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QUASIMEASURES AND OPERATORS COMMUTING
WITH CONVOLUTION

G. I. GAUDRY

Let G be a Hausdorff locally compact abelian group. In
this paper we characterise completely those continuous linear
operators 7T from C,(G) (the space of continuous functions with
compact supports endowed with the inductive limit topology)
into M(G) (the space of measures with the vague topology of
measures) which cemmute with convolution: 7'(fxg) = (Tf)=*g.
They are represented by convelution with a ‘‘quasimeasure’,
As a corollary of this theorem, we have the result that the
space of multipliers from L?(G)(p # o) to LYG) is isomorphic
to a subspace of the space of quasimeasures.

The quasimeasures are defined as the elements of the dual
of a certain inductive limit of Banach spaces. We develop
some of the theory of pseudomeasures and of quasimeasures
and establish the structural relationship of quasimeasures to
pseudomeasures.

Throughout, G will denote a Hausdorff locally compact abelian
group, X its character group. M, M,,;, M, will denote the spaces of
measures, bounded measures and measures with compact supports
respectively, Where necessary, we shall write M(G), M(X) etc. to
distinguish the spaces of measures etc. over G and X. We shall write
g, for the Dirac measure at the point a.

Several function spaces will be of importance:

C will be the space of continuous complex-valued functions. C,
with denote the space of continuous functions with compact supports,
regarded topologically as the internal inductive limit of the spaces
C, x (the space of continuous functions with support in K, K compact,
and the usual sup norm topology). The support of a function feC
will be denoted [f].

L?(1 = p = ) will be the Lebesgue spaces determined by Haar
measure, the elements being equivalence classes as usual, The Haar
measures d, dy on G, X respectively will be assumed normalised so
that Plancherel’s Theorem holds.

A(G) will denote the space of Fourier transforms of functions
integrable over X. By virtue of the semi-simplicity of LYX), A(G)
is isomorphic to L'(X). We define the topology of A(G) so as to
make it a Banach algebra under pointwise multiplication as follows:

1Pl aer = 1 Flle (F € AG))
A,(G) is the subspace of A(G) formed of functions whose supports are
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compact. Note that A,(G) is dense in A(G).
fv will denote the reflection of a function f.

In this paper, we characterise completely those linear mappings
T:C,— M, continuous for the inductive limit topology on C, and the
vague (o(M, C,)) topology of measures on M, which commute with
convolution:

T(f+g)=(Tf)xg (f,9eC.).

In order to do this, we introduce the concept of quasimeasure.
In Section 2, some of the Dbasic properties of quasimeasures are
established.

1. Pseudomeasures and their properties.  The concept of
pseudomeasure is already well-known (Kahane [9]). For completeness,
we set down the definition and derive several important properties of
pseudomeasures,

DerFiNiTION 1.1. We denote by P(G) the dual of A(G) (with its
topology as defined above). The elements of P(G) are called pseudo-
measures,

The Fourier transform of o€ P(G) is defined as follows: ¢ is the
continuous linear form on L'(X) given by

(1.1.1) a(f)=0o(f.) (feL'(X)).

Note that ¢ can be identified with an element of L=(X). This will
often be done. We define the convolution of two pseudomeasures via
the Fourier transform:

(1.1.2) (0,%0)" = 6,0, .
With this definition of multiplication and the topology as the strong
dual of A(G), P(G) is, under the Fourier transform, isometrically isomor-
phic to L=(X).

Note further that M,,(G)c P(G) and that we can easily define
multiplication of a pseudomeasure by a Fourier-Stieltjes transform of
a bounded measure:

(fo)(f) = o(ftf) (o€ P(G), e Mu(X), fe AG) .

It is necessary to be able to define the support of a pseudomeasure
and in order to make this definition, we establish a lemma on partitions
of unity for A(G).

