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A THEOREM ON ONE-TO-ONE MAPPINGS

EDWIN DUDA

Let X be a locally connected generalized continuum with
the property that the complement of each compact set has
only one nonconditionally compact component. The author
proves the following theorem. If / is a one-to-one mapping
of X onto Euclidean 2-space, then / is a homeomorphism.

An example of K. Why burn implies that if / is a one-to-
one mapping of X onto Euclidean w-space (n ^ 3), then X can
have many nice properties any yet / need not be a homeo-
morphism. However the complement of a compact set in the
domain space of his example may have more than one non-
conditionally compact component.

It is interesting to note that a characterization of closed
2-cells in the plane is obtained in the course of proving the
theorem.

Positive results in connection with the following problem would
be useful in classifying mappings from a Euclidean space into itself.
"What properties must a topological space X have before one can
conclude that every one-to-one mapping f oί X into a Euclidean space
En of dimension n is a homeomorphism?'' A very general theorem
of this type was supposedly obtained in [2], However, several coun-
terexamples have been obtained which show the main theorems of [2]
to be false. One of these is an example of K. Whyburn [6], which
implies that if n ^ 3, X may have many nice properties, yet / need
not be a homeomorphism. We prove that if the Euclidean space has
dimension two, the mapping / is onto, and X has appropriate properties,
then / is indeed a homeomorphism. It is interesting to note that we
assign a property to the space X which is not a property of the domain
space of the example in [6].

2* Notation* A mapping is a continuous function. A generalized
continuum is a connected, locally compact, separable metric space.
The cyclic element theory used is that of reference [4]. A set A in
a topological space is conditionally compact if its closure is a compact
set. A dendrite is a compact locally connected generalized continuum
containing no simple closed curve. A topological line is a homeomorphic
image of the real line. A topological ray is a homeomorphic image
of a ray in the real line.

3* Theorem and proof*

THEOREM. Let X he a locally connected generalized continuum
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with the property that the complement of each compact set has only
one noncondίtίonally compact component. Iff(X) — E2 is a one-to-one
mapping, then f is a homeomorphism.

Proof. The proof consists of proving a series of five statements
concerning the structure of X if / is not a homeomorphism. Then
in (vi) with the aid of a theorem of G. T. Whyburn [5], a contradic-
tion is obtained.

( i ) X contains simple closed curves.

Proof of ( i ) . The space X has the representation, X= UΓ=i^i,
where each A{ is a locally connected continuum. If X has no simple
closed curve, then no Ai contains a simple closed curve. Thus each
Ai is a dendrite and therefore has dimension one. Using the sum
theorem for dimension, we obtain dim \jT=if(Ai) ^ 1, but UΓ=i/(^i) = E2

and dim E2 = 2. Clearly then each such X must contain simple closed
curves.

(ii) Every simple closed curve J in X separates X and is the
boundary of an open two cell which is an open subset of X.

Proof of (ii). For a simple closed curve J in X, f(J) is a simple
closed curve. Since f(J) separates E2, its inverse image J separates
X. The complement of J, X-J, can have at most countably many
components, C ,̂ i = 0, 1,2, •••, and only one of these, say Co, is not
conditionally compact. Each /(C*), i Φ 0, is closed in E2 — f(J) and
each f(Ci), i = 0,1, 2, is either in the bounded component W or
the unbounded component I of E2 — f(J). The set f(C0) is not
contained in W for this would imply that M is the countable union
of pairwise disjoint bounded closed (in M) sets f(Cnk),k = 1,2, •••.
No arcwise connected space has such a representation hence f(C0) c M.
Applying the same theorem to W shows there is one and only one
Ci9 iφO, for which /(C<) c W and hence f{C%) = W. It easily follows
that f(Frd) = f(J) and therefore Fβ, = J.

(iii) Each compact nondegenerate cyclic element of X is topologi-
cally a closed 2-cell.

Proof of (iii). Let C be a compact nondegenerate cyclic element
of X and note by (ii) that every simple closed curve in C is the boundary
of an open 2-cell of C. Since f/C is a homeomorphism we can assume
that C is a subset of E2.

Let H be the set of points of C that are interior to an open 2-cell
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of C. By cyclic connectedness of C, H is dense in C. To show H is
connected let a and b be distinct points of H and let J1 and J 2 be
disjoint simple closed curves in C that bound nonintersecting open
2-cells C1 and C2 containing a and b respectively. By cyclic connected-
ness of C there exist mutually exclusive arcs lt and 12 in C with

ii n (Cx u Ji) = i t n Λ = &u, i, n (C2 u Λ) = i x n /1 2 = «„, i 2 n (C.uJ,) =
12 Π / 2 = α?21, and 12 Π (C2 U Λ) = 12 Π J 8 = 2̂2. The set l x U (ajua?21) U
12 u (α512flc22), where (8uίB21), (x12x22) are arcs on JΊ and J"2 are respectively,
is a simple closed curve in C. The proper choice of arcs (α?ua?21) and
(cc12£22) on J x and J2, respectively, gives a simple closed curve Jo in C
that bounds an open 2-cell Co which contains both a and b.

We use the Zoretti Theorem, p. 109, [4], to prove C-H is connected.
Suppose C-H is not connected and K is one of its compact components.
By Zoretti's Theorem there is a simple closed curve J 3 in E2 enclosing
K and not enclosing C-H and is such that J 3 Π (C-H) = 0 . The set
J 3 π C = J3 Π if is not empty and is both open and closed in J39 Hence
J3czH and this implies KcH which is false.

