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POINT-DETERMINING HOMOMORPHISMS ON
MULTIPLICATIVE SEMI-GROUPS OF

CONTINUOUS FUNCTIONS

R. S. DEZUR

Let X and Y be compact Hausdorff spaces, C(X) and C(Y)
the algebras of real valued continuous functions on X and Y
respectively with the usual sup norms. If T is an algebra
homomorphism from C(X) onto a dense subset of C(Y) then
by a theorem of Stone, T induces a homeomorphism μ from Y
to X and it necessarily follows that Tf(y) = 0 if and only if

In a more general setting, viewing C(X) and C(Y) as multi-
plicative semi-groups, let T be a semi-group homomorphism
from C(X) onto a dense point-separating set in C(Y). No such
map μ satisfying the above condition need exist. T is called
point-determining in case for each y there is an x such that
27(2/) = 0 if and only if fix) = 0. It is shown that such a
homomorphism T induces a homeomorphism from Y into X in
such a way that Tf(y) = [sgnf(x)] \f(x) \p( x) for some continuous
pDsitive function p where x is related to y via the induced
homeomorphism, that such a T is an algebra homomorphism
followed by a semi-group automorphism, and that T is con-
tinuous.

Let X and Y be compact Hausdorff spaces, C(X) and C(Y) the
algebras of all continuous real-valued functions on X and Y respectively
with the usual sup norm. Let T be an algebra homomorphism of C(X)
onto a dense set in C(Y). For each ye Y consider the mapping yy of
C(X) into the reals defined by

%(f) = Tf(y) .

yy maps C(X) onto the reals for if Tf(x) = 0 for all fe C(X) then the
image of T is not dense. The kernel is, by algebra, a maximal ideal
in C(X). By a theorem of Stone [3, 80] there is a point x e X so that
the kernel of yy is the set of all fe C{X) such that f(x) — 0, this
point being uniquely determined.

Consider the map μ of Y into X which assigns to each y £ Y the
x as described above. If e and ex are the unit functions in C(X) and
C( Y) respectively it is easy to see that Te — ex and that μ is one-to-
one. Now for each feC(X) consider the function Tf(y)e — f— g in
C(X). Then Tg(y) = 0 so that g(μ(y)) = 0 and hence Tf(y) - f(μ(y)).
We especially note that
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( * ) Tf(y) = 0 if and only if f(μ(y)) = 0 .

As we shall see, under a more general setting for T, this condition
will imply that μ is bicontinuous (see Lemma 3.1 below).

In this paper we view C(X) and C( Y) as multiplicative semi-groups
and let T be a semi-group homomorphism from C(X) onto a dense set
in C(Y); the restriction on T being that for each ye Ythere is an x e X
such that f(x) — 0 if and only if Tf(y) — 0 (i.e. a condition such as
(*) above is satisfied). For such a T we show that Y can be imbedded
homeomorphically in X in such a way that Tf(y) — [sgnf(x)] \f(x) \p{x)

for some continuous positive function p(x) where y is related to x via
the induced homeomorphism. It is shown that each such homomorphism
T is an algebra homomorphism followed by a semi-group automorphism
and that T is continuous.

2* Definitions, Notation and Preliminaries* We first note that
in our more general setting no mapping μ satisfying (*) above need
exist. To see this let X = [0,1] U {2}, Y == [0,1] with the relative
topology of the real line. For t e [0,1] set

Tf(t)=f(t)f(2).

T is a semi-group homomorphism of C(X) onto C(Y) but Tf(t) = 0 if

and only if either f(t) = 0 o r /(2) = 0.

DEFINITION 2.1. A semi-group homomorphism T will be called

point-determining in case for each yeY there is an xe.X such t h a t

f(x) = 0 if and only if Tf(y) = 0.

The following result is immediate.

LEMMA 2.2. If T is a point-determining semi-group homomorphism
of C(X) onto a dense set in C(Y), e and eγ the respective unit functions
in C(X) and C(Y) then Te = ex and TO = O.