LemMA 1,2, Suppose {2:}ier is a cover of G by open sets, Then
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there exists a locally finite family {f;};es of functions in A,(G) such
that to each jeJ, there exists at least one 1€l with [f;]CQ;, and
such that 0 = fi(x) =1, Sesfi(x) =1 everywhere in G, (If the
original cover 1s a locally finite cover by open relatively compact
sets, J may be chosen the same as I and the f; with [f;]C 2; etc.)

Proof, G is locally compact, so there exists a cover {Q%},e; of
G by open relatively compact sets such that for each '€ I’, there is
at least one 7¢I with QL. C Q,. Again, every locally compact T, group
is paracompact (Hewitt and Ross [7], Th. 8.13). Thus, we can find a
locally finite cover {2}'},e; of G by open sets such that, for each je J,
there is at least one ¢’ € I’ with 2}7 2. Then the sets 2}’ are relatively
compact, and {2%},e, is a locally finite cover of G by open relatively
compact sets. Now choose two further open covers of G, say {2%%},e;,
{21} ;e; such that

QAP (jed).

This choice is certainly possible (Bourbaki [1], Section 4, Th. 3).

For each j e J, choose ¢; € A*(G) with ¢, =1 on 27, @, = 0 outside
Q1 (Rudin [10], Th. 2.6.2). Then the family {p;};e; is locally finite,
Write f; = ¢,;/2p; (Jp; > 0 since {2}"},e, covers G). In order to show
fi€ A,(G) it suffices to show 1/Xp, is, on QY7 the restriction of an
element of A(G). Q% is compact, and {p;};es is locally finite; so there
are only a finite number, say ¢;, -+, @; of members of {p,};e; which
are not identically zero on Q77, Further, > .p; >0 on 077 and
2¢;, = pe A(G). Thus it suffices to show that, it K is a compact
subset of G, if o€ A(G) and if » > 0 on K, then on K, 1/p = 4 for
some € A(G).

Consider then the quotient Banach algebra B = L'(X)/I,, where
I, is the closed ideal of functions in L'(X) whose transforms vanish
on K. B is isomorphic to the algebra of restrictions to K of functions
in A(G). Its maximal ideal space is K, But ¢ >0 on K, so ¢| K is
invertible, whence the desired result.

DEFINITION 1.3. We say a pseudomeasure ¢ is zero on an open
set 2 G if o(f) =0 for all fe A(G) with [f]c 2. Using 1.2 and
the above definition, we define the support of a pseudomeasure.

DEFINITION 1.4, The support of a pseudomeasure ¢ € P(G), denoted
o] is defined as the complement of the largest open set on which ¢
vanishes,

Note that the support as defined in 1.4 coincides with the support
of a continuous function as usually defined, so there is no confusion
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in the notation [o].
It is of interest to be able to characterise the pseudomeasures
with point support, and we have the expected result:

THEOREM 1.5. If o is a pseudomeasure with point support {a},
then o = \e, for some scalar \.

Proof. Since ¢ is a pseudomeasure on G, we have
lo(F) = MIIfll.  (FeI(X)).

Suppose [o] = {0}. Now if £(0) = 0, ¢ > 0, there exists ke L' with [k]
in an arbitrarily small neighbourhood of 0,% = 1 on some neighbour-
hood of 0, ||%k|]; <2 and ||f+k|; < &M (Rudin [10], Th. 2.6.3). Then
o(fﬁ) = o(f) since [o] = {0}, and

lo(fR) | = M| f+kl. <e.

Hence o(f) =0,

Consider the continuous linear form on A(G) defined by &, &,(f)=
F(0). Write N = { Fe A(G): 7(0) = 0}, the null space of ¢. By our
above argument, o(N) = 0. Hence (Bourbaki [2], Section 4, Th. 1)
o = )&, for some scalar \.

2. Quasimeasures and their properties.

DEFINITION 2.1, Suppose K a compact subset of G. We define
D.(G) as the following vector space of continuous functions with its
associated topology.

