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ON THE DEGENERACY OF THE KEPLER PROBLEM

VICTOR A. DULOCK AND HAROLD V. McINTOSH

In an earlier paper we have shown a method which may
be used to comstruct an SU(n) group as the symmetry group
of the harmonic oscillator in classical mechanics. The method
is applicable to quadratic Hamiltonians, and was applied in a
subsequent paper to the charged harmonic oscillator in a
magnetic field. We now apply the technique to the Kepler
problem, which may be made equivalent to a harmonic oscillator
by a suitable transformation. An SU(3) group is found,
generated by constants of the motion which are the angular
momentum, the Runge vector, which points to the perihelion,
and a vector along the line of nodes. Different groups are
found by separation in spherical and parabolic coordinates,
while yet another group is found by inspection in parabolic
coordinates. One purpose of our investigation is to find
symmetry groups for quantum mechanical problems, While our
results dispel the thought that there might not be sets of
constants of the motion closed with respect to Poisson Brackets
and thus generating a Lie symmetry group, they do show that
the functional relationship involved may make it very difficult
to use the correspondence principle to construct satisfactory
quantum mechanical operators. Our SU(3) symmetry group is
not isomorphic to the R(4) symmetry group of the hydrogen
atom found by Fock and Bargmann; the angular momentum
and Runge vector are nonlinear functions of a subset of the
generators of our SU(3) group. It is not possible to find an
operator generalization of these functions which can be satisfied
by irreducible representations of SU(3) and R(4).

Among the textbook problems of quantum mechanics, the harmonic
oscillator and the Kepler problem have been particularly interesting
because they both display a considerably higher degree of degeneracy
than would be expected on the basis of their spherical symmetry.
Even the two dimensional versions of these two problems display much
more than the two-fold degeneracy which would be expected on the
basis of the circular symmetry of their potentials.

The origins of this excessive, or “accidental” degeneracy have been
known for some time, since Fock [9] in 1935 showed the equivalence
of the bound state motion of the Kepler problem to force free motion
on the surface of a hypersphere. The four-dimensional rotation group
thus placed in evidence by a stereographic projection from momentum
space has irreducible representations which adequately account for the
observed degeneracy. Demkov [6] has recently inquired into the
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philosophical aspects of the question, for it still remains an open ques-
tion as to when one has discovered “the” symmetry group of a
Hamiltonian,

Laporte and Rainich [16] showed how stereographic parameters
could lead to accidental degeneracy in much the same way as Fock’s
analysis, since many types of motion could be shown to be equivalent
to force free motion on a hypersphere, and thus would possess the
hidden symmetry of a higher dimensional rotation group. By using
such methods Jauch and Hill [15], Hill [13], and Saenz [23] sub-
sequently discussed the harmonic oscillator, Kepler problem, and the
rigid rotator.

Although one is trying to solve an essentially quantum mechanical
problem, one is eventually drawn to its classical analog, for it seems
that the degeneracy in the quantum mechanical version is closely re-
lated to the existence of bounded closed orbits in the classical problem.
In this respect it seems that the three problems mentioned are sub-
stantially the only ones possessing accidental degeneracy [23, Intro-
duction], for their potentials are the only ones possessing spherical
symmetry for which the orbits are bounded and closed. There are
sufficient conditions in the statement of this latter theorem to provide
a few loopholes - - - cyclotron motion in a uniform magnetic field being
an example which we have discussed recently [7].