DEFINITION 2.3. A subset AQC(Y) will be called point-separating
in case for yt Φ y2 in Y there is a ge A such that g{y^) — 0 and

= 0.

In the development that follows X and Y will be compact Haus-
dorff spaces, Y having no isolated points; C(X) and C(Y) will be viewed
as multiplicative semi-groups and T will be a point-determining semi-
group homomorphism of C(X) onto a dense point-separating set in C(Y).
The hypothesis Y has no isolated points, however, is not used until
Lemma 3.5. Multiplication is defined pointwise in C(X) and C(Y).

~A will denote complement of A in any of the spaces considered.
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0 will denote the empty set and the bar notation will denote closure.
We are indebted to a paper of Milgram [2] for suggesting the

sequence of ideas and devices employed here.

3* Development of the main results* Notice that for each
y e Y, T determines a unique point xe X. Thus T induces a well-
defined single valued mapping μ:Y—+X defined by μ(y) — x in case
f(x) = 0 if and only if Tf(y) — 0. In the material to follow notationally
we let μ(Y) = Xo. (μ turns out to be a special case of the multi-
valued mappings studied in [1] although there we assumed T continuous.)

LEMMA 3.1. μ is a homeomorphism of Y into X.

Proof, μ is a one-to-one for say μ{y^ ~ μ(y2) Then Tf(y^) = 0
if and only if Tf(y2) = 0. If yx Φ y2 then since the range of T is point-
separating there is an h e C(X) such that Th(y^ = 0, Th(y2) Φ 0 a
contradiction.

To see μ is continuous we suppose contrary wise that μ is not con-
tinuous at some point tQ e Y. Then there is a net {tβ} in Y, tβ —> t0 and
an open neighborhood U containing μ(tQ) such that μ(tβ) & U for any β.
Now there is a n / e C(X) such that f(μ(Q) = 1 and / ( ~ U) = 0 so that
f(μ(tβ)) = 0 for all β and hence Tf(tβ) = 0 for all β. But Tf(t0) Φ 0
since f(μ(to))Φθ contradicting the fact that TfeC(Y). Thus μ is
continuous and it follows that μ is a homeomorphism.

If σ is a homeomorphism from Y into X, define

T:C(X)->C{Y)

by

Tf(y) = f(σ(y)) , feC(X), yeY.

T is onto (and continuous) so that we have the following.

THEOREM 3.2. There is a point-determining semi-group homo-
morphism of C(X) onto a dense point-separating set in C(Y) if and
only if Y is homeomorphic to a subset of X.

We proceed now, to find the form of the general homomorphism
in our theory.

LEMMA 3.3. Let U be open in X. If f = 1 on U then Tf = 1 on
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Proof, f = 1 on U implies that fg — g for all g e C(X) such that
g(x) = 0 on ~ U and hence TfTg = T# for all such g. Let ?/0 e μ~\ U Π Xo)
so that μ(y0) = xoe U f]Xoc:U and note that Tf(y0) Φ 0 since f(x0) — 1.
Now there is an h e C(X) such that h(x0) — 1 and h(~U) = 0 so from
the above Tf(yo)Th(yo) = Th(y0). But h(x0) = 1 implies that Th(y0) Φ 0
and therefore Tf(y0) = 1 and since y0 was arbitrary the result follows.

LEMMA 3.4. Let U be open in X. If f = g on U then Tf = Tg
on μ

Proof. Let y0 e μ~\ U Π Xo) so that μ(y0) = ^ G ϋ7 Π Xo c U. If
/(a?0) = 0 = flr(a?0) then Tf(yQ) - 0 - Γ ^ o ) . If f(x0) = g(α;0) ^ 0 we may
assume without loss of generality t h a t f(x0) = <7(#o) = c > 0. Then
PΓ' = {x I /(a;) > c/2} is open in X and xQ e W. For xeX set /z/(.τ) =
max [f(x)y c/2]. Then fe' and h = 1/fe', are in C(X). Now /fe Ξ 1 on
W and hence fh = 1 = gh on Tf = T^'n £7. Thus by Lemma 3.3
Tfh = l = Tgh on μ-\WΓ{X0) and so in particular Tf(yo)Th(yQ) = 1 =
Tg(yQ)Th(y0). Now h(x0) Φ 0 so ΓΛ(y0) ^ 0. Thus Γ/d/0) = Tg(y0) and
the result follows.