Di(G) = {ue CG):w = 3% fi* g, f1, 0:€ Co.x(G) and
S ll fillell 03 lle < o0}

D, (G) is normed as follows:

Wl o = Inf {2311 i [l [ 95 ||t % = 25 fi% g5,
fiy 9:€ Cox(@) and 30| fiflel gsll < oo}

Evidently, Dg(G) C C,x1+x(G) and || %]l = 0x||%|lp, Where pr is the
measure of K.

DEFINITION 2.2. We define D(G) as the internal inductive limit of
the spaces D (G).

DEFINITION 2.3. The elements of D'(G), the dual of D(G), are
called quasimeasures. (Thus, s is a quasimeasure on G if and only if
s is a linear form on D(G) and s|Dk(G) is continuous for the topology
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of D (G), as defined in 2.1, for each compact subset K of G.)
THEOREM 2.4. Dx(G) 1s complete.
Proof., Suppose that (u,);7 is a Cauchy sequence in Di(G). It
will be sufficient to show that a subsequence of (u,) converges to an
element of D (G). Without loss of generality then, we may suppose

that ||, — % llpe =1/2" (n=1,2,...), Write ||u|lp.=C. We
may also write the following expansions:

Uy = kz_‘;lfw*gm

Upr1 — WUy = kz_if'rH—l,k *Gnt1,k (m=1,2,.-+)

with
Sl fullallgulla < € +1
and
Sl snsllallgunslle < 5 =1,2,02)
Define

U= fu*gy + fia* G+ fa*gu + fu*gu +
Clearly, u e Dx(G) since
[ fulloll 9ulleo + [ frellw I @iz oo 4+ o+ <C + 3.

We now show that w,—w in D,. Given ¢ > 0, choose a natural
number 7, such that $=,1/2" <¢ (n > n,); if » > n, then

U— Upys = U — [(Upyy — Uy) + o0 + (Uy — ) + w]
=futon % Gnyon T Sotos® Guios T Futst® Guign T 000

and

||u—un+1”DK ; ?1—

So %, — u in Dg(G).
We may now prove the following theorem.

THEOREM 2.5. D(G)c A(G), D(G) is dense in A,(G), hence is
dense in A(G), and the topology of D(G) is stronger than that induced
by A(G).
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Proof. Suppose that wueDg(G),uw = 3, fixg;, fi, 9:€C,x and
2 fillellgille < co. Write s, = X3t fi*xg;, so that s,eDr(G), and
s, — % in Dg(G). Also s, — w uniformly.

It follows from Theorem 1.6.3 of Rudin [10] that s, € A(G). Now
> fids
nt+1

< SVl l1d:]l. (by Holder’s inequality)

n+1

180 — Sull sy =

) é Z ||f¢§¢ ”Ll(x)

Nx n+1

= i l| fill:1lg:ll. (Plancherel’s Theorem)

< e 33117l -

where A is a constant. So ||s, — S, || s@ = M i1 || fi |l |1 95 || and
(s,)¢ is a Cauchy sequence in A(G). Hence s,— v say in A(G) since
A(G) is complete; so s,— v uniformly. Hence u = v. Since the
elements of D(G) have compact supports, we have shown that
D(G)c A(G).  Further, [|ullye =lim||s,||ue = M7 il 951l
and we have then that |||y e = Mell%||pge: this implies that the
topology of D(G) is stronger than that induced by A(G).

To prove that D(G) is dense in A,(G), suppose that fe A,(G) with
[f1= K, a compact set. Write (pg) for an approximate identity in
LY(G) with [[@g|li =1, pse C,x, for all B and consider fA— Pp* f.
Note that @g*feD(G) since @, feCy(G). Then since fe LX),
||Pelle =1, and Pg— 1 uniformly on compact sets we have that
I f— @p* fllae = |7 — gﬁﬁf}]wx) tends to zero. This completes the
proof of the theorem.

COROLLARY 2.6, D(G) is a dense vector subspace of C.(G) and if
feC,x, then f=limus where uge Dy, for some fized K.

COROLLARY 2.7. M(G)c D'(G) and P(G)c D'(G).

