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POINT-DETERMINING HOMOMORPHISMS ON
MULTIPLICATIVE SEMI-GROUPS OF
CONTINUOUS FUNCTIONS

R. S. DEZUR

Let X and Y be compact Hausdorff spaces, C(X) and C(Y)
the algebras of real valued continuous functions on X and Y
respectively with the usual sup norms, If 7 is an algebra
homomorphism from C(X) onto a dense subset of C(Y) then
by a theorem of Stone, 7' induces a homeomorphism » from Y
to X and it necessarily follows that 7f(y) = 0 if and only if
F(uly) = 0.

In a more general setting, viewing C(X) and C(Y) as multi-
plicative semi-groups, let 7' be a semi-group homomorphism
from C(X) onto a dense point-separating set in C(Y). No such
map . satisfying the above condition need exist. 7 is called
point-determining in case for each y there is an x such that
Tf(y) =0 if and omnly if f(x) =0. It is shown that such a
homomorphism 7' induces a homeomorphism from Y into X in
such a way that Tf (y) = [sgnf(x)]| f(x)|?* for some continuous
positive function p where x is related to y via the induced
homeomorphism, that such a 7 is an algebra homomorphism
followed by a semi-group automorphism, and that 7 is con-
tinuous,

Let X and Y be compact Hausdorff spaces, C(X) and C(Y) the
algebras of all continuous real-valued functions on X and Y respectively
with the usual sup norm. Let T be an algebra homomorphism of C(X)
onto a dense set in C(Y). For each ye Y consider the mapping v, of
C(X) into the reals defined by

() =Tf W) .

v, maps C(X) onto the reals for if T'f(x) = 0 for all fe C(X) then the
image of T is not dense. The kernel is, by algebra, a maximal ideal
in C(X). By a theorem of Stone [3, 80] there is a point # € X so that
the kernel of v, is the set of all fe C(X) such that f(z) = 0, this
point being uniquely determined.

Consider the map #¢ of Y into X which assigns to each y € Y the
x as described above. If ¢ and e, are the unit funetions in C(X) and
C(Y) respectively it is easy to see that Te = ¢, and that g is one-to-
one. Now for each fe C(X) consider the function Tf(y)e — f= g in
C(X). Then Tg(y) = 0 so that g(x(y)) = 0 and hence T'f(y) = f(x(¥)).
We especially note that
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(*) Tf(y) =0 if and only if f(x(y) =0.

As we shall see, under a more general setting for T, this condition
will imply that g is bicontinuous (see Lemma 3.1 below).

In this paper we view C(X) and C(Y) as multiplicative semi-groups
and let T be a semi-group homomorphism from C(X) onto a dense set
in C(Y); the restriction on T being that for each y € Y thereisan x ¢ X
such that f(x) = 0 if and only if Tf(y) = 0 (i.e. a condition such as
(*) above is satisfied). For such a T we show that ¥ can be imbedded
homeomorphically in X in such a way that Tf (y) = [sgn f(z)] | f(z) |**®
for some continuous positive function p(x) where y is related to x via
the induced homeomorphism. It is shown that each such homomorphism
T is an algebra homomorphism followed by a semi-group automorphism
and that T is continuous.

2. Definitions, Notation and Preliminaries. We first note that
in our more general setting no mapping p satisfying (*) above need
exist. To see this let X =[0,1]U{2}, Y =[0,1] with the relative
topology of the real line. For ¢te€]0, 1] set

T7(t) = F(0)f Q) .

T is a semi-group homomorphism of C(X) onto C(Y) but Tf(t) = 0 if
and only if either f(t) = 0 or f(2) = 0.

DEFINITION 2.1, A semi-group homomorphism T will be called
point-determining in case for each ye Y there is an x€ X such that
f(x) = 0 if and only if Tf(y) = 0.

The following result is immediate.

LEMMA 2.2. If T is a point-determining semi-group homomorphism
of C(X) onto a dense set in C(Y), e and e, the respective unit functions
wn C(X) and C(Y) then Te = e, and TO = O,

DEFINITION 2.3. A subset 4 & C( Y) will be called point-separating
in case for y, #* ¥, in Y there is a ge A such that g(y,) =0 and
9(y.) # 0.

In the development that follows X and Y will be compact Haus-
dorff spaces, Y having no isolated points; C(X) and C(Y') will be viewed
as multiplicative semi-groups and 7T will be a point-determining semi-
group homomorphism of C(X) onto a dense point-separating set in C(Y).
The hypothesis Y has no isolated points, however, is not used until
Lemma 3.5. Multiplication is defined pointwise in C(X) and C(Y).