LEMMA 3.5. Let x0 = μ(y0). If f(x0) = 1 then Tf(y0) = 1.

Proof. Suppose first that f(x0) = 1 but that Tf(y0) > 1. Then
there is an open neighborhood W containing yQ such that Tf(yQ) ^ c > 1
for all yeW. Now μ(W) = Uf]XQ for some open set U in X such that
#0 e U. Let F w - {x e X \ \fn(x) - 11 < 1/n} n = 1, 2, 3, and set
Ϊ7w = y u π ί̂  Note that xQ e Un an open set in X for each n and that
there are points of Xo — {x0} in Un for every n since F has no isolated
points (and hence Xo has none). We construct a sequence {xn} of
distinct points such that xne UnΓ\X0 as follows:

Select x1e U^Xo such that x1 Φ x0 and set U1 = TΓ0

<0). Select dis-
joint neighborhoods PF0

(1) containing xQ and ϊFi(1) containing α?! such that
W^ c T 0̂

(0) and Wi" c TΓ0

(0).
In general select a?w e TΓJ*"^ Γ\XQΓ\Un such that α?Λ =̂ x0 and dis-

joint neighborhoods W0

{n) containing xQ and TF!(W) containing xn such that
Ψ o ^ c ] ^ - 1 1 and Win)dW^~1]. Note that {TΓO

(W)} is a decreasing
sequence of neighborhoods containing x0 where xie W^~1]; {Wln)} is a
collection of neighborhoods where xζ e Wli] and Wίn) Π Wo

(%) = 0
w = 1,2, 3, . . . .

For the sequence {xn} we have {x%+1, xn+2, •• }cTFo

c%) and Wr

1

(%) is
a neighborhood containing a;Λ such that {xn+u xn+2, •} Π ̂ i ( % ) = 0 .
Therefore £%£ {»Λ+i, »«+2, #} Hence we can select a collection {Ow}
of open sets as follows:
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Let Ox be an open subset of U1 such that x1 e Oj. c O1 c E7i and Ox

does not contain x2, x3, . In general let On be an open subset of Un

such that xneθna0ncz Un and O% does not contain xn+u xn+2, and
such that Oi Πθn = 0 i = 1, 2, « , rc- 1.

Now define arfunction #' on Un=iO« by

_
1 elsewhere on \J On .

Then g' is continuous on U»=i^* To see this we need only examine
t e U~=i O» — UΓ=i O». At such a t, g'(t) = 1. Let Q be any open set
in the reals containing 1 and choose N > 0 such that (1 — 1/N, 1 +
1/N) c Q. Now since t g (Ji^i ^> a closed set, there is a neighborhood
F containing t such that F Π \Jf^Oi = 0 . For s e F Π UΓ=JNΓ+I 6% either

f̂'(s) = 1 or seύk for some Λ e {N + 1, iV + 2, •} in which case
I g'(s) = 11 = |/fc(s) - 1 1 < 1/fc < 1/N. So in any case | g\s) -1\<1/N
i.e. g'(s) e Q and hence gf is continuous. By Tietze's extension theorem
gf can be extended to a function # e C(X).

Now for 2/ e μ~\On Π Xo) c W we have by Lemma 3.4

Ή/fo) - Γ/%) = [Γ/(»)] ^ c

so Γ̂ r is not bounded and hence TggC(Y) a contradiction. Thus if
/(α?o) = 1 then Tf(yQ) S 1.

Now suppose that /(a?0) = 1 but that Tf(y0) < 1. Set f, = / 2 . Then
Λίso) = 1 so Tf±(y0) Φ 0 and Γ/^o) = [Tf(yQ)]2 > 0. By the first part
of the proof Tf^y^) > 1. We rule out Tfi(y0) < 1 as follows.