We now prove a theorem which gives a characterisation of those
quasimeasures which are measures,

THEOREM 2.8. A quasimeasure s is a measure if and only if
for every compact subset K of G, s|Dx(G) is continuous for the sup-
norm topology on Dg(G).

Proof. The necessity is obvious. The sufficiency may be proved
as follows: if s|Dg(G) is continuous for the sup-norm topology, then

s | Dg(G) has a unique continuous extension to the closure Dg(G) of



QUASIMEASURES AND OPERATORS COMMUTING WITH CONVOLUTION 467

D (G) in C, . .x(G). Now UxDx(G) = C.(G) by Corollary 2.6. We
have only to show that if e C,(G) and if ¢ = lim u, with u, € D (G),
and @ = limv, with v, € Dg(G), then lim s(u,) = lim s(v,). Without
loss of generality, suppose that 0e€ K;,K,. Then wu,¢€ Dg g,(G) and
v, € Di 1 x,(G) for all n, It follows immediately that s(%, — v,) — 0 since
U, — v, — 0 uniformly.

The definition of the convolution of a quasimeasure and a function
in C,(G) proceeds in the natural way via the tensor product. In order
to show this again gives a quasimeasure, we prove:

Lemma 2.9, For a given fe C,(G), the mapping T:g— f,*g 1s
continuous from D(G) into D(G).

Proof. Since ge D(G), geC,(G) and f,*ge D(G). T thus maps
into D(G).

To see that T is continuous, observe that if we restrict T to a
given D.(G), the restriction is certainly continuous. For suppose that
9;— ¢ in Dg(G); then g; — g uniformly over K + K, and f, x g, — fy *g
in D(G).

The proof is now complete.

Note next that f, * (&) = Sf(p)g(s + )y for f, ge C.G); so it is
natural to define sx fe D'(G) as follows

(2.9.1) sxf(g) =s(fvxg) (9 D(G) .

We now study the continuity of the map f—sxf. The result we
obtain will be improved in Section 3.

LEMMA 2.10. The mapping f—s=f from C,(G) into D'(G) is
continuous for the inductive limit topology on C,(G) and the weak
o(D’, D) topology on D'(G).

Proof. Suppose g€ D(G), (f;) a net converging to zero in C,
(K a fixed compact subset of G). Write K'=(—K)U{0}, K,=
K’ +([g]lU{0}). Then fi,*g€ Dg,and fi,*g—0in Dg,. So s*fi(g)—0.
Thus the restriction of the map f— s+ f to each C,x is continuous,
and it follows that the mapping f— sx*f is continuous from C,(G)
into D'(G).

As for measures and pseudomeasures, we need the concept of the
support of a quasimeasure, For this we need:
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LEMMA 2.11. If pe M,(X), and w = 3\ f;xg; is an element of
Dy(G), then

(2.11.1) H= | yudut) = 5| 070 « (-09dpn)
1s an element of Dg(GQ), and for all xe @G,

(2.11.2) H(x) = 3, (@) fi* gix) = f(x)u() .

(Note that the integrals appearing here are vector-valued integrals.)

Proof. It is clear that y~'u = > (x7'f)) * (X '¢:) is an element of
D.(G). Consider then the mapping y— 3w from X into D.(G).
This mapping is certainly uniformly bounded; we show that it is, in
addition, continuous. If y, x,€ X, then

) = (g — () = (Xag.)
is an element of Dg(G), and
Q) = (09s) — (o) * (094) ok
=N = x)fille 1 gslle + 1 filla 1O — %095 |leo
It follows that

x™u — % o = 220100 — X fillw 1193 Ml + 1 Fille 11 (X — Xo)gi []o]

But y— %, in X if and only if x-— %, uniformly on compact subsets
of G; and f;, g;€ C.,x(G); so if x— X, xy~'u— ¥;'u in D (G), and we
have established the continuity of the map ¥ — y ' from X into
D (G).

