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ON THE FUNCTIONAL EQUATION

F{rnn)F({m, n)) = F{m)F{ή)f{{m, n))

JAMES E. SHOCKLEY

Let / be a multiplicative arithmetic function, /(I) = 1.
Necessary and sufficient conditions on / will be found so that
the functional equation

F(mn)F((m, n)) = F(m)F(n)f((mf n))

will have a solution F with F(l) Φ 0 and all solution F will be
determined. It will be shown that two different types of solu-
tions may exist and that one of these requires that / have a
property similar to complete multiplicativity.

The special case of the equation

(1) F(mn)F((m, n)) = F(m)F(n)f((m, n))

with / completely multiplicative and F(l) Φ 0 was solved completely by
Apostol and Zuckerman [1]. Specialized results were also given for the
case -P(l) = 0, but this case was not solved in general.

We note that if /(I) = 0 then / is identically zero and is thus
completely multiplicative. This case was solved completely in [1] and
will not be considered here. Thus in the sequel we will assume that
/ is multiplicative and is not identically zero (which implies that

/(i) = i).

1* If F is a solution of (1) with F(l) Φ 0 then any constant
multiple of F is also a solution. Thus we may reduce the problem of
solving (1) with F(l) Φ 0 to that of solving

(2) F(mn)F((m, n)) = F(m)F(n)f((m, n)) , F(l) = 1 .

The proof of Theorem 1 is essentially the same as that of Theorem
2 of [1] and will be omitted.

THEOREM 1. F is a solution of (2) if, and only if, F is a non-
zero multiplicative function and for each prime p

(3) F(p*+»)F(p*) = F(p»)F(pa)f(p") i f b ^ a ^ l .

The problem is thus reduced to that of determining the form of F
on the powers of each prime p.

THEOREM 2. Let F be a solution of (2). // F(pm) Φ 0 for some
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m ^ 1 then F(pkm+n) = Fip^fip*)"-1 (k = 2, 3, •), fa = 0,1, 2, •)•

The proof follows easily from (3) by induction on k.

COROLLARY 2.1. Let F be a solution of (2). If F(pm) Φ 0 and
f(pm) = 0 for some m ^ 1, then F(pn) = 0 for n ^ 2m.

COROLLARY 2.2. Let F be a solution of (2). // F(pm) φ 0 and
f(pm) Φ 0 /or some m ^ 1, ίfcβw F(p*m) ^ 0 (fc = 2, 3, •).

THEOREM 3. Let F be a solution of (2). If F{pm) Φ 0 and f(pm) Φ 0
for some m ^ 1, £/&ew /(pw) =£ 0 whenever F(pn) Φ 0. //, /or some m ̂  1,

^ 0 and f(pm) = 0 ί/^β^ /(pn) = 0 whenever F(pn) Φ 0.

Proof. To prove the first proposition we observe that if F(pn) Φ 0
and f(pn) = 0 then F(p*) = 0 for ί ^ 2^ which contradicts Corollary 2.2.
The proof of the second proposition is similar.

We are now in a position to determine the form of the solution F
on the powers of p if F(pm) Φ 0 and f(pm) = 0.

THEOREM 4. Lei m be a positive integer such that f(pm) — 0.
Let m1 = m, m2, , mfc, be the integers t on the interval [m, 2m) for
which f(pι) — 0. The function F is a solution of (3) with m the
smallest positive integer such that F(pm) Φ 0 if, and only if, F(pm) Φ 0
and F(pn) — 0 whenever n Φ mi%

Proof. If F is a solution of (3) and m is the smallest positive
integer such that F(pm) Φ 0 then by Corollary 2.1 we see that F(pn) = 0
for n ^ 2m and by Theorem 3 we see that F(pn) = 0 if n Φ mζ

(m < n < 2m). To prove the converse we substitute in (3).

2. The case F(pm) Φ 0 and f(pm) Φ 0. We will first show that
in this case / cannot be defined arbitrarily on the powers of p if a
solution of (2) is to exist.

