Lq = 0, for all k Φ n, and
all q. Thus, for 1.6, Hk(X, X - x; L) = 0, for all k Φ n or n - 1.
Furthermore, for any open subset P e l , Hn(Xf P; L) is torsion free
since Hn+1(X, P; Lq) = 0, by Poincare duality. Let U be a connected
neighborhood of x (with compact closure) such that U is orientable
with respect to Lo. Let V be any connected open subset of U such
that Va U; let F denote the image of

(4.1) j * : Hn(X, X - U; L) > Hn(X, X - V; L) .

The module F is a finitely generated (by 1.7) torsion free L-module.
Since

j \ : Hn(X,X- U)L)®LQ >Hn(X,X- V; L) (g) Lo

= Hn(X, X - V; Lo)

is bijective and has image isomorphic to Lo, it follows that F must be
precisely isomorphic to L. Now tensor (4.1) by Lq and obtain the
commutative diagram

Hn(X, X - U; L) (g) Lq > F(g) Lq > 0

I
\(i* ® i)

\
Hn(X, X - V; L) (g) Lq

which is exact on the top row. Since F'(g) Lq = Lq,

Hn(X, X - U; L) ® Lq Φ 0 ,

and consequently Hn(X, X — U; Lq) ~ Lq. Therefore, U is an orientable
n-hm or w-shm over Lq, for all q. Note further that

Therefore it follows that H^^X, X — x; L) — 0, since it is the direct
limit of torsion free modules (such as H^^X, X — U; L)) and

We show now that j * : Hn(X, X- U;L)~-> Hn{X, X - V; L) is
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bijective with image, F, isomorphic to L, whence the orientation sheaf
is locally isomorphic to L in dimension n, (i.e. j * : Hn) X, X — U; L) —>
Hn(X, X— x; L) is bijective for all xe U).

First, Hn(X- V, X- U; L) is torsion free, and Hn(X- V, X- ϋ; Lp)^
Hi( U-V; Lp) = 0. Therefore by J . I and 1.6 Hn(X - V, X - U; L) = 0.
Exactness of the triple (X, X— V, X— U) implies that j * is injective.
A similar argument shows that Hn(X, X — V; L) is also isomorphic
to L. Now, Hn(X -V,X- U; Lq) = 0, for all Lq e ^f, implies
Hn^{X — V, X — U; L) is torsion free. Thus j * must also be surjective.

We have shown that X is an w-hm (or %-shm) over L. That X
is orientable over L if and only if it is orientable over each Lp e Sf
is clear from the above. In fact, orientability over Lo is equivalent
to orientability over L.

It is interesting to note that lcQ was used to make the ( —l)sί-Borel-
Moore homology groups vanish and to guarantee sufficiently many open
connected subsets of X. (These facts are implied by Condition 3 of 1.3
in the singular case). The lcn (and Idϋ) condition over L was used
to imply the finite generation of the image of j * in 4.1 (Added in proof:
lcn also guarantee the validity of change in^ rings.)

Proof of Theorem 2. Suppose X is an n-cm over L then Poincare
duality implies Hk{X, X — x; L) ^ Hn-k(x; L) = 0, for all integers
k Φ n. In dimension, n, Hn(X, X - V; L) ^ H!(V; L) = L, if V is
connected contained within an orientable part of X and V compact.
Furthermore, duality is functorial with respect to inclusion. Thus X
is an %-hm and orientable if and only if X is orientable as an %-cm.
[cf 2; 7.12 for a proof that essentially uses only the universal coefficient
theorem]. Note also that if X is an n-cm over L, then X is an n-cm
over Lp and L*, for all Lpejϊf, and Lpe£f*. This follows
trivially from the universal coefficient sequences. In particular, X
is an %-hm over all L p e j ^ * . In [8], I have shown that if X is Id
over L*, and is an n-hm over L*9 then X is an n-shm over L*.
(The point being that the relative Borel-Moore homology groups
H*(X, U; L*) are naturally equivalent to the Cech homology groups
(with compact carriers) which are naturally equivalent to the relative
singular homology groups i?ί(X, U; Lp). Therefore, if X is a cm over
L and is Icl over L (hence icL over every L*), then, by Theorem 1, X
is an %-shm over L.

On the other hand, if X is an n-hm and is lcn (or an w-shm and
is Un) over L, then Poincare duality (image HP(V; L) —> HP(U; L) is
isomorphic to image H?~P(V; L)—> Hn~p(U; L)) implies that X is an n-
cm over L. (The argument is that of [2; 7.12] with the observation
that lcn condition suffices instead of the full Ic^ because H^~v is 0 for
negative p.)
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Again orientability statements are clear.
Proof of the corollary. Trivially, if X is an n-cm over L then

X is an n-cm over every coefficient L-module. Conversely, if X is an
%-cm over L% then X is an %-hm over L*, by Theorem 2. By Theorem
1, if Xis, in addition, lcn over L, then X is an n-hm over L. Again
by Theorem 2, X is an %-cm over Lo

In [8] it was observed that Theorem 2 held for fields. In [6], the
"if" part (singular homology) of Theorem 2 for L — Z and X having
a countable basis is proved. Their argument, however, does not appear
to be amenable to the general case because of the reliance upon duality
between compact topological groups and discrete abelian groups.

In Theorem 1, the integer n was kept fixed, i.e. n was independent
of Lp, Lpe^. In order to free the theorem from this assumption a
strengthening of the other hypotheses is needed, although no examples
implying the contrary are known to me. An illustration of (possibly)
stronger hypotheses which would imply the constancy of the integer
n would be to assume that ίZ^X, X — x; L) is finitely generated for
some x e X, where nQ = dimZo X, or to assume that dimXo X — dim^* X.
(Cf. [1; I, 4.11]).

One could formulate these remarks as a question. Let X be clc
(respectively: icL) over L, and dimz X < co. Suppose X is nβ-cm
(respectively: an %-shm) over each Lp e Sf. Then, is X an %-cm
(respectively: an %-shm) over L, for some integer ni It seems likely
that the answer is always affirmative. (We have already seen that if
the characteristic of L satisfies 1 or 2 of § 2, the answer is affirmative.)
However, if the local connectedness assumptions over L were removed
it seems likely that the answer would be negative, (if not then it
would follow that every compact group acting effectively on a manifold
would necessarily be a Lie group).

Added in proof. If U is a module over L and both are principal
ideal domains then HP(X, X-U; U) has the interpretations depending
upon which ring, L or I/, is used for the ground ring. The inter-
pretations agree, that is the change of rings is valid, for the singular
homology as is well known, and for the Borel-Moore homology theory,
with compact carriers, if X is lcp over L, (due to Bredon). We have
implicitly used the validity of the change of rings in the proof of
Theorem 1. When U is a field, which is all that we need, the validity for
the Borel-Moore homology can easily established as follows. Let the
L'-modules

Homz, (Γσ(<έ?H(X; L) \ U® KL'\ U) and Horn,, (Γ0(^H(X; U) \ U), U)

determine presheafs. Apply the arguments of [2; 6.4 and 6.6] to both
presheafs. This implies that they both determine the sheaf-theoretic
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cohomology of £/, with closed supports, over L as dual spaces of both
homology theories. Hence the change of rings is valid. A recent
example of Bredon, which has also inspired these remarks, shows that
this change of rings is not valid without the lcp hypothesis. A complete
discussion of the change in rings will appear in a forthcoming book
of Bredon on sheaf theory.
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