The measure g is bounded and Dg(G) is complete. Hence

S 1~udp(y) is an element of D(G) (Edwards [4], (8.14.14)). The
X

series for ¥~ is uniformly convergent in Dy (G) and its partial sums
are uniformly bounded. The second assertion of (2.11.1) follows.

(2.11.2) follows since the evaluation functionals are continuous on
D(G) (see Edwards [4], 8.14.1). This completes the proof of the
theorem,

DEFINITION 2,12, We say a quasimeasure s vanishes on an open
subset 2 of G if s(f) = 0 for all fe D(G) with support in 2. We say
two quasimeasures are equal on 2 if their difference vanishes on 2.

LemmA 2,13, If {2} is a family of open subsets of G and if
s=0 on 2; for all 1, then s =0 on 2 = U:2..
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Proof. Suppose fe D(G) with [f]c Q. Since [f] = K is compact,
there exists a finite number of members of {2}, say 2;, -+, £; which
form a cover of K. Then, by Lemma 1.2, there exist f, -+ -, f. € A(G)
with [f;]C2:,/;20, (§=1,---,n) and 21 f; =1 on K.

Since f; has the form S X' dpe(y) for some pe My, (X) and fe D (G)
X

for some K,, Lemma 2.11 implies that f;f € D (G) < D(G) and [ f;f] C 2,
Hence s(f;f) =0 since s =0 on ;. But f=33(f;f) so s(f)=0
and we have, since f was arbitrary, s =0 on £,

Now we are in a position to make our definition.

DEFINITION 2.14. The support of a quasimeasure is the complement
relative to G of the largest open set on which it vanishes,

REMARK, It is easy to see that for pseudomeasures, this definition
of support coincides with that given in 1.4, Similarly for measures,
the usual definition and the new definition of support coincide. We
shall write [s] for the support of a quasimeasure s,

Later we shall need to be able to write down a quasimeasure
which has compact support, and which is equal to a given quasimeasure
on a given open relatively compact set. To be able to do this, we
define what is meant by /s for pe M,(X), se D'(G).

LEMMA 2,15, If pre M, (X), the mapping w— fiu 18 continuous
Jrom Dg(G) into D(G).

Proof. By Lemma 2.11, the mapping is certainly into D(G). If
e De(@) and x € X, then
“X_Iu“Dxé ”uHDK' SO’

g = ||| -z |

Dk

< S 2% Lok | 2] (1)
< 1% o || 2] -

Continuity follows immediately.

We can now make our definition,

DEFINITION 2,16, If pe M,,(X), se D'(G), we define fise D'(G) by
(2.16.1) Hs(w) = s(ffw)  (we D(G)) .

Some of the most important properties of quasimeasures, in
particular their structural relationship with pseudomeasures, are
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deduced in Section 4 as corollaries of theorems proved in Section 3 and
other known results.

3. Operators commuting with convolution. The problem of
characterising those continuous linear maps from one space to another
which commute with translations or convolution is well-known. (See
for example Edwards [3], [5], Hormander [8].) We give a complete
characterisation in terms of convolution with quasimeasures, of those
linear operators 7T:C,— M which are continuous for the natural
(inductive limit) topology on C, and the vague topology of measures
on M, and which commute with convolution. For brevity, we shall
call such operators 7T multipliers from C, into M. We first prove a
useful lemma.

LEemMmA 3.1. Suppose that T is a multiplier from C, into M.
Then there exists a net (Tp) of multipliers from C, into M with the
Sollowing properties:

(i) Each T is defined by a measure g

Tof = pof  (feCo).

(ii) If K is compact subset of G, there exists a constant Cr > 0
independent of B such that

[(Tef) x9(0) | = cxllfll=llglle  (f,9€C.x) .
(iii) If f, g€ C,, (Tef) * 9(0) = (T f)  g(0).

Proof. Write (hg) for an approximate identity in L'(G), each hg
being continuous and with support in a fixed compact set K, and with
[|hgll, = 1. Define Tpf = hg+(Tf) (feC,). Since T commutes with
convolution, and hge C,, we have Tof = (Thg)*f = peg=f say. This
establishes (i).