THEOREM 5. Let F be a solution of (2). If F(pm) Φ 0 and f(pm) Φ 0
for some positive integer m, then

Proof. From Corollary 2.2 and Theorem 3 we see that F(pkm) Φ 0
and that f(pkm) Φ 0 (k = 1, 2, •). Taking a = b = km in (3) and using
Theorem 2 we obtain
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If we now take n = 0 and replace k by 2& in Theorem 2 we obtain

Comparing the last two equations we see that f(pm)k = f{pkm).

THEOREM 6. Let F be a solution of (2). Suppose f(pm) Φ 0 and
F(pm) Φ 0 for some m Ξ> 1, and let d be the smallest positive integer
such that F(pm+d) Φ 0. Then d \ m. Furthermore, if n is a positive
integer then F(pm+n) Φ 0 if and only if n = 0 (mod d.)

Proof. (A) Such an integer d must exist by Corollary 2.2.
Suppose dJfm. Let t be the smallest positive integer such that td > m.
We can write m<td = m+j<m + d. From Theorem 2

iwa) = F(pm+j)f(pmγ = 0 .

since 0 < j < d; similarly, by Theorem 2 and 3 we have

F(pt{τn+d)) = F(pm-vd)f{pm+άγ-1 Φ 0

which is impossible. Thus d \ m.
(B) If n ^ 0 (mod d) there exist positive integers K and L such

that Km < Ln — Km + i < i£ra + d. By considering F(pLn) we obtain
a contradiction similar to that in part (A) if we assume F(pm+n) Φ 0.

(C) Suppose % ΞΞ 0 (moάd), say n — kd. Applying Theorem 2
twice we see that

pj p̂ ^ p ^ ^ p d^k-1 φ Q

and

Thus

( 4 ) i^Γ^) - F(pn+kd) = ^ - till 1— ψ 0 .

We now extend the result of Theorem 5 to completely characterize
the solutions of (2) with f{pm) Φ 0 and F(pm) Φ 0β

THEOREM 7. Let F and f be multiplicative functions. Suppose
p is a prime, that m and d are the smallest positive integers such
that F(pm) Φ 0, f(pm) Φ 0 and F(pm+d) Φ 0. Then F is a solution of
(3) if, and only if,

( 5 ) d\m,

( 6 ) f(pn+kd) -
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7 ) F(pm+kd) = F(pm)f(pm)kd'm =
f(Pm)

( 8 ) F(pn) = 0if0<n<morifn^0 (mod d) .

Proof. (5) and (8) were established in Theorem 6. To prove (6)
we let kx = 2k, kt~2, mx — m + d, m2 — m + kd, n2 — 2km — 2m, so
that kγmx = k2m2 + n2. From Theorem 2 we obtain

( 9 ) ( ή { ) ( p γ

From Theorem 2 and equations (3) and (4) we obtain

Equating the last expression with (9) we obtain

(10)

For the special case k = m/d we obtain from Theorem 5 and (10)

so that f(pm+d) =
Substituting this in (10) we obtain (6).

To prove (7) we apply Theorem 2 twice obtaining

F(p{m+kd)mld) = F(pm+kd)f(pm+kd)mld~~1

— F(p{mId+k)m) — F(pm)f(pm)mld+k~1 .

From this relation, along with (6) used twice we find

mld+k-l-kdlmf/^m\

The other part of (7) follows from (6).
To prove the converse we substitute in (3).

3* Summary• We have reduced the problem of solving (2) to
that of finding a multiplicative function F (not identically zero) that
satisfies (3) for the powers of each prime p. Such a function F will
exist if, and only if, one of the following holds for / and F on the
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powers of p:
1. There is a positive integer m such that f(pm) — 0 and F(pn) — 0

except possibly for the integers n in the interval [m, 2m) for which

fir) = o.
2. There is a positive integer m, a positive divisor d of m and a

complex number C such that

/(ί)mf/ctί) = /(p«)i+w/» ^ 0 (Λ = 0, 1, 2, . . •)

and ί7 has the defining properties

F(pm-nd) = Cf(pm+M) (k = 0,1, 2, •)

i^(^n) = 0 if n Φ m + kd for some nonnegative integer ιk.
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