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HOMOLOGICAL DIMENSION OF ORE-EXTENSIONS

N. S. GOPALAKRISHNAN AND R. SRIDHARAN

Let S be a ring with unit element and let R = S{x, d} be
the Ore-extension of S with respect to a derivation d of S.
Our object in this paper is to show that [. gl. dimR=1+
l.gl. dim S, if S is a commutative Noetherian ring and d is
suitably restricted.

It wasshown in [3] that l. gl. dim R <1 + 1. gl. dim S. While equality
does not hold in general, we show that it does under suitable conditions
(Theorem 2, §5).

This is achieved in three steps. The first is to show that for any
ring S, any R-module M and an S-projective resolution for M, there
exists an R-projective resolution of M which “lifts” the given resolution
(Theorem 1, §3). The next step is to use this resolution to prove
Theorem 2 in the special ease in which S is a local ring (Proposition
1, §4). The final step consists in deducing Theorem 2 by the method
of localisation.

The authors would like to express their thanks to M. P. Murthy
and A. Roy for their kind help during the preparation of this paper.

2. Preliminaries on Ore-extensions. Let S be a ring with unit
element (denoted by 1), which is not necessarily commutative, and let
d be a derivation of S into itself. Let S{x, d} denote the Ore-extension
of S with respect to d (see [5]). We recall that B = S{x, d} is the ring
generated by an indeterminate 2 over S with the relations xs — sx = ds
for every s€S. We identify S with a subring of E. We collect here
some properties of R which will be used in the later sections.

(2.1) For any ring S’, a ring homomorphism @: S — S’ and an
element o€ S’, with the property ap(s) — p(s)a = @(ds), there exists a
unique ring homomorphism @: R— S’ such that @(z) = a and #|S = ¢.
(In fact R can be characterised by this property).

The proof is straightforward.

(2.2) Let S, S, be rings with derivations d,, d, respectively and
let ¢©: S, — S, be a ring homomorphism such that d,cp = @od,. Then
there exists a ring homomorphism @: R, — R, such that @|S, = o.

Proof. This follows from (2.1) by taking S’ =R,and a = xc R,.

(2.3) A left S-module M can be converted to a left-R-module if
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and only if there exists an f€ Homy (M, M) such that f(s.m) — s.f(m) =
ds.m, for every se S, me M.

Proof. If M is an R-module we may take fe Hom,(M, M) defined
by f(m) = x.m. The converse follows from (2.1) by taking

S’ = Homy(M, M), « = f and ¢:S— S’
to be the mapping which defines the S-module structure on M,

(2.4) If M is a projective left S-module, then M can be converted
into a left R-module.

Proof. We first remark that S can be considered as a left R-module,
In fact, with the notation of (2.3) we choose f = d € Homy,(S, S). By
a direct sum argument, it is clear that any free left S-module can be
regarded as an R-module. Now let M be any projective left S-module
and let M be a direct summand of a free S-module F. Since F' is a
left R-module, there exists an fe€ Homy(F, F') such that f(s.m) —
s.f(m) =ds.m;seS,meF. Let p: F— M be an S-projection of F' on
M. It is easily seen that g = fop| M satisfies g(s.m) — s.g(m) = ds.m.
Hence M can be regarded as an R-module.

(2.5) R becomes a filtered ring by setting F,R = 3., S.2%
The associated graded ring E°(R) of R is isomorphic to S|[x], the
usual polynomial ring in one variable x over S.

Proof. See [3].

3. Lifting of resolutions. Let M be a left R-module and let

Xi dL 4 Xi-—-l e XO £ M O

be an S-projective resolution of M. Our aim in this section is to
construct an R-projective resolution which “lifts” the above resolution.

We first prove the following

LemmA. There exist f; e Homy(X;, X;) such that
(i) fi(s.a) — s.fi(@) = ds.ax for se€S,ae X;;
(i1) diof; = fiody,1 =1, and eof, = foe,
where fe Homy(M, M) is the mapping given by f(m) = x.m.