Now each T} is linear, commutes with convolution, and maps C,
into M, If geC,,

(3.1.1) CTof, 9> = hp» T % gu(0) = LTS, (kg gu)vp

and hgxg,€C,. Hence Ty is continuous, and each T is a multiplier
from C, into M,
Suppose next that K is a fixed compact set, and consider the

mapping f——»S d|Tf| from C, into R. The mapping f—»S d|Tf|is
K K
a lower semi-continuous semi-norm on C,, hence is continuous since

C. is barrelled. So in particular, if K is compact, f—>S d|Tf| is a
-K
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continuous semi-norm on C, ., and there exists a constant A > 0 with
| d1TFI S nell flle (Fe o). Thus, if £, g€ Cu,

(Z7) < 90) | = | o= vaTr )]
(3.1.2) =| o= vd 7@

=gl | d177]
= hall £l e

In order to prove (ii), we have, for f, ge C,

[(Tef) 9(0) | = | kg (Tf) x 9(0) |
= |(Tf) = (hg x 9)(0) |

and hgxge C,  say, where K K’ and K’ is independent of 5. By
(3.1.2),

[(Tef)*9(0) | = el flle || g+ 9 |l
= cxllfll-1lgll-

where ¢, is a constant independent of AS. This completes the proof
of (ii).

(iii) follows immediately once we note that, g being in C,, the
functions hg+g are continuous and have their supports in a fixed
compact set independent of 3, and hg+ g — ¢g uniformly. Then (3.1.1)
gives the desired result.

We now proceed to prove our representation theorem.

THEOREM 3.2. (i) Suppose that T is a multiplier from C, into
M. Then there exists a quasimeasure s with

(3.2.1) Tf=sxf (feC)

(ii) Conwversely, suppose secD’, and define the operator
T:T,f=sxf (feC,). Then T, maps C, into M and is a multiplier
Jfrom C, into M.

Proof. (i) Suppose that T is a multiplier from C, into M. If
w=2fixg; with f;, 0:€Cor, 21| fill«llgille < oo is an element of
Dy, it follows immediately from (3.1.2) that >\(T'f:) * ¢:(0) converges.
We define t(uw) = S(T'f;) = 9;(0). This is a meaningful definition only
if > fixgi=0and > || fille|lg:lle < oo with f;, g; € C, x together imply
that >(7Tf;) xg:(0) = 0. Choose a net (T%) of multipliers satisfying
conditions (i)-(iii) of Lemma 3.1, and consider, for each B, the series
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sg = >u(Tef:) * 9:(0). We have that
S (Tf) * 00) | = Shoxllfill [
= e Sl fille Nl

Thus, the series s; are convergent, uniformly with respect to 8. But
by property (iii) of Lemma 3.1, T.f; ¢:(0) — Tf;* g;(0) for each 1.
Hence limg > (Tpf3) = 9:(0) = >3 (Tfi) x 9:(0). Now each Tj is defined
by a measure pz and

(Taf) + 9:0) = pipx fixg0) = | foegi(— n)dpul) .

—(K+K)

The series > f:*g; is a uniformly convergent series of continuous
functions each with support contained in K + K. It follows that

S Tafer 040) = 5 | £ 9:(— 0)dpatw)
=[S+ 0= ) |t
=0

since > f;*¢g; = 0. We have then that > (7'f;)*¢;(0) =0, and ¢ is
well-defined. ¢ is clearly a linear form on D, and from (3.1.2),

S (T7)+ 0.0 S SNl gl @eDy).

Hence |#(w)| = x|l ||, and ¢|Dg is a continuous linear form on Dy
for each compact subset K of G, i.e., ¢t is a quasimeasure. We now
show that T'f = ¢, xf (feC,).