In order to understand the circumstances under which degeneracy
might arise, and its relation to the bounded, closed orbits we have
sought a different principle from the hidden symmetry introduced by
stereographic parameters, which would yield a classical symmetry group.
It has been introduced in an earlier paper [8], in which we dealt with
a quadratic Hamiltonian, By the use of the Poisson Bracket (P.B.),
such Hamiltonians may be regarded as linear operators acting on
functions of the phase space coordinates and momenta, Their eigen-
values occur in negative pairs, which allows the construction of
constants of the motion as products of the eigenfunctions belonging to
a negative pair of eigenvalues, In this way the possible constants of
the motion may be accurately determined, and the Lie groups which
they determine may be investigated. Once this is done quantum
mechanical generalizations may be considered,

The result of this approach is that there will be a symmetry group
isomorphic to an unitary unimodular group SU(n), whenever there are
degenerate eigenvalues in the operator representation of the Hamiltonian.
Such degenerate eigenvalues may occur on more general grounds than
the spherical symmetry of the potential. In faet, for the isotropic
harmonic oscillator they occur on the simple grounds that an n-dimen-
sional oscillator is separable into » identical 1-dimensional oscillators,
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Thus a permutation symmetry of the Hamiltonian is sufficient to invoke
a unitary unimodular symmetry of the entire system.

Since this method is based on the properties of linear operators, it
would seem at first sight that it would be applicable only to quadratic
Hamiltonians, However, one has to think of the Hamilton-Jacobi theory,
by which all mechanical problems are reduced in principle to force free
motion in some nonEuclidean space. A method similar to this has been
used by Gardner [11] in his theory of adiabatic invariants. The
problems remaining, although quite nontrivial, are to identify the
topological properties of this final space and to effectively discover the
change of coordinates effecting the transformation.

If we grant the reduction of mechanical problems to force free
motion, then by introducing polar coordinates we can obtain circular
orbits in yet another nonEuclidean space, and effectively a quadratic
Hamiltonian, Thus it would seem that potentially there is an SU(n)
symmetry group for every problem in classical mechanics, Outrageous
as such an assertion seems at first sight, it happens that the problem
lies not with the ewxistence, but rather with the witility of such a
symmetry group. By this we mean that the transformation which
yields the eventual equivalent harmonic oscillator may be very com-
plicated, and in particular will not be a single valued function. Thus,
even though a classical symmetry group may exist, it may be quite
impossible to use the correspondence principle to construct an analogous
group of operators for the quantum mechanical version of the problem.
This failing is already apparent for the anisotropic harmonic oscillator
when the frequencies are incommensurable,

By applying these methods to the Kepler problem, with its known
degeneracies, this approach is further illuminated. Although Fock’s
paper represented the first identification of a dynamical symmetry
group for the Kepler problem, constants of the motion themselves had
been known at least from the time that Newton formulated the problem
by means of the calculus, and were a conspicuous feature of most
textbooks on analytical mechanics [24]. In addition to the angular
momentum

N

(1) L=7"xDp,

which stands perpendicular to the plane of the orbit, the Runge vector
(2) E=Lfxp 1
mze’ r

was known to be a constant of the motion. It is a vector pointing to
the perihelion and whose magnitude is the eccentricity of the orbit,
The fact that it is constant stabilizes the orbit. When the 1/r attractive
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potential is perturbed, the perihelion processes, and the Runge vector
is no longer constant, Only by destroying the spherical symmetry of
the potential is the plane of the orbit altered, and the angular
momentum rendered nonconstant,

Bargmann [2], in a commentary on Fock’s paper, showed that the
components of these two vectors generated the Lie group R(4), which
was known to be the symmetry group of the Kepler problem on account
of Fock’s stereographic projection from the surface of a hypersphere.
However, Pauli [21] had used the commutation rules for the components
of these vectors to solve the quantum mechanical problem of the hy-
drogen atom already in 1926, extending an earlier result of Lenz [17],
and O. Klein [14] had noted that the commutation rules were those
of the orthogonal group R(4).