Proof. Since X, is S-projective, it follows from (2.4) and (2.3)
that there exists an fj € Homy(X,, X;) such that fj(sa) — sfj(@) = ds,«
for seS,aec X,., The map cof; — foe: X,— M is easily verified to
be S-linear. Since X, is S-projective there exists an f!’ ¢ Homg(X,, X)
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such that eof] — foe =¢of;. We choose f,=f, —f;’. Then (i) and
(ii) are verified for ¢ = 0.

Assume inductively that f; 0<j<7—1 have already been
defined satisfying (i) and (ii). Since X, is S-projective, there exists
fie Homy(X;, X;) such that f/(sa) — sfi(a) =dsa for se S, acX,.
The map d;of] — fi_iod;: X; — X, , is easily verified to be S-linear.
We have, (with the convention f, = f and d, = ¢),

di——l(di °fi’ — fi—1 © dz) = —d; ofi 40 d;
= —fisod;_;od; (by induction)
=0,
Hence the image of X; by d;of! — fiiod; is contained in the kernel
of d;_, = Im.d;. Since X; is S-projective, there exists f{’ € Homg(X;, X;)
such that d;of! — fi_sod; = d;of!. We may choose f; = f{ — f!’ and

f: satisfies (i) and (ii). This completes the proof of the lemma.
We set X_, = 0 and define for 1 = 0

X=RR®X.+Ry® X,_,,
S S
where y is a dummy. We set d, =0 and define for 7 =1, the
R-homomorphism d,;: X; — X,_, by
and
dyRa)=yQRdi@ + (—1)"2 Q@ + (—1)1Q fiu(@), @’ e X;_,.
We define the R-homomorphism é: X, = RQ X, — M by
8

Ll Ra) =c¢ca),ackX,.

THEOREM 1. The sequence

(%) e X R X M0

is an R-projective resolution of M.

Proof. For ac X, éod (1R a)=i1lQRda) = ed(ax) =0, and for

aeX,éod(yQRa) =éxRa — 1R fia))
= fog(a') —eof(a’)=10.
For ¢ = 1, we have
died(l1Qa) =1Qd;_oda=0,acX,,
and
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di_so Ji(?/ R a)
=di [y @did + ()2 + (1)1 Q fii(@)], & € X,
=y disodi, + (1) Qd, ' + (—1)71Q fidi
+ (=) Qdin + (1)1 Q diiofi
= (=1 Q (disoficy — fieodiy),
(with the convention that f_, = 0)
=0,
Thus () is a complex of left R-modules. To prove that the complex is
acyclic, we define a suitable filtration on the complex whose associated

graded is acyclic. By a well-known lemma on filtered complexes the
acyclicity of (x) follows immediately, For 7 = 0, let

F,%=F,RQ X+ F, R.y® X,

where {F,R} is the filtration on R defined in (2.5). We define
F,M =M for every p.
fIt is easily seen that {F,X,} defines a filtration on X; and that

d(F,X)cF,X,, for =1 and ¢F,X,)C F,M. We thus get for
[p =0 the complex
_ EXd) - _ EX
- — E)(X;) — EXX;_)— -+ — E)(X,) — E)(M)— 0.

We note that E(M) = 0 for p = 0 and EJ(M) = M.

Let S[x] denote the polynomial ring in one variable z over S.
We regard M as an S[x]-module by setting M = 0. We set X', =0
and define X/ for © = 0 by

X/ = Sp[w] @ X + Sp—l[x]‘y @ X,
We set d;=0 and for ¢ =1 define the left S[x]-homomorphism
di: X! — X!, by
dlRa)=1Rda, ac X;,
dyRa)=yRd,.a' + (-)"cQa,’e X, ;.
We define the S[x]-homomorphism &': X — M by setting
gl a)=c¢a).

It is easily verified [4, p. 210] that (X, d}) is a left S[x]-projective
resolution for M.