From (2.9.1), if feC,(G) and g D(G),

¢t f(g) = t(fy *9)
= (Tf\) = 9(0)

= |o(— warr,)
= (T£)(g\) -

Hence t¢=f = (Tf,)y where (Tf,).(9) = (Tf,)(g,), or equivalently,
&= fv)y = Tf. But, by easy manipulations of convolutions and reflec-
tions, (¢ *fy)v(9) = (¢, * f)(g), and we get finally that T/ = ¢, * f (fe C,)
by the denseness of D in C,.

(ii) The mapping T, clearly commutes with convolution. Firstly,
we know that s« fe D’ if feC,. In order to establish that s fe M,
all we need do is show that s=xf|D, is continuous on Dy for the
topology induced by C, x,x. For geD,sxf(9) = s(fyv*g). If g;eDyg
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and ¢; — 0 uniformly over K + K, then f,*xg,— 0 in D, say, for
some compact K’. Hence s(f, *¢;) = s*f(9;) — 0 and s=fe M,
Continuity of T,. We show firstly that

(3.2.2) sxflo) =s(fu=9) (f,9€C).

By Corollary 2.6, we have that if geC,, then g =limg,; in C,x, for
some compact K, where g;€ D, But sxfe M, so s=xf(g;)— s=fg).
Also, since g;— g in C, x, fv*g;: — fv+gin D. Hence s(f, *g;) — s(fy *g)
and we have (3.2.2).

In order to show that the mapping f— s f is continuous, we need
only show that its restriction to each C, x is continuous. By virtue
of (3.2.2), this is evident,

Note. It follows from (3.2.2) and the definition of D(G), that
the space of multipliers from C, into M is isomorphic to the space of
quasimeasures over G, both being regarded as vector spaces.

4. Structural properties of quasimeasures. All the results of
this section depend directly on Theorem 2 of Edwards [5]. We state
this as:

THEOREM 4.1, The continuous linear operators T from C, (induc-
tive limit topology) into M, (vague topology of measures) which
commute with convolution are precisely those of the form

(4.1.1) Tf = s« f

where s 1s a pseudomeasure with compact support,

Note. Theorem 2 of Edwards [5] is stated in terms of operators
commuting with translations. 4.1 is equivalent to the theorem in its
original form since operators 7', continuous from C, into M,, commute
with convolution if and only if they commute with translations.

Form Theorem 4.1 we deduce immediately:

THEOREM 4.2, Every quasimeasure with compact support is a
pseudomeasure.,

Proof. If s is a quasimeasure with compact support, consider the
mapping T';: T(f) = s« f (fe€C,) from C, into M. In fact T, is linear,
maps C, into M, and commutes with convolution., By Theorem 3.2, it
is continuous, Again, by Theorem 4.1

(4.2.1) I(f)=txf=sxf (feC)
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where t is a pseudomeasure with compact support. This implies s = ¢.
For if f,geC,

(4.2.2) s = flg) = s(fv*g) =Sy *9)

and if s # ¢, we can choose @ = f,xge D with s(p)# t(p). This is
clearly impossible by (4.2.2) and hence s = ¢.

COROLLARY 4.3, Ewery quasimeasure with point support is a
scalar multiple of the Dirac measure at that point.

Proof. This follows from Theorem 1.5.
The principal structure theorem follows almost immediately from
Theorem 4.2,

THEOREM 4.4. (i) FEvery quasimeasure is a locally finite sum
of pseudomeasures (with compact supports).

(ii) Conversely, if T is a locally finite sum of pseudomeasures,
then T 1s a quasimeasure.

Proof. (i) Let {Q;};c; be a locally finite cover of G by open
relatively compact sets, and {f;}ie; @ partition of unity subordinated
to this cover as described in Lemma 1.2,

If se D'(G), fise D'(G), and [ f;s] is compact and contained in 2;.
Write o; = fis where o, is the corresponding pseudomeasure (Theorem
4.2), Then s = >};0; and the sum is locally finite since the family
{fitier is.

(ii) The proof of the converse follows from the fact (established
during the proof of Theorem 2.5) that if K is a compact subset of G,
then the topology of Dk(G) is stronger than that induced by A(G).

