
PACIFIC JOURNAL OF MATHEMATICS

Vol. 16, No. 1, 1966

MINIMIZATION OF FUNCTIONS HAVING LIPSCHITZ
CONTINUOUS FIRST PARTIAL DERIVATIVES

LARRY ARMIJO

A general convergence theorem for the gradient method
is proved under hypotheses which are given below. It is then
shown that the usual steepest descent and modified steepest
descent algorithms converge under the some hypotheses. The
modified steepest descent algorithm allows for the possibility
of variable stepsize.

For a comparison of our results with results previously obtained,
the reader is referred to the discussion at the end of this paper.

Principal conditions* Let / be a real-valued function defined
and continuous everywhere on En (real Euclidean w-space) and bounded
below En. For fixed x0 e En define S(x0) = {x : f(x) ̂  f(x0)}. The func-
tion^ / satisfies: condition I if there exists a unique point x* e En such
that f(x*) = inf/(a); Condition II at x0 if fe C1 on S(x0) and Vf(x) = 0

xEEn

for x e S(x0) if and only if x = x*; Condition III at x0 if / e C1 on S(x0)
and Ff is Lipschitz continuous on S(x0), i.e., there exists a Lipschitz
constant K> 0 such that |Ff(y) — Ff(x) \ S K\y — x\ for every pair
x, yeS(x0); Condition IV at x0 if feC1 on S(x0) and if r > 0 implies
that m(r) > 0 where ra(r) = inf | Ff(x) | , Sr(xQ) = Sr Π S(x0), Sr =

χesr(χ0)

{x : I x — x* I ̂ r } , and #* is any point for which f(x*) — inf f(x). (If
xEEn

Sr(x0) is void, we define m(r) = oo.)
It follows immediately from the definitions of Conditions I through

IV that Condition IV implies Conditions I and II, and if S(x0) is
bounded, then Condition IV is equivalent to Conditions I and II.

2. The convergence theorem* In the convergence theorem and
its corollaries, we will assume that / is a real-valued function defined
and continuous everywhere on En, bounded below on En, and that
Conditions III and IV hold at x0.

THEOREM. // 0 < δ g 1/41SΓ, then for any xeS(x0), the set

(1) S*(a, δ) = {xλ: xλ = x- Wf{x), λ > 0, f(xλ) - f(x) ^ - δ \Ff(x)\2}
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is a nonempty subset of S(x0) and any sequence {xk}ΐ=0 such that
xk+1 e S*(xk, d), k = 0, 1, 2, •••, converges to the point x* which
minimizes f.

Proof. If xe S(x0), xλ = x - Wf(x) and 0 ^ λ ^ 1/Z", Condition
III and the mean value theorem imply the inequality f(xλ) — f(x) ^
- (λ - X2K) I Pf(x) |2 which in turn implies that xλ e S*(x, δ) for

λ x ^ λ ^ λ 2 , λ<

so that S*(x, d) is a nonempty subset of S(xQ). If {̂ fc)Γ=o is any sequ-
ence for which xk+1e S*(xk, δ), k = 0 , 1 , 2, •••, then (1) implies that
sequence {f(xk)}~=0, which is bounded below, is monotone nonincreasing
and hence that | Vf(xk) \ —* 0 as k —> oo. The remainder of the theorem
follows from Condition IV.

COROLLARY 1. (The Steepest Descent Algorithm) If

xk+1 = x k - -Lj7/(a?4), k = 0, 1, 2,
Δίί.

then the sequence {xk}^=Q converges to the point x* which minimizes f.

Proof. It follows from the proof of the convergence theorem that
the sequence {xk}^=0 defined in the statement of Corollary 1 is such
that xk+1 e S*(xk, 1/4Z), k = 0,1, 2, . .

COROLLARY 2. (The Modified Steepest Descent Algorithm) If a
is an arbitrarily assigned positive number, am = a/2m~\ m = 1, 2, ,
and xk+1 = xk — ccmjPf(xk) where mk is the smallest positive integer
for which

( 2) f(xk - am/f(xk)) - f(xk) ^ - \amh \ Ff(xk) |2 ,

k = 0, 1, 2, •••, then the sequence {xk}ΐ=0 converges to the point x*
which minimizes f.

Proof. It follows from the proof of the convergence theorem that
if x e S(xQ) and xλ=x - \Pf(x), then f(xλ) - f(x) ^ - (1/2) λ | Vf(x) |2 for
0 ^ λ ^ 1J2K. If a ^ l/2iΓ, then for the sequence {xk}ΐ=0 in the state-
ment of Corollary 2, mk = 1 and xk+1e S*(xk, (l/2)a), k = 0,1, 2, .
If a > 1/2Z", then the integers m^ exist and amfc > l/4iΓ so that
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3* Discussion* The convergence theorem proves convergence
under hypotheses which are more restrictive than those imposed by
Curry [1] but less restrictive than those imposed by Goldstein [2].
However, both the algorithms which we have considered would be
considerably easier to apply than the algorithm proposed by Curry
since his algorithm requires the minimization of a function of one
variable at each step. The method of Goldstein requires the assumption
that feC2 on S(x0) and that S(x0) be bounded. It also requires
knowledge of a bound for the norm of the Hessian matrix of / on
S(x0), but yields an estimate for the ultimate rate of convergence of the
gradient method. It should be pointed out that the modified steepest
descent algorithm of Corollary 2 allows for the possibility of variable
stepsize and does not require knowledge of the value of the Lipschitz
constant K.

The author is indebted to the referee for his comments and
suggestions.
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