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ON THE FUNCTIONAL EQUATION
Fimm)F((m, n)) = Fim)F(n)f((m, n))

JAMES E. SHOCKLEY

Let f be a multiplicative arithmetic function, f(1) =1,
Necessary and sufficient conditions on f will be found so that
the functional equation

F(mn)F((m, n)) = F(m)F(n) f((m, n))

will have a solution F' with F'(1) + 0 and all solution F’ will be
determined. It will be shown that two different types of solu-
tions may exist and that one of these requires that f have a
property similar to complete multiplicativity.

The special case of the equation
(1) F(mn)F((m, n)) = F(m)F(n)f((m, n))

with f completely multiplicative and F'(1) == 0 was solved completely by
Apostol and Zuckerman [1]. Specialized results were also given for the
case F'(1) = 0, but this case was not solved in general.

We note that if f(1) =0 then f is identically zero and is thus
completely multiplicative, This case was solved completely in [1] and
will not be considered here. Thus in the sequel we will assume that
f is multiplicative and is not identically zero (which implies that

f) =1).

1. If F' is a solution of (1) with F(1) # 0 then any constant
multiple of F' is also a solution. Thus we may reduce the problem of
solving (1) with F(1) = 0 to that of solving

(2) F(mn)F((m, n)) = Fm)F(n)f((m, n)) , F(Q1)=1.

The proof of Theorem 1 is essentially the same as that of Theorem
2 of [1] and will be omitted.

THEOREM 1. F s a solution of (2) +f, and only if, F is a non-
zero multiplicative function and for each prime p

(3) F(p*™)F(p*) = F(p")F(p)f(p*) if bzaz=1.

The problem is thus reduced to that of determining the form of F
on the powers of each prime p.

THEOREM 2. Let F be a solution of (2). If F(p™) = 0 for some
185
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m = 1 then F(pkm+n) = F(pm+n)f(pm)k—-1 (k = 2’ 3, M ')7 (n = O’ 1’ 2: . ').
The proof follows easily from (3) by induction on £,

COROLLARY 2.1, Let F be a solutton of (2). If F(p™) %= 0 and
f(p™) = 0 for some m = 1, then F(p*) = 0 for n = 2m.

COROLLARY 2.2. Let F be a solution of (2). If F(p™) # 0 and
f(p™ = 0 for some m =1, then F(p*™) =0 (k=2,8, ---).

THEOREM 3. Let F be a solution of (2). Lf F(p™) # 0 and f(p™) = 0
for some m =1, then f(p™) # 0 whenever F(p™) = 0. If, for some m = 1,
F(p™) = 0 and f(p™) = 0 then f(p") = 0 whenever F(p") # 0.

Proof. To prove the first proposition we observe that if F(p™) == 0
and f(p®) = 0 then F(p*) = 0 for ¢ = 2n which contradicts Corollary 2.2.
The proof of the second proposition is similar,

We are now in a position to determine the form of the solution F
on the powers of p if F(p™) # 0 and f(p™) = 0.

THEOREM 4. Let m be a positive imteger such that f(p™) =0,
Let m; = m, my, «++, m,, be the integers t on the interval [m, 2m) for
which f(p') = 0. The function F is a solution of (3) with m the
smallest positive integer such that F(p™) # 0 if, and only if, F(p™) = 0
and F(p") = 0 whenever n + m;.

Proof. If F is a solution of (3) and m is the smallest positive
integer such that F(p™) # 0 then by Corollary 2.1 we see that F(p*) = 0
for n=2m and by Theorem 3 we see that F(p*) =0 if #n =+ m,
(m < m < 2m). To prove the converse we substitute in (3).

2. The case F(p™) # 0 and f(p™) = 0. We will first show that
in this case f cannot be defined arbitrarily on the powers of p if a
solution of (2) is to exist.

THEOREM 5. Let F be a solution of (2). If F(p™) + 0 and f(p™) # 0
for some positive tnteger m, then

fm) = fomr  (k=1,2,--).

Proof. From Corollary 2.2 and Theorem 3 we see that F(p*™) == 0
and that f(p"™) = 0(k=1,2,...). Taking a = b = km in (3) and using
Theorem 2 we obtain

F(p*m) = F(p*)f(p*™) = F(p™)f(p™)*"f(p*") .
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If we now take n = 0 and replace & by 2k in Theorem 2 we obtain

F(p*®) = Fp)f ") .
Comparing the last two equations we see that f(p™)* = f(p*™).