Most of these authors had noted that between the two vectors L
and R there were six constants of the motion, in addition to the
Hamiltonian H, itself. The Hamilton-Jacobi theory only requires five,
in addition to H. The existence of two identities

(32) LA=0
and

(3b) L + A* = H*
where

(4) A=RN—3E

not only reconciles the number of constants, but is useful in using the
matrix mechanics to solve the hydrogen atom. The fact that there
are already two redundant constants involved in defining a symmetry
group obscures the fact that the Kepler problem possesses other signifi-
cant constants, such as a vector pointing along the line of nodes.
The scheme which we have proposed would exhibit SU(3) as a
symmetry group of the Kepler problem, with eight constants of the
motion, in addition to H. This is in fact the result of our analysis,
the additional redundant constants fixing the line of nodes. Since
there is no isomorphism between SU(3) and R(4), and in addition the
dimensions of their irreducible representations are different, we are
rather embarassed by our new found symmetry group, As it happens,
there is a functional relation between some of the generators of SU(3)
and those of R(4), such that the commutation rules of both groups
will be satisfied. The functional relationship, which works with respect
to Poisson Brackets, will apparently not work for noncommutative
operators and commutator brackets. Although we have avoided a
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contradiction in this way, there is evidence of a deeper relation, which
needs further careful study. For instance, one is reminded of the
relation between Coulomb integrals and Wigner coefficients when he
sees that one could replace the angular momentum by the radial action
in the group SU(3) [20].

In addition to the Kepler problem in three dimensions, many of
the authors we have cited have studied the two-dimensional version
obtained by taking the orbital plane. Alliluev [1] considered the problem
generally in n-dimensions, while Loudon [18] has obtained an unexpected
degeneracy even in one dimension, Also, several authors have treated
variants of the Kepler problem, such as introducing rotating coordinates
to overcome relativistic corrections [3, 4] or considering a superimposed
uniform force field [22].

The choice of a coordinate system in which to separate the Kepler
problem influences the nature of the symmetry group which we obtain.
Since the essential features of the problem are already present in two
dimensions, we have separated the two-dimensional Hamiltonian in
both polar and parabolic coordinates. The generators which we obtain
for an SU(2) group in each case are quite different, although functionally
related. In fact, we obtain the Runge vector directly in the parabolic
coordinates only by making a fortuitous substitution which ocecurs to
us, and not by following our theory rigorously.

2. The two dimensional case in polar coordinates. The
Hamiltonian for the two dimensional Kepler problem in polar coordinates
is

(5) H = (1/2)(P} + Py/r*) — 1/r

where the mass and the force constant have been chosen equal to
unity, The corresponding Hamilton-Jacobi equation is

(6) (aaif)2+%(%%>2—2(w+ 1) =0,

where W is the total energy and the characteristic function S is given
by

(7) S(r, ¢) = S,(r) + Ss(9) .
Hence

(8a) P, = 6S/or

and

(8b) P, = 3S/3¢ .
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Since the partial differential equation (6) has no ¢ dependence P, =
0S/0$ is a constant and is, in fact, the angular momentum of the
system. Solving (6) for P, = 3S/or one finds

(9) oS/or = P, = [2W + (2/r) — P}/r*]"*.

The action variables J, and J; are given by the integrals
(10a) J, = X P.dr
(10b) Jy = S Pyds .

The last equation can be integrated immediately since the integral over
one cycle is simply an integral from 0 to 27, hence

(1) Jy = 21P, .

The integral in (10a) can be evaluated by a contour integration as
described in Born [5] and the result is

(12) J. = [2(—-2W)F] — J, .

The angle variables w, and wg; which are canonical coordinates and
conjugate to J, and J; are given by

(13a) w, = 08/oJ, = g(aP,/éL)dT
and
(13b) w, = 08)3J, = S(&P,/&Jd,)d'r + S(&P¢/3J¢)d¢ :

Upon performing the integrations

(14a) w, = (U — € sinu)/2w

(14Db) wy = [u — esinu — tan™"(y/x) + ¢]/27 ,

where the elliptic anomaly u is defined through

(15) r=a(l —ecosu),

a being the semi-major axis and & being the eccentricity of the ellipse,
(16) a=—Wj2

am e=1+2WP;.