Let S,[x] be the p'* homogeneous component of the usual gra-
dation of S[x] given by powers of . We introduce a gradation on



HOMOLOGICAL DIMENSION OF ORE-EXTENSIONS 71

X! by setting
X = S,|«] (%) X+ S,lxly @ X ..

We take the trivial gradation on M i.e., M?» =0 for p>0and M°= M,
It is easily seen that di(X/?) c X/?, and &'(X;?)  M?® for every p. We
thus get for every » an exact sequence

,
» e!p

d.
(%) X — X!, 0? M 0.

Clearly EYX,) ~ X!/» and EYM)~ M? for every p. Since for any
reF, R and &' ¢ X;_,, we have r Q fi_(a') e F,_,X,_,, it follows that
EXd,) = d?. Since () is exact, it follows that (EYX)), EXd,) is
exact and hence (x) is exact. Since X, is clearly R-projective, the
theorem is proved.

4. The case of local rings. Our aim in this section is to prove
the following.

ProposITION 1. Let S be a (commutative, Noetherian) local ring
and let M denote its unique maximal ideal. Let d be a derivation of
S such that d(S)c M and let R = S{z, d}. Then

lgl.dmR=1+ gl.dim S .

For proving this proposition, we need the following.

LeEMMA. Let S be a commutative ring and let M be an R-module. j
Suppose

0— X, - x, Y X s M—0

is an S-projective resolution of M. Assume that the following
conditions hold.

(1) X, ts S-free of rank 1,

(2) There exists an S-module N with *N = 0 and Ext'(M, N) +
(0).

Then hd ;M = n + 1.

Proof. Using the complex (x) of Theorem 1, we find that hd,M <
n 4+ 1. We now compute Exty(M, N') for any R-module N’, We have

Extz"(M, N') = Homg(X,, N')/B"

where B" is the set of all ge Homs(X,, N’) such that there exist
9: € Homy(X,, N’) and g, Homy(X,_;,, N’) with

g(@) = go(d,@) + (—1)*"wg(@) + (—1)"g.(fa())
for any ae X,.
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Let B be a free generator of X, as an S-module and let f,(8) =
sB;seS. If ge B*, we have

9(8) = 9:(d.B) + (=1)" (& — 9)9.(B) .

Let 6 be the automorphism of R such that 6(x) =« + s and 4|S =
identity. (This exists in view of (2.1)). If we choose N’ = ,N (i.e.,
N considered as an R-module through 0), we find g(8) = g.(d.B)
and hence g(a) = g,(d,«) for any aeX,. Thus, B"=Br=
{9 € Homy«(X,, N") | g(a) = g.(d, ) for some g,€ Homg(X,_.N’) for every
ae X, ,}. However, using the resolution (X;, d;) for M to compute
Ext, we find Exty(M, N') ~ Hom«(X,, N")/By. Hence

Exty"(M, N') ~ Extx(M, N’)
~ Exti(M, N) = (0) ,

since N and N’ are isomorphic as S-modules. This proves the lemma,

Proof of proposition. By [2, p. 74, Prop. 2], it follows that
gl.dim R = gl. dim S, Thus, if gl. dim S = -, we have gl. dim R = <
and the proposition is proved. We therefore assume that gl. dim S =
n < oo, If M= S/, we have hdsM = n, Let

0 X, X, i X M —— 0

be the “Koszul resolution” for M [1, p. 151]. Since X,=FE:(y,, -+, ¥.),
where ES(y, -+, ¥.) is the nth component of the exterior algebra on
Yy, *++, Y, over S, condition (i) of the above lemma is satisfied. Since
d(S)c M, it is clear that M can be regarded as an R-module satisfying
xM = 0 (See (2.8)). Since Extx(M, M) #+ (0), [1, p.153], condition (2)
of the lemma is satisfied with N = M. Thus, by the above lemma,
we have hd,M = n + 1. Hence gl.dimR = n + 1. Since gl.dim R <
n + 1 [6, Th. 1 or 3], the proposition is proved,

5. The case of Noetherian rings. In this section, we prove
the following

THEOREM 2. Let S be a commutative Noetherian ring and let d
be a derivation of S such that any one of the following two conditions
1s satisfied:

(1) d(S) < Radical of S,

(2) d(S) generates a proper ideal of S and Krull dim Sy, is
the same for all the maximal ideals M of S.