Set W = {̂  I /i(α?) > 1/2}. ίF is open, aj0 6 TF and if we set f2(x) =
max [1/2, fx{x)\ then /2 is nowhere zero, / 2 e C(X) and f2 agrees with
Λ on W. Hence by Lemma 3.4 Tfx = Tf2 on jtr^ TFΠ-Xo) and so
0 < Tf2(y0) < 1. Now /, = I//2 G C(X), Mx0) = 1 and Γ/.(tfo) = l/Γ/t(»0) > 1
a contradiction by the first part of the proof. Hence Tf^y^ — 1 so
that Tf(yQ) = ± 1 . But by assumption Tf(y0) < 1 so Tf(y0) - - 1 .

As done above let g be a strictly positive function in C(X) agreeing
with / on some neighborhood U containing x0. Then Tf and Tg agree
on μ^iUnXo). But g > 0 everywhere on X implies that Tg ^ 0 every-
where on F and hence Tg(y0) ^ - 1 so Tf(y0) Φ — 1, a contradiction.
Thus JΓ/(#O) = + 1 and the proof is finished.

LEMMA 3.6. // x0 = μ(#0) α^d iff(xQ) = flf(a?0) *Λew Γ/(2/o) =

Proof. We need only consider /(a?0) = c = g(x0) Φ 0. Let h(x) — 1/c
for all a? e X so that h e C(X) and Λ/(α?0) = Λ^(x0) = 1. By Lemma 3.5
Thf(y0) - 1 - 2%flr(»0) i.e. Th(y0) Tf(y0) = Th(y0) Tg(y0) = 1. But 2%(»0) ̂  0
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so the result follows.

Notice that Lemma 3.6 implies us that functions in C(X) which agree
on Xo = μ(Y) have the same images in C(Y). We will show that T
is actually restriction to Xo followed by a semi-group automorphism.

Suppose we regard the real numbers, R, as a multiplicative semi-
group. We have the following.

LEMMA 3.7. Let a be a semi-group homomorphism from R onto
a dense subset of R. Then a is either unbounded in every neigh-
borhood of zero or a is order preserving.

Proof. Since the range of a is dense in R it follows that a(0) = 0
and a(l) — 1. If we show that a(—t) = —a(t) for all t then only
positive numbers need be considered in verifying the lemma. To this
end note a(l) = [a(-l)]2 so a(-l) = ± 1 . We rule out a(-l) = + 1
for suppose a(~l) = + 1 . Then a{±t) = a{t) for all t. Let {tn} be a
sequence in R such that α(ίΛ) —>— 1. Then α( — ίΛ) = a(tn) —> — 1 so
that a(\ tn I) -> - 1 . But | ίw | = 4 for some sn e R and a{s\) = [α(sn)]2 —
— l a contradiction. Hence a( — t) = — α(£).

Now let α, 6 e R such that 0 < a < 6. Suppose a{ά) > α(δ). Then
since a(a/b) — a(a)/a(b) we have a[(a/b)n] = [^(^/^(δ)]^ —> oo while
(α/6) —* 0 i.e. a is unbounded in every neighborhood of zero. Now
suppose a(a) — a{b) and that a is bounded in some neighborhood of zero.
Then r e [α, b] implies that a(r) — a(a) since otherwise either a(r) < a(a)
or a(r) > a(b) and in both cases by the above a would be unbounded
in every neighborhood of zero contradicting our assumption. Hence
for r, r' e [α, b] a{rjrf) — a(r)ja{r') — 1. Now let z be any positive
real number. There is an n such that α/δ g z1/n g δ/α i.e. there is an
n such that z1/n — r/r', where r, r 'e [α, δ]. Then 1 = a{zιl%) and so
α(2) = [a(zlln)]n = 1. So 2 > 0 implies that α(s) = 1, z < 0 implies that
o:(js) = — 1 and a(0) — 0, a contradiction since the image of α is dense
in R. Thus α(α) = α(δ) implies that a is unbounded in every neigh-
borhood of zero.

LEMMA 3.8. // a is order preserving then a is actually onto
and in this case a(t) = (sgn t) \t\p for some positive number p.