By choosing ¢, to be the azimuth of the perihelion,
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(18a) x = 1rcos(p — @)

(18b) y=rsin(g— g,

and (14b) reduces to

19) wy = (u — esinu + ¢,)/27 .
Solving (12) for the energy in terms of J, and J,

(20) W = 2n*/(J, + J4)°

and hence the frequencies v, and v, are degenerate i.e.,

(21) v, = vy = 0W/od, = OW[dJ, .

Thus the quantities aa*, bb*, ab*, and a*b are constants of the motion
where

(22a) a = V' J,[21 exp (2wiw,)
and
(22b) b = V' J,/2x exp (2wiw,) .

These quantities satisfy the following P.B. relations
(23) {a, a*} =1{b, 6"} =1

here one uses the fact the J’s and w’s form a set of canonical co-
ordinates and momenta,

Using the technique of our earlier paper [8], we take the following
four quantities as constants of the motion:

(24a) H = aa* + bb*
(24Db) D = aa™ — bb*
(24c) K = ab* 4 a*b
(244) L = i(ab* — a*b) .

Of these constants H commutes with the other three and is a function
of the Hamiltonian, namely, it is inversely proportional to the square
root of the energy. The three constants K, D, and L satisfy the
commutation relations of the group SU(2) or R(3),

(252) {K, D} = 2L
(25b) {L, K} = 2D
(25¢) (D, L} = 2K .
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Although they have no simple interpretation as constants of the motion,
one can make a mapping of these constants which preserves the
commutation rules, The new constants can be interpreted as the
angular momentum and the two components of the Runge vector [23].
The mapping is

(26a) K— K' = K[2 + (H + D)/(H — D)]*"*
(26D) L— L' = L[2 + (H + D)/(H — D)]'*
(26¢) D—D =H-—D.

These constants satisfy the rules

(27a) (K', D'} = —2L'
(27b) (D', L'} = —2K"
(27c) (L', K"} = —2D' .

They are a direct consequence of the commutation rules for K, L, and
D so that this mapping is valid for any SU(2) group where use must
be made of the identity

(28) H*= K*+ L*+ D*,
K’ is essentially the x component of the vector P where
- _— e B S 0
(29) P— BV =3E = (—ev/=2E) | “*? ‘
sin ¢,

and E is the Runge vector, while L’ is the y component and D’ is
the angular momentum.

3. The two dimensional Kepler problem in parabolic co-
ordinates. In parabolic coordinates, defined by

(30a) x = py
(30b) y = (¢ — V)2

and where m = ¢ = 1, the Kepler Hamiltonian is
(31) H =[P} + P — 4]/[2(¢* + v)] .
From the Hamilton-Jacobi equation

(32a) P, =[2Wy + 2a,]

(32b) P, = [2Wy* + 2a,]'
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where

(33) a+oa,=2,

The action variables defined by

(349) J, = SOPidqi

give

(35a) J, = —2ra,)V —2W

and

(35b) J, = —2na,)V—2W .
Solving Egs. (32) and (385) for «, and «, and equating the solutions
(362) —J .V =2W/@2r) = [P} — 2W£]/2
and

(36b) —J V' —2W/(@2r) = [P — 2Wv*]/2 .
Hence

(37a) J, = —mV —2W [ + P (—2W)]
and

(37b) J, = —nV —2W[* + P}(—2W)].

The form of these latter two equations suggests that two new variables
be defined

(382) a=p+ iP,V —2W
(38b) b= v+ iP,)/=2W,
so that

(392) J,= —nvV —2W aa*

(39b) J, = —mV/"2Wbb* .

Both a and b are very similar to the harmonic oscillator operators in-
troduced in our earlier paper [8] and by analogy one would expect to
find that quantities proportional to ab* and a*b are also constants of
the motion. This is in fact the case. Taking real and imaginary parts
of these quantities and normalizing, the constants are

(402) K = —[ab* + o*b|V —2W/2
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and
(40D) L = —i[ab* — a*b/ —2W/2 .