~A will denote complement of A in any of the spaces considered.
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@ will denote the empty set and the bar notation will denote closure.
We are indebted to a paper of Milgram [2] for suggesting the
sequence of ideas and devices employed here.

3. Development of the main results. Notice that for each
ye Y, T determines a unique point e X, Thus T induces a well-
defined single valued mapping y: Y — X defined by g(y) =« in case
f(x) = 0 if and only if Tf(y) = 0. In the material to follow notationally
we let ¢(Y) = X,. (u¢ turns out to be a special case of the multi-
valued mappings studied in [1] although there we assumed 7 continuous.)

LeEmMMA 3.1. p¢ ¢s a homeomorphism of Y into X.

Proof. p is a one-to-one for say p(y,) = ((y.). Then Tf(y,) =0
if and only if Tf(y,) = 0. If y, 5= ¥, then since the range of T is point-
separating there is an he C(X) such that Th(y,) =0, Th(y,) + 0 a
contradiction.

To see p is continuous we suppose contrarywise that g is not con-
tinuous at some point t,€ Y. Then there is a net {¢g} in Y, ¢, — ¢, and
an open neighborhood U containing f«(t,) such that u(¢z) ¢ U for any 5.
Now there is an fe C(X) such that f((¢,)) =1 and f(~U) = 0 so that
f(u(te)) = 0 for all B and hence Tf(tg) = 0 for all 8. But Tf(t,) = 0
since f(u(t,)) # 0 contradicting the fact that 7fe C(Y). Thus p is
continuous and it follows that g is a homeomorphism.

If o is a homeomorphism from Y into X, define

T.C(X)— C(Y)
by
Tfy) = flo(y)), feC(X), yeY.
T is onto (and continuous) so that we have the following.
THEOREM 3.2. There s a poini-determining semi-group homo-

morphism of C(X) onto a dense point-separating set in C(Y) of and
only if Y is homeomorphic to a subset of X.

We proceed now, to find the form of the general homomorphism
in our theory.

LEMMA 3.3. Let U be open in X. If f=1 on U then Tf =1 on
p~ (U N Xy).
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Proof. f =1 on U implies that fg = g for all g€ C(X) such that
g(x)=0on ~U and hence TfTg = Tg for all such g. Let y,e £ (UNX,)
so that t«(y,) = x,€ UNX,CU and note that Tf(y,) # 0 since f(x,) = 1.
Now there is an 7 € C(X) such that A(x,) = 1 and A(~U) = 0 so from
the above Tf(y,) Th(y,) = Th(y,). But h(x,) = 1 implies that Th(y,) = 0
and therefore Tf(y,) = 1 and since y, was arbitrary the result follows.

Lemma 3.4. Let U be open in X. If f=g¢g on U then Tf = Tg
on w(UNX,).

Proof. Let y,cp(UNX, so that my,) =2z UnX,cU. If
@) = 0 = g(x,) then Tf(y) = 0= Tg(y,). If f(w,) = g(x,) # 0 we may
assume without loss of generality that f(z,) = g(x,) = ¢ > 0. Then
W' = {x | f(x) > c/2} is open in X and x,€ W’. For xze X set h'(x) =
max [f(x), ¢/2]. Then A" and h = 1/h’, are in C(X). Now fh =1 on
W’ and hence fh=1=gh on W= W'NnU. Thus by Lemma 3.3
Tfh =1 = Tgh on (W NX,) and so in particular Tf(y,)Th(y,) =1 =
To(y)Th(y,). Now h(x,) = 0 so Th(y,) # 0. Thus Tf(y,) = Tg(y,) and
the result follows,

LemMA 3.5, Let @, = u(y,). If f(x,) =1 then Tf(y,) = 1.

Proof. Suppose first that f(x,) =1 but that Tf(y,) > 1. Then
there is an open neighborhood W containing y, such that Tf(y,) = ¢ > 1
forall ye W. Now p(W) = UN X, for some open set U in X such that
x,elU. Let V,={eeX||fMx) —1|<1l/n} n=1,23,--- and set
U,=V,nU. Note that x,€ U, an open set in X for each # and that
there are points of X, — {x,} in U, for every n since Y has no isolated
points (and hence X, has none). We construet a sequence {x,} of
distinet points such that z,e U,N X, as follows:

Select z, ¢ U, N X, such that z, # x, and set U, = W,*. Select dis-
joint neighborhoods W' containing x, and W containing x, such that
W& c WO and W c WO,

In general select z, € Wi~ NX,NU, such that z, # », and dis-
joint neighborhoods W ™ econtaining x, and W ™ containing «, such that
Wimc W and W™ c W, Note that {W{™} is a decreasing
sequence of neighborhoods containing x, where z; € W "; {W ™} is a
collection of neighborhoods where z,¢ W/2 and W™ NW" =@
n=1238, «--.