Let x and y be distinct points of C-H. By the cyclic connected-
ness of C and the connectedness of H there is a simple arc (xy) in C
with (#2/) Π (C-H) — x U y. Suppose this arc does not separate C and
let z£ (xy), z Φ x, z Φ y. Since ze H there is a closed 2-cell C4 in H
with boundary J 4 such that 2 is interior to C4 and (xy) separates C4

into two connected sets A and J3. Let aεA and δεi? and suppose (ab)
is a simple arc in C-(xy).

In C4 determine an arc azb such that (ab) union azb is a simple
closed curve J 5. The curve Jδ is the boundary of a closed 2-cell Cδ

in C. The 2-cell C5 contains points of A and B and hence points of
one of the subarcs (xz) or (zy) of (#2/) other than z. Since J"5 meets
(xy) only in the point z, at least one oί x or y is interior to C6.
This contrary to the choice of x and y. Therefore, each such arc
spanning C-H in C separates C. Furthermore, H-(xy) has only two
components and hence C-(xy) has only two components since H is
dense in C. Also, each component of C-(xy) contains points of C-H,
otherwise there would exist a bounded open subset of the plane with
a simple arc as its frontier. Thus each pair of points x, y of C-H
separates C-H and therefore C-H is a simple closed curve / . Clearly
H is the open two cell of C bounded by J.

In order to make repeated use of a theorem in [5] we set up the
following notation. Let f(X) = Y be a one-to-one continuous mapping
of one locally compact separable metric space onto another. Let S
be the set of points in X at which / is a local homeomorphism and
let T be its complement. From a result in [3] the set S is open, T
is closed, f(S) is an open dense set in Y. The sets S and T will be
used in the remaining parts of the proof. The following is a theorem
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of G. T. Whyburn [5].

THEOREM A. Let X be a locally compact arcwise connected
separable metric space, let Y be a locally connected generalized
continuum. If f(X) — Y is a one-to-one continuous function which
is not a homeomorphism, then there exists a topological ray R in X
with f(R) a simple closed curve in Y. Moreover, if r is the initial
point of R, there is a subray Rr of R such that f{R' U r) is a simple
arc and Rr a S.

(iv) There is only one noncompact cyclic element in X.

Proof of (iv). If there were two or more noncompact cyclic
elements then one could find a compact set (namely a point) whose
complement would necessarily have two or more nonconditionally com-
pact components. This is contrary to part of the hypotheses on X.

If all the cyclic elements were compact then by (iii), all the true
cyclic elements would be closed 2-cells. Thus S would be the union
of open 2-cells. By Theorem A there is a ray R' and a point r not
a Rr such that f(Rf U r) is a simple arc and R' c S. Thus R' must
be a closed subset of X which is entirely in an open 2-cell and this
is not possible.

(v) Let M be the noncompact cyclic element of X and let
B = MΠ T. The set B is a topological line.

Proof of (v). As in the proof of (iii), the set M-B is connected.
For two distinct points a and b of B there is a simple arc [ab] in
M with [ab] Π B = a (J b. Using the techniques of the proof of (iii),
it follows that the arc [ab] separates M into two connected sets. The
closure of the conditionally compact component D is cyclically connected
and every simple closed curve in D bounds an open 2-cell of D. Thus
by (iii), D is a closed 2-cell and this implies that there is a simple
arc (ab) which is entirely in B. Moreover, the set (ab)-{a U b) is an
open subset of B. If c is any other point of B not on (ab), then
there is a simple arc joining c to a and the first point (ordered from
c to a) in which it meets (ab) can only be a or b. Thus, either a or
b is in an open one cell which is an open subset of B. It follows that
every point of B with the possible exception of at most two points is
in an open one cell which is an open subset of B. That is, B is a
simple arc, a topological ray or a topological line. The set B cannot
have a point d which is not interior to a one cell of B for this would
imply that M is not locally compact at d.
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(vi) Completion of proof.

The structure of the space X is now clear in the sense that certain
properties can be assigned to the true cyclic elements. Also, each
component of the complement of the noncompact cyclic element M is
conditionally compact and has only a single point of B as its frontier.

There is a ray Ro in X with initial point r0 such that f(R0) is a
simple closed curve bounding a closed 2-cell Co. From the proof of
Theorem A and the structure of X we can assume Ro meets B in only
one point xOβ The set f~ι{C^) = NQ is closed, connected, locally con-
nected, and contains one of the two components of M-Ro. Let
yeB(~)NQ and let (xQy) be the simple arc in B. Let K be (xoy) union
the conditionally compact components of X-(xoy). The set K is
compact and connected. The set f(K Π T) is compact in Co so that
(f(T) n CQ)-f(Kf] T) is an open subset of f(T) fl Co. Thus, in apply-
ing the proof of Theorem A to the map f/NQ: No —•> Co we can use the
points of (/(T) Π C0)-f(KΠ T) to get a ray i?x with the property that
Rx c No-K. Assume the initial point of R± is ru i?x ΓΊ B — xu C1 is the
closed 2-cell bounded by /(RJ, and N, = f~\C1). The set N, is con-
nected, locally connected, and N1f]K=0. In fact, the arc (xo^i) in
B maps onto an arc in the closed annular region determined by f(R0)
and /(JRI). Also implied is that a sequence of rays Ro, Ru R2, can
be obtained such that lim sup Rn Π T = 0 . We can also suppose the
rays were chosen so that a monotone sequence of locally connected
generalized continua, No ZD N± Z) N2 z) with corresponding closed 2-
cell images Co z> Cx 3 C2 Z) is obtained. For each i, i = 0, 1, 2, ,
the set C< Π /(21) is nonempty and compact. Thus, L = f|Γ=o [Ci Π /(ϊ7)]
is not empty and for y e L there exists an x e (T π A^), i = 0, 1, 2,
such that /(#) = y. However, by the construction of the Nif

nr=oWn τ) = 0.
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