The third independent constant can be chosen to be the difference be-
tween J, and J,

(40¢) D = [aa* — bb*[V/ —2W/2 .

It is not difficult to verify that these constants satisfy the commutation
relations of the generators of SU(2) or R(3) i.e.,

(41a) (K, L} = —2D

(41b) (L, D} = —2K

(41c) (D, K} = —2L,

where

(42) {a*, a} = {b*, b} = 2i/V —2W .

It should be noted that in this case the angle variables w, and
w, were not used. This occurred only because a similarity was noted
between the constants of the motion J, and J, and the constants of
the motion for the harmonic oscillator, Implicit in the definitions of
a and b are two variables, denote 8 and ~, which are conjugate to
J, and J,., These variables are

_ tan~" (P,/V/ —2Wp)

(43a) 8 v
and
(43b) y — tan” (P.)V —2Wy)

2

It is easy to verify that these are conjugate to the action variables
for

(44a) v, J.}=1{BJ} =1
(44b) fv,Ju} =148, J.}=0.

However if one evaluates the formulas for the angle variables one
does not obtain the same results. It should not be surprising to find
a set of coordinates conjugate to the action variables which are not
the angle variables because for a given set of momenta the set of
canonical coordinates is not unique. This occurs because one can al-
ways add a total time derivative to the Lagrangian, which is a function
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of g, ¢, and ¢.

The constants K, L, and D have remarkably simple interpretations,
K and D are the  and y components of the vector P = KV —2W
where R is the Runge vector, while L is the angular momentum, This
can be verified by substituting equation (38) into equations (40) and then
transforming either to rectangular or polar coordinates.

4. The Kepler problem in three dimensions. Using the same
units as in the previous case, the Hamiltonian for the Kepler problem
in three dimensions is

(45) H = [P} + P}/r* + P}/(r*sin’* 6)]/2 — 1/r .
Setting up the Hamilton-Jacobi equation and separating gives
(46a) Py = 0S/0p = ay = constant

(46b) P, = 05/66 = [aj — aj/sin® 6]/*

and

(46c¢) P, =o0S/or = [2W + 2/r — aj/r*]"*,

where «, and a, are separation constants, «, being the magnitude of
the z component of the angular momentum and a, the magnitude of
total angular momentum. Since the potential is central the orbit is
planar and the normal to the plane is necessarily parallel to the angu-
lar momentum, Denoting by A the dihedral angle which the orbital
plane makes with the zy plane one can deduce that

47) cos B = ay/a, .

Solving for the action variables gives

(48a) J. ¢ = 277.'6(4, = 27 P, £y
(48b) Jo = 2[ay — ay]
(48¢) J.o= —dy—Jy + 21V 2W

and from the last equation it follows that
(49) W = —2r%[J, + Js + J4J .

In the plane of the orbit we introduce the rectangular coordinates
p and v, where the g axis is along the major axis of the ellipse and
the origin coincides with the center of force and the origin of the
polar system. In this system

(502) 1t =17 coS (Y — )
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(50D) v =rsin(y — ),

where + is an angle measured from the g axis to the particle and +,
is the angle to the perihelion.
The angle variables are

(51a) w, = S(aPr/aJr)dr — [w — esinu]/2n
oy P g(ap,/aJo)w + S(&Pg/BJg)dﬁ
= [u — esinu — tan™" (v/¢1) + sin™* (cos 8/sin B)]/27
w, = S(&P,/&Jd,)dr + S(aPe/aJ¢)d0 n S(&P¢/8J¢)d¢
(51c)

= [u — esinu — tan™ (v/y) + sin™" (cos ¢/sin B)
— sin™ (cot §/tan B) + ¢]/27

where w is defined in (15) and ¢ in (17). Using equations (50) it follows
that

(52) tan™ V/g) = ¥ — Y -
It follows from Fig. 1 that sin~ (cot d/tan B) is the projection of the

~— 0 r
/ Y
4
¢
Q
A
T

FIGURE 1.