Proof. Let roe R and {rn} a sequence in R such that {rJ j r0.
Then a(rn) —> α(r0) since α(rΛ) > α(r0) and if a{rn) ̂  m > α(r0) there
is an se R, m > s > a(r0) and a g e i? such that #(g) = s. But
α(r0) < a(q) < a(rn) for all n so r0 < g < rn, a contradiction since
n. ^> r0.
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To see a is onto say r0 is such that a(r) Φ r0 for any reR. We
can choose a sequence of distinct points {a(rn)} such that oc(rn) [ r0.
This implies {rn} is a bounded decreasing sequence so there is an r '
such that rn \ rf and hence from the above a(rn) —» a:(r'), a contradiction
since a(r') Φ r0. Thus α is onto, Milgram [2, 4.3] has shown that in
this case there is a p > 0 such that α(£) = (sgn t) \t\p which completes
the proof.

In view of Lemma 3.6 for each y e Y, aμ{y):R-+R defined for
arbitrary fe C(X) by aμiy)(f(μ(y))) = Tf(y) is well-defined. The image
of aμ{y) is a dense subset in R, for fix ye Y and let reR. There is a
function geC(Y) such that g(y) = r and a sequence {/n} c C(X) such
that TMy)-+0(v) = r i.e. aMy)(/Λμ(y))) — r.

Note that from Lemmas 3.7 and 3.8 we can say that aμ{y) is un-
bounded in every neighborhood of zero or aμ{y) is continuous.

LEMMA 3.9. The mappings {aμ{y)} are discontinuous for at most
a finite number of points.

Proof. Suppose otherwise at {μ(y'n)} where the y'n are all distinct
n — 1, 2, 3, . We can choose a subsequence {μ(yn)} of distinct points
such that no μ(yn) is a limit point of the others as follows:

If no point in {μ(y'n)} is a limit point of the other we are finished.
If y'no is a limit point of a subset of {μ(y'n)} where y'no e {μ(y'n)}, by a
process similar to that used in selecting the sequence {xn} in the proof
of Lemma 3.5 with y'%0 in the role of x0 we obtain a sequence {μ{yn)}
such that μ(yn) $ {μ(yn+ί), μ(2/»+2), •}, n = 1, 2, 3, . Hence for any
μ(yn) there is an open set V containing μ(yn) such that Vf]{μ(yn)} —
μ(yn) — 0 so that {μ(yn)} is the desired collection.

Now the <xμ(yn) are unbounded in each neighborhood of the origin
so that if {t'm} is a sequence of distinct points decreasing to zero we
have aμιVn)(t'm) ->co for all % as m ^ o o , We select a subsequence
{tn} I 0 such that aMyn)(tn) —• oo as follows:

There is a t e {C} such that aμ{yi)(t) > 1. Set t — tu In general
there is a t < tn_x < < tu te {t'm} such that a^Vn)(t) > n. Set t = tn

to yield the desired sequence.

Define a function / ' on {μ(yn)} by f'(μ(yn)) = ίΛ and / ' = 0 on

{μ(Vn)} - {μ(Vn)}. Γ is continuous on {μ(yn)} since for yQ e {μ(yn)} -
{μ(Vn)} we have f'(y0) = 0 and letting {μ(i/m)} be any subsequence con-
verging to yQ, f'{μ{ym)) = ίm - 0 - /'(y0).

Now we can extend / ' to a continuous function/on all of X. But
then Tf(yn) = aμiyn)(f(μ(yn))) = αμ(1,Λ,(tΛ) -^ oo contradicting the fact
that T / e C ( 7 ) and the lemma is proved.
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We have via Lemma 3.8, that except for at most a finite number
of points y,

a»ivJ(μ(y)) = [smf(μ(y))]\f(μ(y))\p{μ{y)) where p(μ(y))

is a positive function. We note that p is continuous where it is de-
fined, i.e. on the set {μ(y) \ aMy) is continuous}, since for the constant
function 2 we have T2(y) = αμ(y)(2) = [sgn2] | 2 \p(μ-{y)) = 2p{fλ{y)) and since
T2 is continuous the result follows.

