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HARNACK'S INEQUALITIES ON THE CLASSICAL
CARTAN DOMAINS

SHIH-HSIUNG TUNG

Recently an extensive work by L. K. Hua on harmonic
analysis in Cartan domains, which are called the classical do-
mains, has been translated into English. Here we give Harnack's
inequalities for the four main types of Cartan domains treated
by Hua.

Harnack's inequality on a type of Cartan domain was obtained [6]
for the case of square matrix spaces. Some of these inequalities are
application and extension of the results of [6]. I am grateful to
Professor J. Mitchell for her encouragement and comments on writing
this paper.

Let z be a matrix of complex entries, z* = z' the complex con-
jugate of the transposed matrix z' and I the identity matrix. Also
H > 0 means that a hermitian matrix H is positive definite. The first
three types of Cartan domains are defined by Dk = {z : I — zz* > 0},
k = 1, 2, 3, where for D1 = D^m, ri), z is an (m, n) matrix (Since the
conditions / — zz* > 0 and / — z*z > 0 are equivalent we assume for
definiteness that m S n.), for D2 = D2(n), z is a symmetric matrix of
order n and for Ds = D3(n), z is a skew-symmetric matrix of order n. The
fourth type, Z)4 = DJJL, n), is the set of all (1, n) matrices, or ^-dimen-
sional vectors (n > 2), of complex numbers satisfying the conditions

{ 1) 1 + I zz'\2 - 2zz* > 0 , I zz'\ < 1 .

It is known that each of the domain Dk possesses a distinguished
boundary [1] or characteristic manifold [2, p. 6] Ch\C1= C^m, n) consists
of the (m, n) matrices u satisfying the condition uu* — I. C2 = C2(n)
consists of all symmetric unitary matrices of order n. Cs= Cz{n)
[2, p. 71] consists of all matrices u of the form u = wfsxw, where w
is an w-rowed unitary matrix and

- 1 θj + + l - l oj for even %

( ° J) (-°i o ) + o f O T 0 d d-
C4 = C4(l, n) consists of all (1, n) matrices u of the form

(3) u = eίθx , xx' = 1 , 0 ^ θ S π
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where x is a real vector.
We denote the Poisson kernel on Dk by Pk(z, u), its explicit forms

[3,4] being given in following sections. The following Dirichlet
problem is solved on Dk [2, 3]: Given a real-valued continuous function
f(u) on Ck, the Poisson integral

(4) φ(z)= \ f(u)Pκ{z,u)u

where ύ is Euclidean volume element on Ckf gives the unique function
which is harmonic, in the sense given in [3], on the closure of Dk and
takes the given boundary values f(u) on Ck. We obtain Harnack's
inequality on each Dk as a consequence of evaluating upper and lower
bounds for Pk(z, u).

2. Harnack's inequalities on Dt and JD2 The Poisson kernel
on A [3,4] is

(5) P(z u)-( 5 ) Pl{z> U)—P(z u)

where ze Dly ueCί and V± is the Euclidean volume of C1# It is known

[4, p. 411] that Px > 0 and 1 P& — 1. In [6], we obtained bounds of

the Poisson kernel (5) for the case m — n:

( 6 ) |

where z — uoRvoe D^n, ri), ue C^n, ri), u0 and v0 are unitary matrices
and R — (δjkrk) is a diagonal matrix with 0 S τk < 1 for k = 1, 2, , n.
In_ order to obtain (6), we proved the inequality

( 7) ft (1 - rkf S I det (/ - zu*)\> = \ det ((v - R)(v* - R))\ ^ ft (1 + n ) 2

where u, e C^n, ri), is any unitary matrix of order n, z e D^n, ri) and
V — U*UV*.

For z e Dt{m, ri) there are unitary matrices u0 of order m and v0

of order n such that 2 = uo(R, 0)v0, where R is a diagonal submatrix
(δjk^k) of order m and 0 is the (m, %-m) zero submatrix [3, p. 1049].
Hence

( 8 ) det (Γm) - zz*) = det (Γm) - i2β*) = ft (1 - r |) .
fc = l

For the denominator of (5) we have

(9) det (I-zu*) = det (l-
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where 0 is the (n-m, n) zero submatrix and ux is chosen so that U = (™ j

becomes a unitary matrix of order n [5, p. 190], If we also denote

Z = ί ?Y then ZeD^n, n) and Ue C^n, n) for the case m = n. There-

fore from (7)

(10) max {| det (I - ZU*)\2} ^ ft (1 + rkf = ft (1 + n) 2

ueΰ k=i k=i

and

(11) min {| det (I - ZU)\*} ̂  ft (1 - rk)* = ft (1 -
ueo Λi fci

since rm+1 = = rn = 0 in Z. Finally from (9), (10) and (11) we
obtain

(12) Π (1 - nY £ I det (/ - ^ * ) | 2 ̂  ft (1 + rk?
fc=l fc=l

where z = ̂ 0(^» 0)v0 e A(^> w) and u e C±{m, n). This and (8) lead to

i ft
F fci

for zeDx and u e Clβ Furthermore from (4) we obtain Harnack's
inequality

(f^)^ ^ Π

For zeD2(n) it is known that there is a unitary matrix u0 such
that uQzufQ — (δjkrk) where r19 * ,rn are the positive square roots of
the characteristic roots of zz. Since z e D2(n) implies z e D^n, n) and
the characteristic manifold C2(n) is a subset of C^n, n) we know that
(7) and (8) hold for z e D2(n) and u e C^n, n), and it can be seen from
the Poisson kernel

that Harnack's inequality on A(^) is

% / I Λ. \(w+l)/2 w / I i Λ. \(»+l)/2
Π I ? rt°> ^ ̂ z> ̂  π (\±Iη

3, Harnack's inequality on JD8. The Poisson kernel on Ds is

P(Z u)- 1 [det (/ - zz*)Y
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where a — (n — l)/2 for even n and a — n/2 for odd n. For z e D3(n))
it is known [2, p. 67] that there is a unitary matrix u0 such that