Three dimensional coordinate system for the Kepler problem.
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angle « onto the plane in which ¢ is measured i.e., the xy plane,
which shall be denoted 2. It also follows that sin™ (cos §/sin B) is the
angle +», where the line of nodes has been chosen to coincide with the
major axis of the ellipse. Hence, the line of nodes makes an angle
(6 — 2) with the z axis., Rewriting (51b) and (5lc) results in the
following set of equations,

(53a) Wy = Ju — esinu + 4 )/27

(53b) wy = [u —esinu + 4, + ¢ — 2/27 .
By defining

(542) a = V'J,2x exp (2miw,)

(54b) b = V' Je/2m exp (2miw,)

(54c) ¢ = V7,21 exp Criws)

one finds the following nine constants of the motion: aa*, bb*, cc*, ab*,
a*b, be*, b*c, ac*, and a*c, These constants are the generators of the
group SU(3). The constant angles B, v, and (¢ — 2) and also the sum
(¢ — 2 + +,) can be expressed in terms of the constants,

(55a) Sin 4, = i[ab* — a*b]/2V/ aa*bo*
(55b) o8 +r, = [ab* + a*b]/2V aa*bb*
(55¢) sin (¢ — Q) = i[bc* — b*c]/2V/ bb*cc*
(554d) cos (¢ — Q) = [be* + b*c}/2V bb¥cc™
(55€) sin (¢ — @ — ) = i[ac* — a*c]/2V aa*cc*
(55f) cos (p — 2 + ) = [ac* + a*e]/2V aa*cc*
and

(55¢) cos B = cc*/(bb* + cc*) .

Generally, the rotation group in four dimensions, R(4) is taken to
be the symmetry group of the Kepler problem, Its generators are the
three components of the angular momentum vector Z and the three
components of the normalized Runge vector P, which is defined in
terms of R in (29). The rectangular components of P are

€OS 4, oS (¢ — £2) — cos B sin 4, sin (¢ — 2)
—COS 1, Sin (¢ — £2) — cos B sin 4, cos (¢ — 2)].
sin B sin 4,

5

T
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For L. one has
sin B sin (¢ — 2
= Jo+ Iy . (¢ )
(57 L= or | Sin Becos(p — 2)].
cos B

Using equations (55) one can express the generators of R(4) in terms
of the generators of SU(3) as follows:

P, = Vaa* + 2bb* + 2cc*[(ab* + a*b)(bc* + b*c)(bb* + cc*)
+ (ab* — a*b)(bec* — b*c)cc*]/[4bb*V cc* (bb* + cc*)]

P, = —iVaa* + 2bb* + 2cc*[(ab* + a*b)(bc* — b*c)(bb* + cc*)
+ (ab* — a*b)(be* + b*c)ec*]/[4bb*V cc® (bb* + cc*)]

(58¢) P, = 1V (aa* + 2bb* + 2¢c*)(bb* + 2cc*)(ab* + a*b)/2(bb* + cc*)
(58d) L, = i(be* — b*e)V/ bb* + 2¢c*/21 cc*

(58¢) L, = (be* + b*c)1bb* + 2¢c* /21 cc™

and

(58f) L, = cc* .

(58a)

(58b)

These six quantities satisfy the relations

(593) {L,;, PJ} = —-EijkPk
(59b) {Lz, L:,} - —sijkLk
(590) {P” PJ} - —8”]‘Lk

which define R(4), once again directly from the commutation rules for
SU@3).

The process can be inverted and the generators of SU(3) can be
expressed in terms of the components of P and L. These are

(60a) ao* =1V —2W — VL2 + Lt — L,
(60b) bb* = V'L + L
(60c) ecc* =1L,

(60d) ab* = VL2 + L)V —2W — V' L + L} — L,]'* exp (— i)
(60e) bc* =[L,V' L: + L] exp (—i(g — Q)
(60f) ac* = VL[V —2W — VL2 + L} — L] exp (—i(¢ — 2 + o))

where
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(6la) ¢ — 2 = tan™ (L,/L,)
(61Db) <o = tan™* {P,L,V'L? + L} + L}[P,(L: + L?) + P,L,L,]}
and

(61c) B = tan~ (VII + Li/L,) .