For the sequence {x,} we have {x,.,, ®,.,, +--}C Wi and W\ is
a neighborhood containing z, such that {x,,, .., -} N W = .
Therefore «, ¢ {€,., ©,.», *++}. Hence we can select a collection {0,}
of open sets as follows:



POINT-DETERMINING HOMOMORPHISMS ON MULTIPLICATIVE 231

Let O, be an open subset of U, such that #,€0,c0,c U, and O,
does not contain «,, x;, ---. In general let O, be an open subset of U,
such that 2,€0,c0,cU, and O, does not contain «,.,, ,.., *+- and
such that 0,N0, =@ 1=1,2, ---,n — 1,

Now define a”function ¢’ on Uz, O, by

f™on O,

— ~
g 1 elsewhere on U O, .
n=1

Then ¢’ is continuous on Uz, 0,. To see this we need only examine
te U, 0, — U=, 0,. At such a t, ¢(t) =1. Let Q be any open set
in the reals containing 1 and choose N > 0 such that (1 — 1/N,1 +
1/N)c Q. Now since t¢ UZ,0;, a closed set, there is a neighborhood
V containing ¢ such that VNUY,0, = @. For se VNUryw O; either
g'(s)=1 or scO, for some kc{N+1, N+ 2, ---} in which case
lg'(s)=1]=|f¥s) — 1| < 1/k < 1/N. Soin any case |g'(s) — 1| < 1/N
i.e. g'(s)e @ and hence ¢’ is continuous. By Tietze’s extension theorem
g’ can be extended to a funection g€ C(X).
Now for ye p(0,NX,)c W we have by Lemma 3.4

Tg(y) = Tf"(y) = [T/ W)]" =z ¢"

so Tg is not bounded and hence Tg¢ C(Y) a contradiction. Thus if
f(@,) =1 then Tf(y,) = 1. .

Now suppose that f(x,) = 1 but that Tf(y,) < 1. Set f; = f* Then
filx) =1 so Tf.(y,) = 0 and Tf.(y,) = [Tf(y)? > 0. By the first part
of the proof Tfi(y,) #» 1. We rule out Tf,(y,) < 1 as follows.

Set W= {x| fi(x) >1/2}. W is open, x,€ W and if we set fy(x) =
max [1/2, fi(x)] then f, is nowhere zero, f,€ C(X) and f, agrees with
fi on W. Hence by Lemma 3.4 Tf, =Tf, on p(WnX,) and so
0 < Tfy(yo)) < 1. Now f;=1/f*e C(X), fu(x) = 1 and Tfy(y,) = 1/ Tfu(yo) >1
a contradiction by the first part of the proof. Hence Tf:(y,) =1 so
that Tf(y,) = +1. But by assumption Tf(y,) < 1 so Tf(y,) = —1.

As done above let g be a strictly positive funetion in C(X) agreeing
with £ on some neighborhood U containing x,. Then Tf and Tg agree
on £ (UNX,). Butg > 0everywhere on X implies that Tg = 0 every-
where on Y and hence Tg(y,) = —1 so Tf(y,) # —1, a contradiction.
Thus Tf(y,) = +1 and the proof is finished.

LEMMA 3.6, If @, = p(y,) and if f(w) = 9(x,) then Tf(y,) = Tg(y.).

Proof. We need only consider f(x,) = ¢ = g(®,) # 0. Let h(x) = 1/c
for all xe X so that he C(X) and hf(x,) = hg(x,) = 1. By Lemma 3.5
Thf(y,) = 1= Thy(y,) i.e. Th(y)) Tf(y,) = Th(y) Tg(y,) =1. But Th(y,) #0
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so the result follows.

Notice that Lemma 3.6 implies us that functions in C(X) which agree
on X, = #(Y) have the same images in C(Y). We will show that T
is actually restriction to X, followed by a semi-group automorphism.

Suppose we regard the real numbers, R, as a multiplicative semi-
group. We have the following.

LEmMMA 3.7. Let a be a semi-group homomorphism from R onto
a dense subset of R. Then a is either umbounded im every meigh-
borhood of zero or a ts order preserving.

Proof. Since the range of « is dense in R it follows that a(0)=0
and a(l) = 1. If we show that a(—t) = —a(t) for all ¢ then only
positive numbers need be considered in verifying the lemma. To this
end note a(l) = [a(—1)]* so a(—1) = +1. We rule out a(—1) = +1
for suppose a(—1) = +1. Then a(*t) = a(t) for all ¢. Let {¢,} be a
sequence in R such that «(¢,) — —1. Then a(—t,) = a(t,) — —1 so
that «a(|t,|) — —1. But |¢,| = s for some s, € R and a(s2) = [a(s,)] —
—1 a contradiction. Hence a(—t) = —a(f).