THEOREM 6. Let F be a solution of (2). Suppose f(p™) # 0 and
F(p™) # 0 for some m = 1, and let d be the smallest positive tnteger
such that F(p™?) = 0. Then d|m. Furthermore, if n s a positive
integer then F(p™) = 0 if and only if n = 0 (mod d.)

Proof. (A) Such an integer d must exist by Corollary 2.2.
Suppose d } m. Let ¢ be the smallest positive integer such that td > m.
We can write m <td =m + 7 < m + d. From Theorem 2

F(pt(nz+d)) — F<p(t+1)mvi j) — F(pm+j)f(pm)t =0
since 0 < j < d; similarly, by Theorem 2 and 8 we have
F<pt(m+d)) —_— F(pm-\-d)j'<pm+d)t—l ;_1: O

which is impossible. Thus d | m.

(B) If % = 0 (modd) there exist positive integers K and L such
that Km < Lm = Km + j < Km + d. By considering F{(p*") we obtain
a contradiction similar to that in part (A) if we assume F(p™™*) == 0.

(C) Suppose n =0 (modd), say n = kd. Applying Theorem 2
twice we see that

F(pk'm-( n) — F(ph(m—‘,-d)) —_— F(pm{'d)f(pmﬂ‘d)k—l == O

and
F(ptniry = Flom)f(om) .
Thus
m i d mA4-d\k—1
(4) F(pm+my = F(pmity = Fp™ ) f(p"*) =0,

Slpm)y
We now extend the result of Theorem 5 to completely characterize

the solutions of (2) with f(p™) % 0 and F(p™) == 0.

THECREM 7. Let F and [ be multiplicative functions. Suppose
p 1s a prime, that m and d are the smallest positive integers such
that F(p™) == 0, f(p™) #= 0 and F(p™?) = 0. Then F 1is a solution of
3) if, and only tf,

(5) d|m,
(6) Flpmete) = flpm)yrram (b =1,2,3,--+),
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(7) F(p~) = Fpm)f(pmypim = O ipmina)
(™)
(8) Fipr)=04f 0<n<mor if n %0 (modd) .

Proof. (5) and (8) were established in Theorem 6. To prove (6)
we let k, =2k, k, =2, m,=m +d, m,=m + kd, n, = 2km — 2m, so
that km, = ksm, + n,. From Theorem 2 we obtain
(9) F(phm) = F(pm+)f(pm*)™" .

From Theorem 2 and equations (3) and (4) we obtain
F(pkgmz-l-'nz) — F(p(2k——1)m+kd)f(pm+kd)
— F(pm+kd)f(pm)Zk-—Zf(pm+kd)

_ Flpm™)f(pm+i) m\2k—2 £ pym+kd
T S@™)* = f(pm ) .

Equating the last expression with (9) we obtain

mkd) St
(10) S(pm**) T

For the special case k¥ = m/d we obtain from Theorem 5 and (10)
m+d)mld
o) = fomy = LV
Jpm)me=

so that f(p™*?) = f(p™)-+/™.
Substituting this in (10) we obtain (6).
To prove (7) we apply Theorem 2 twice obtaining
F(p(m+kd)m/d) — F(pm+kd)f(pm+kd)m/d—1
— F(p(m/d+k)m) — F(pm)f(pm)m/d+k—1 .

From this relation, along with (6) used twice we find

F(pm+iey = F(p™)f(pm™)m™a+i-1 _ F(p™)f(pmymid+r=1
Fprraymia F(prymiari—iam

= F(p™)f(p™)*™ .

The other part of (7) follows from (6).
To prove the converse we substitute in (3).

3. Summary. We have reduced the problem of solving (2) to
that of finding a multiplicative function F' (not identically zero) that
satisfies (3) for the powers of each prime ». Such a function F will
exist if, and only if, one of the following holds for f and F' on the
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powers of p:

1. There is a positive integer m such that f(p™) = 0 and F(p*) = 0
except possibly for the integers n» in the interval [m, 2m) for which
Sf(p") = 0.

2. There is a positive integer m, a positive divisor d of m and a
complex number C such that

flp™ ) = flpmykdim =0 (k= 0,1,2,--+)
and F' has the defining properties
F(pmt) = Cf(pm*) (k=0,1,2, )

F(pm) = 0 if m % m + kd for some nonnegative integer %.
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