If R = S{z, d}, we have

lLgl.dimR=1+ gl.dim S .
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Proof. As in the proof of Proposition 1, we need only prove that
l.gl.dimR =1+ gl.dim S assuming gl. dim S < ., Since gl.dimS =
supyy, gl. dim Sy, where % runs over all the maximal ideals of S, it is
clear that under either of the conditions of the theorem, there exists
a maximal ideal 9t such that gl.dim S = gl. dim Sg, and d(S) C M.
The derivation d of S induces a derivation d of Sy, if we set

g(f?) =988 —8.d8 5 geg sem.
s s
It is clear that J(Sim) C MMSyy,. Hence by Proposition 1, § 4, we have

L. gl. dim Sgy{w, d} = 1 + gl. dim Sep
=14+ gl.dimS.

Thus, the theorem will be proved if we prove the following

LEMMA. If IR is any maximal ideal of S, we have

L. gl. dim Sfe, d} = 1. gl. dim Sz, d} .

Proof of the lemma. Let us set R = S{x, d} and R = S,{x, d}.
Let 7:S— Sy, denote the ring homomorphism defined by 7(s) = class
of s/l. Since doy = 7od, 7 induces (see (2.2)) a ring homomorphism
7: R— R such that 77| S = 7.

We first prove the following two statements:

(1) R is R-flat as a right R-module (through 7).

(2) If M is any left R-module, there exists a left R-module M’
and a left R-isomorphism M~ R ®, M’.

The left Syy-isomorphism ¢ :Sgy ®sR— R given by o(1 ® o) =
x'e R satisfies (1 @ f) = 7(f) for any fe R. We have

P(L ® f9) = 7(f9) = ()N (9) = L QR 1)(9) .
Thus, @ is an isomorphism of right E-modules. Since Sy, Qs R is right
R-flat, (1) is proved. Let
P M—s0
be an exact sequence where F, and F are R-free with bases {e,} and
{fe} respectively. We then have

Med) = 77<sl> %71]. (@ap)fs; Gup€ R, 5.6 S — M.

a

Let 6 be the R-automorphism of F, defined by 6(e.) = 7(s.)e.. Let
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N = Nof. We then have
N(ea) = 3 (@),
B 7

and the sequence

P2 F A M—o

is exact. Let F, (resp. F') be the free R-module generated by {e.}
(resp. {fs}) and let V: F', — F' be the R-homomorphism defined by

X"(ea) - %“ aaﬂfg .

It is easily seen that if we take M’ = coker A/, we have M~ RQ M'.
R

This proves(2). We now complete the proof of the lemma,
Let M be any left R-module and let M’ be a left R-module such
that (2) is satisfied. Let

X, - X i X, —— M —— 0

be a resolution of M’ as a left R-module. Then

FRX % EQX, ,—  — B®X,— M— 0
R R R

is exact in view of (1). Since R® X, is R-projective, it follows that
— _ E
(RRX;,1®d;) is an R-projective resolution of M. In particular,
R

we have hdzM < hd M’ < gl. dim R. Since M is arbitrary, it follows
that gl.dim B < gl. dim R, This proves the lemma and hence the
theorem.

REMARK. Let S= K][«,, :--,2,] be the polynomial ring in » vari-
ables over a field K. It is well-known [7, Chap. III Cor. 4 to Th. 5]
that Krull dim Sy, is the same for all maximal ideals 3t of S. Let
d be a K-derivation of S given by d(xz;) = f;. Then the derivation d
satisfies condition (2) of Theorem 2 if and only if f;, 1 <7 =<n are
not coprime and in this case we may apply the theorem and we have
gl.dim R =% + 1. This includes the special case of Theorem 1 of
[6] in which K is a field.
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