REMARK. Theorem 4.4 should be compared with Théoréme XXI,
Chapitre 3, of Schwartz [11].

Finally, we show that the apparently weak hypothesis that a
continuous linear operator, commuting with convolution, maps C, into
M implies the much stronger result that it maps L2 into LZ,, where
L2 and L2, are the spaces of square-integrable functions vanishing a.e.
outside compact sets and locally square-integrable functions respectively,

THEOREM 4.5. Suppose T is a multiplier from C, into M. Then
T can be extended to map L? into L2,..

Proof. Let s be the quasimeasure defined by 7' as in Theorem
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3.2, For feL! we define Tf = s*f = >,0;xf where s = 3,0; is an
expression of s as a locally finite sum of pseudomeasures. Then T'f is
a locally finite sum of pseudomeasures, hence (Theorem 4.4) a quasi-
measure, We show that sx fe L}, if fe L2

Suppose fe L? and that f = 0 a.e. outside A, where A is an open
relatively compact subset of G. Let B be any open relatively compact
subset of G. We show that s=f|Be L¥B). This will clearly imply
that s = fe Li,.

The behaviour of s f on B is unaffected by the behaviour of s
outside (— A) + B. For if s=3s on (— A) + B, we can show that
sxf=¢8=xfon B, In order to do this, suppose g € D(G) with [g] C B;
then [f,*glC(— 4) + B and s f(g9) = s(fv *g) = s'(fy *g) = "= f(g).
Hence s*f=s"+f on B,

Now choose pe A(G) with o =1 on (— A) + B and [@] compact
(Rudin [10], Th. 2.6.2)., Then @se D'(G) and s = @s on (— 4) + B.
Hence s« f = (ps)«f on B, But (ps)=fe L*G) since ps is a pseudo-
measure, fe L2, and (psx*f)" = (ps)'fe LX(X). Thus s=f|Be LXB),
and the theorem is proved.

5. Multipliers of type (p, q). Suppose that p,gell, ] and
denote by L? the linear space of bounded operators from L?(G) into
L*(G) which commute with translations. The elements of L¢ are called
multipliers of type (p, ¢). Hormander [8] has shown that if G = R»
and o > p > q, then L? = {0} whileif p < q and p # o, L is isomor-
phic to a certain space of tempered distributions, the operator T
corresponding to the tempered distribution d being defined by

Tf=d+f (feS)

where S is the space of rapidly-decreasing C> funections,

For a general LCA group G, Hormander’s proof goes through
without change to show that .2 = {0} if > » > ¢ and G is noncompact,
We shall now show, as a corollary of Theorem 3.2, that his characterisa-
tion of L{ for p =q can be established with the subspace of the
tempered distributions being replaced by a certain subspace of the
quasimeasures, For p = ¢, this subspace becomes a subspace of the
pseudomeasures.

THEOREM 5.1. Suppose p < q,p,q€[l, ] and that T is a mul-
tiplier of type (p,q). Then there exists a quasimeasure s such that

(5.1.1) Tf=sxf (feC,)

If p # oo, L} is isomorphic to a wvector subspace of D',
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Proof. T|C, is an operator from C, into M which commutes with
convolution, Furthermore, since 7' is continuous from L? into L7,
T|C, is certainly continuous for the inductive limit and vague topologies
on C, and M respectively, Hence, by Theorem 8.2, there exists a
quasimeasure s with (5.1.1) holding.

Note. If p = gq, the multipliers of type (p,q) are defined by
convolution with the elements of a subspace of the pseudomeasures.
This may be established by use of the Riesz Convexity Theorem and
the fact that L] = P(G). Another known result (Wendel [12]) is that
L} - Mbd-

5.2. In a recent research announcement [6], Figa-Talamanca has
given a characterisation of L2 as the dual of a certain space of
continuous functions which tend to zero at infinity. It is possible to
deduce this result from Theorem 5.1.
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