Now let a,be R such that 0 < @ < b. Suppose a(a) > a(b). Then
since a(a/b) = a(a)/a(b) we have af(a/b)"] = [a(a)/a(b)]” — ~ while
(a/b) — 0 i.e. a is unbounded in every neighborhood of zero. Now
suppose a(a) = a(b) and that « is bounded in some neighborhood of zero.
Then 7€ [a, b] implies that a(r) = a(a) since otherwise either a(r) < a(a)
or a(r) > a(b) and in both cases by the above a would be unbounded
in every neighborhood of zero contradicting our assumption. Hence
for », v ela, b]a(r/r’) = a(r)/a(r’) = 1. Now let z be any positive
real number. There is an » such that a/b < 2" < b/a i.e. there is an
n such that 2" = r/r’, where r, 7' €[a,b]. Then 1 = a(z"") and so
a(z) = [a(@'")]* = 1. So z > 0 implies that a(z) = 1, z < 0 implies that
a(z) = —1 and a(0) = 0, a contradiction since the image of a is dense
in R. Thus a(a) = a(b) implies that « is unbounded in every neigh-
borhood of zero.

LEMMA 3.8. If a s order preserving them « 1is actually onto
and in this case a(t) = (sgnt)|t|® for some positive number p.

Proof. Let r,e R and {r,} a sequence in R such that {r,}] 7.
Then «a(r,) — a(r,) since a(r,) > a(r,) and if a(r,) = m > a(r,) there
is an seR, m >s>a(r,) and a ge R such that a(q) =s. But
a(ry) < a(q) < a(r,) for all m so r, < g <7, a contradiction since
Py — Tou
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To see a is onto say 7, is such that a(r) = r, for any re R, We
can choose a sequence of distinet' points {a(r,)} such that a(r,)| r,.
This implies {r,} is a bounded decreasing sequence so there is an 7'
such that », | ' and hence from the above a(r,) — a(r’), a contradiction
since a(r’) # r,. Thus a is onto. Milgram [2, 4.3] has shown that in
this case there is a p > 0 such that a(t) = (sgnt) | ¢ |® which completes
the proof.

In view of Lemma 3.6 for each yeY, a,,:R— R defined for
arbitrary fe C(X) by a..,(f(i())) = Tf(y) is well-defined. The image
of @, is a dense subset in R, for fix ye Y and let re€ R. Thereisa
function g€ C(Y) such that g(y) = r» and a sequence {f,} < C(X) such
that Tf.(y) — 9(y) = r L.e. .o (fu(i(y)) — 7.

Note that from Lemmas 3.7 and 3.8 we can say that a,,, is un-
bounded in every neighborhood of zero or «,.,, is continuous.

LemmA 3.9, The mappings {a..} are discontinuous for at most
a finite number of points.

Proof. Suppose otherwise at {¢(y,)} where the y, are all distinct
n=1,23, .. We can choose a subsequence {¢(y,)} of distinct points
such that no g(y,) is a limit point of the others as follows:

If no point in {g(y.)} is a limit point of the other we are finished.
If y,, is a limit point of a subset of {z(y,)} where y, €{u(y.)}, by a
process similar to that used in selecting the sequence {x,} in the proof
of Lemma 3.5 with y, in the role of x, we obtain a sequence {u(y,)}
such that r(y,) € {{(Ynss), t(Yns2), -++}, n=1,2,8, .-+, Hence for any
M(y,) there is an open set V containing p(y,) such that VN{x(y.)} —
My,) = @ so that {¢(y,)} is the desired collection.

Now the a,(, are unbounded in each neighborhood of the origin
so that if {¢,} is a sequence of distinet points decreasing to zero we
have a,, (t,,) — o for all n as m — ., We select a subsequence
{t.} | 0 such that a,,(¢,) — <= as follows:

There is a te {t,} such that a,,,(t) > 1. Set ¢t =1¢,.. In general
there isat <t,, < --- <t, te{t,} such that a,,, ,(t) >n. Sett=t¢,
to yield the desired sequence.

Define a function f’ on {u(y.)} by f’(#(y.) =¢t, and f'=0 on
{t(y.)} — {(y.)}. f’ is continuous on {u(y,)} since for y,e {£(y.)} —
{¢(y,)} we have f'(y,) = 0 and letting {¢(y,)} be any subsequence con-
verging to yo, f'(#(Yn)) = tn— 0= f"(¥).