Using the fact that Y has no isolated points we show a stronger
result.

LEMMA 3.10. There is a positive continuous function p on Xo

such that

= [sgn/(/!(»))] \f(μ(y)) |

Proof. In view of the preceeding remarks we need only show that
aμ{y) is continuous for all y. To this end suppose that aμ{y) is dis-
continuous at y0. Set A — {μ{y) \ α μ ( y ) is continuous}. By Lemma 3.9
all but a finite number of the μ{y) are in A and hence since Y has no
isolated points every open neighborhood about μ(yQ) contains points of A.

Now for 0 < s < 1 define S e C(X) by S(x) = s. Since αμ(J,0> is
unbounded in every neighborhood of zero we can find an s0 e (0,1) such
that αμ(¥o)(sQ) > 2. Let Z7 be any neighborhood containing μ(y0) and
take μ(y)eUf]A. Then TS0(ϊ/) = αμ(2/)(s0) = [sgns0] | s0 \^{v)) < 1 but
TS0(y0) = <xμ(2/o)(So) > 2 which contradicts the continuity of TSQ.

LEMMA 3.11. The semi-group homomorphism T is an algebra
homomorphism followed by a semi-group automorphism. Moreover T
is continuous.

Proof. From Lemma 3.10 we have

Tfiy) = [sgn/(/%))] \f{μ(y)) \««™ .

Identify Y as the subset Xo of X and define T,: C(X) -> C(Y) by TJ =
/ | F (i.e. / restricted to Y) and note that TΊ is an onto algebra
homomorphism. Define T2: C(Y) — C(Y) by Γ2flr(i/) - [sgn g(y)] \ g(y) |^>
where p(]/) is the continuous positive function arising in the previous
lemma. T2 is a semi-group automorphism. To see that T2 is one-to-
one suppose flyf2eC(Y) where fx Φ f2. Then there is a ye Y such
that fx{y) Φ f2(y). Now if \f,{y) \ Φ \f2(y) \ then T2Uy) Φ TJ2(y) and
if if^y) I = |/2(τ/) I then sgnfM Φ sgnf2(y) so that T2f(y) Φ TJ2{y).
Thus T2 is one-to-one. Clearly Γ = Γ2Ϊ\.
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To see that T is continuous it suffices to show that T2 is continuous
(T± is clearly continuous). A standard argument shows this to be the
case.

Combining some of the previous results we have the following.

THEOREM 3.12. Let X and Y be compact Hausdorff spaces, Y
having no isolated points. Let C(X) and C(Y) be the multiplicative
semi-groups of all continuous real valued function on X and Y re-
spectively. If T is a point-determining semi-group homomorphism
of C(X) onto a dense point-separating set in C(Y) then Y can be
imbedded homeomorphically in X in such a way that

for some continuous positive function p where x is the unique point
related to y by the induced homeomorphism. Such a homomorphism
is continuous and is an algebra homomorphism followed by a semi-
group automorphism.

COROLLARY 3.13. Let X and Y be compact Hausdorff spaces, Y
having no isolated points. Let T be a semi-group homomorphism of
C(X) onto a dense point-separating set of C(Y). Then

( i ) T is an algebra homomorphism of C(X) into C( Y) if and
only if T is point-determining and Tc — c for each constant function c.

(ii) If T is point-determining then T(—f) — —Tf.

Proof, (i) If T is an algebra homomorphism of C(X) we have al-
ready seen that T is point-determining and in fact that Tf(y) — f(μ(y))
where μ is the induced homeomorphism. Hence Tc — c for all constant
functions c.

If T is point-determining and Tc — c for all constant functions c
then by the above theorem, for all y,

2 = T2(y) = [sgn 2]2^(2/)) = 2^{y))

and hence p(μ(y)) = 1 for all y. Thus for fe C(X), Tf(y) = f(μ(y))
so T is an algebra homomorphism.

The proof of (ii) is obvious by the form of the homomorphism
shown in the above theorem.
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