5. Conclusion. It has been known for a rather long time that
the Kepler problem is somehow equivalent to the harmonic oscillator.
Quantum mechanically the relation has been exploited by Schwinger in
his course lectures as a means of solving the problem of the hydrogen
atom for several years. One technique is to note the resemblance be-
tween the Laguerre polynomials and the Hermite polynomials [19], and
by making the substitution » = p* to transform the radial parts of
the Schroedinger equations of the two problems into one another [10].
Goded [12] has shown that this is the only substitution of the form
r = p* which will produce a similar result. The angular parts of the
two problems are treated separately, so that the method does not in-
volve the use of a symmetry group.

Classically, the relation of the two problems has been much more
tangible. If one attempts to reproduce the analogy just described, he
finds that the substitution » = p transforms the radial Hamilton-Jacobi
equation for the Kepler problem

(62) aS/or = vV 2m*r + 2mW — ai/r

into that of the three dimensional harmonic oscillator

(63) 0S/0p = V'm'kp* + 2m' W' — ai/o* .

However, the separation of the Hamilton-Jacobi equation is commulative,
just as it is for the corresponding Schroedinger equation. By this we
mean that when ¢ is separated, Py is seen to be a constant, oy, When
ay is placed in the 6 equation another separation constant «, is found
for P, and which finally allows separation of the r equation. Thus
the substitution r = 0, P, = f(P,) is not easily extended to a canonical
transformation involving P, and P, as well, and it is slightly too naive
to say that the transformation » = ¢* transforms the Kepler problem
into the harmonic oscillator,

Yet, when z and y lie in the orbital plane, and one defines
r =2 + 1y as a complex variable, the canonical transformation to para-
bolic coordinates can be expressed in terms of complex variables by
just the transformation » = p*. Thus, in a sense, the square root
mapping does relate the two problems,

More correctly, however, one should follow the derivation as given
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in Born [5] or in Wintner [25], in which it is seen that if the motion
is uniformized by the introduction of the eccentric anomaly as a time
parameter, the transformation to parabolic coordinates and the reduction
of the problem to the harmonic oscillator follows quite naturally,
Moreover, since the energy appears in the transformation with a square
root, the bound and unbound orbits are transformed differently. R(4)
applies only to the bound orbits, whereas a Lorentz group L(4) is the
symmetry group of the unbound orbits.

Since we are primarily interested in determining a symmetry group
for the Kepler problem, it is interesting to note that our precepts have
not produced Fock’s R(4) group, or the analogous R(3) group for the
two dimensional problem, either for parabolic or for polar coordinates,
the two systems in which the problem is separable. Rather they have
led to respectively an SU(3) and an SU(2) group. Even in the latter
case, for which SU(2) and R(3) are locally isomorphic, there is trouble,

The mappings (equations (26)) are valid for functions of the phase
space coordinates and momenta, However, if they are taken as operator
equations and the operators to be irreducible, then H is a scalar, a
nonzero multiple of the unit matrix. The traces of both sides of (26¢)
cannot vanish, as they must if both D and D’ are commutators, as
they must be on account of the rules given by equations (27). Fortu-
nately in the context of our analysis the eigenvalues of H occur in
negative pairs, and thus we would be dealing with reducible represen-
tations.

It is already clear from this simple difficulty that while we have
introduced a method which will produce an abundance of constants of
the motion and symmetry groups for problems of classical mechanics,
even such an innocuous, nontranscendental transformation as equations
(26) represent, cannot be generalized by use of the correspondence
principle for quantum mechanical operators without the exercise of
considerable caution,
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