0 rΛ / 0 rΛ / 0 rΛ
, + Λ + •" + Λ for even

/ 1 Q, f , - n 0/ V-r2 0/ V-rδ o
(13) uQzuΌ = s = i

for odd ^

where 6 = w/2 and τ\, r\, are characteristic roots of zz*. Thus for
even n

*u$ = [τ\, rϊ, , r2

6, r
2

δ] .

And for all n

det (/ - zz*) = det (/ - iiozz*u*) = Π (1 - r | ) 2 .

We denote the right hand side of (2) by ut with the change that
the last term 0 be replaced by 1 in the case of odd n. Hence ux is a
unitary matrix of order n and from (13) suf is a diagonal matrix
R ΞΞ [r19 r19 , r [ 6 ], r [ δ ]] for even n and i?0

 Ξ [i2, 0] for odd n. First
we consider the case of even n. We notice from (2) that ueCd is
skew-symmetric unitary. Therefore for zeDd and ueC3

I det (I — zu*)\ — I det (/ — UoSvfuJίoU*) | = | det (v — R)

where v = uύuu[uf is a unitary matrix of order w. Hence from (7) we
have

(14) Π (1 - rkγ £ I det (I - zu*)\ g Π ( l + rkf .
k=l k=i

For the case of odd n, we notice from (2) that det(u) — 0. It is
known [3, p. 1073] that any veCz(n + 1) can be written in the form

—hw 0

where u = w ' s ^ 6 C3(w). Hence for odd n

fz 0\ί u
d e t ( I - ^ * ) = d e t 1 .

0 0/\ — hw

and from (13)

o\/z o\/^o oγ _ . /o o
.0 l/\0 θJU lj " " Λ + \ 0 0

Since w + 1 is even we can apply (14) and obtain
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[6] [&1

Π (1 - nf ^ I det (I - zu*) | ^ Π (1 + nf .

As the result, this inequality is good for both odd and even n. Thus,
as in § 2 we can obtain both bounds for the Poisson kernel P8(s, u) and
finally Harnack's inequality on D3(n) as

W / I _ ry \2α ίδ]

π (~^) «κ°) ̂  fa) ̂  π
where b = w/2 and a — {n ~ l)/2 for even w and α = w/2 for odd w.

4* Harnack^s inequality on D±. The Poisson kernel on D4 is

where «6 D4 and %e C4. For every fixed 2e l ) 4 there is a real ortho-
gonal matrix t such that [3, p. 1037]

(15) z = (zuz2,0, . . . , 0 ) t .

Thus we have

Here by denoting z1 — iz2 ~ wx — τλe
iθγ and zx + iz2 = w2 = r2e

ίθ*,
from (1)

(16) 0 < 1 + I zz ' | 2 - 2zz* = (1 - | wx |
2)(1 - | ^212) = (1 - n2)(l - rj)

and

0 < 1 - I zz'\ = 1 - I z2 + 2;2
21 = 1 - | w,w21 = 1 - n r 2 ,

hence

0 ^ rfc < 1 , k = 1, 2.

Next, from 2 G D 4 in (15) and u e C 4 in (3)

and

2zu* = 2(^, J52> 0, , 0)tx'e~iθ .

By denoting £ = (tjk) we have £&' = (au a2, , α Λ ) ' where a5

and since
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we have a\ + a\ ^ 1. Now with zx — (w1 + w2)/2 and z2 = i(w1 — w2)/2,
we have 2zu* = ( α ^ + aw2)e~iθ where α = c^ + ia2 and | α |2 g 1. Thus

(17) 1 + zz'uv! — 2zu* = 1 + wxw2eru% — (aw1 + aw2)e"ίθ .

We wish to find upper and lower bounds for the absolute values of
expression (17). We consider the image of the closed unit disk | a | <* 1
under the mapping f(a) = awί + aw2 for a — reia. Here f(a) can be
written in the form

f(a) = rlr^ + e~ίβ) + (r2 - Tι)e-iβ]ei{Θ^θ^

where β — a + (θ1 — Θ2)j2. For the case τx = r2, /(α) maps the closed
unit disk onto a line segment of length 4r1# When rx ^ r2, the image
is a simple closed connected region. Furthermore the image of the
unit circle is the line segment when rx = r2 and is the boundary of the
region when rx Φ r2. Hence from the fact that 1 + zz'uu' — 2zu* Φ 0
[3, p. 1079] we know that the maximum and the minimum of the ab-
solute values of (17) can be found in the case | a \ — 1. Thus

1 + wwφ-™ — (aw1 + aw2)e~iθ = (1 — aw^-^il - aw2e~ie)

and therefore

(1 - n)( l - r2) ^ 11 + zz'wi' - 2zu* | ^ (1 + n)( l + r2) .

This and (16) give us

and the corresponding Harnack?s inequality

π (\^ίβm * m * ή
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