Now we can extend f’ to a continuous function f on all of X, But
then Tf(y,) = Quy(f(#¥.)) = Quy, () — o contradicting the fact
that Tfe C(Y) and the lemma is proved.
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We have via Lemma 3.8, that except for at most a finite number
of points y,

@ f(1(y) = [sgn f(e(y)] ] f(i(y)) |P*“¥”  where p(u(y))

is a positive function. We note that p is continuous where it is de-
fined, i.e. on the set {¢(y)| ., is continuous}, since for the constant
function 2 we have T2(y) = a,,,(2) = [sgn 2] | 2 |?®@¥) = 27®¥) and since
T2 is continuous the result follows.

Using the fact that Y has no isolated points we show a stronger
result,

LEMMA 38.10. There is a positive continuous function p on X,
such that

aw(y)(f(ﬂ(y))) = [sgn Fey)] lf(ﬂ(?/)) [P |

Proof. In view of the preceeding remarks we need only show that
X, is continuous for all y. To this end suppose that «,,, is dis-
continuous at y,. Set A = {¢(y) |,y is continuous}, By Lemma 3.9
all but a finite number of the y(y) are in A and hence since Y has no
isolated points every open neighborhood about y(y,) contains points of A.

Now for 0 < s <1 define SeC(X) by S(x)=s. Since a,,, is
unbounded in every neighborhood of zero we can find an s, € (0, 1) such
that a,q,(s;) > 2. Let U be any neighborhood containing ¢(y,) and
take p(y) e UNA. Then TS(y) = @, (s) = [sgnsy]|s, [P*¥ <1 but
TS\(yo) = @uyp(S) > 2 which contradicts the continuity of T'S,.

LEMMA 8.11. The semi-group homomorphism T is an algebra
homomorphism followed by a semi-group automorphism. Moreover T
18 continuous.

Proof. From Lemma 3.10 we have

Tf () = [sgn ()] | Fputw) oo

Identify Y as the subset X, of X and define T: C(X) — C(Y) by T.f =
f1Y (i.e. f restricted to Y) and note that 7, is an onto algebra
homomorphism. Define T,: C(Y) — C(Y) by T.9(y) = [sgn g(¥)] | 9(y) [**V’
where p(y) is the continuous positive function arising in the previous
lemma. 7, is a semi-group automorphism. To see that T, is one-to-
one suppose fi, f,€C(Y) where f, # f,. Then there is a y€ Y such
that fi(y) # fuly). Now if |fi(y)| # |fi(y)| then T.f(y) # T.f:(y) and

if [fi(y)| = |f«(y)| then sgn fi(y) # sgn fi(y) so that T.fi(y) # T.fi(y).
Thus T, is one-to-one. Clearly T = T,T..
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To see that T is continuous it suffices to show that T;, is continuous
(T, is clearly continuous). A standard argument shows this to be the

case.

Combining some of the previous results we have the following.

THEOREM 3.12, Let X and Y be compact Hausdorff spaces, Y
having no isolated points. Let C(X) and C(Y) be the multiplicative
semi-groups of all continuous real valued function on X and Y re-
spectively., If T 1s a point-determining semi-group homomorphism
of C(X) onto a dense point-separating set in C(Y) then Y can be
tmbedded homeomorphically in X in such a way that

Tf(y) = [sgn f@)] | f(x) [

Jor some continuous positive function p where x is the unique point
related to y by the induced homeomorphism. Such a homomorphism
t8 continuous and ts an algebra homomorphism followed by a semi-
group automorphism.

COROLLARY 3.13. Let X and Y be compact Hausdorff spaces, Y
having no isolated points. Let T be o semi-group homomorphism of
C(X) onto a dense point-separating set of C(Y). Then

(i) T is an algebra homomorphism of C(X) into C(Y) if and
only if T is point-determining and Te = ¢ for each constant function c.

(ii) If T is point-determining then T(—f) = — Tf.

Proof. (i) If T is an algebra homomorphism of C(X) we have al-
ready seen that T is point-determining and in fact that T'f(y) = f(u(y))
where p is the induced homeomorphism. Hence T¢ = ¢ for all constant

funections e.

If T is point-determining and Te¢ = ¢ for all constant functions ¢
then by the above theorem, for all y,

2 = Tz(y) — [sgn 2]2p(u(y)) = 9pu)

and hence p(p(y)) =1 for all y. Thus for feC(X), Tf(y) = f(iy))

so T is an algebra homomorphism,
The proof of (ii) is obvious by the form of the homomorphism

shown in the above theorem.
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