PACIFIC JOURNAL OF MATHEMATICS
Vol. 12, No. 2, 1966

POINTWISE BOUNDS FOR THE SECOND
INITTAL-BOUNDARY VALUE PROBLEM
OF PARABOLIC TYPE

F. J. BELLAR, JR.

By means of the divergence theorem and certain well-
known inequalities, the author presents explicit a priori
pointwise bounds for the solution of the linear and nonlinear
second initial-boundary value problem of the parabolic type.
The desired result is obtained by using the parabolic form of
Green’s second identity with an appropriately defined parametrix
serving as the first function of the identity and the difference
of the solution and an arbitrary function which approximates
the given data as the second. By means of various well-known
inequalities, the unknown integrals in the resulting expression
are bounded in terms of volume and surface integrals of the
square of known functions. In the linear case the form of
the bound is such that it may be improved by employing the
Rayleigh-Ritz technique,

Background. In [8], Payne and Weinberger presented a method
for determining similar bounds for the solution of Dirichlet and mixed
type boundary value problems for certain second order elliptic equations
and rather general domains, The results were extended by Bramble
and Payne [2] and by the author [1] to the Neumann Problem for
second order uniformly elliptic operators. In sequels the author will
consider the first initial-boundary value problem of the parabolic type,
degenerate parabolic problems of various types and nonlinear elliptic
problems,

The results presented herein are applicable to problems for which
existence and uniqueness theorems have not as yet been established.
Assuming the existence of a solution, its uniqueness follows immediately
from the form of the pointwise bound.

Since bounds for various quadratic functionals are also obtained
in terms of the given data, it is assumed that the results of this
paper may profitably be employed in the derivation of such existence
proofs, For information pertaining to parabolic problems for which
solutions are known to exist, it is suggested that the reader review
[7].

In § 2 the problem under consideration is defined in detail; certain
auxiliary functions and other preliminary matters are considered in
the next two sections. The pointwise bound is obtained in § 5, while
the generalization to the nonlinear case is considered in the following
section, The last section contains some additional remarks,
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The techniques presented herein are based to a great extent on
the results of the report [1] upon which this paper is based.

2. Mixed parabolic problem. Let V() be an open connected
(N + 1) dimensional domain of real variables (z, y) = (2, &*, -« -, 2%, ¥)
bounded by two hyperplanes y = 0 and y = 5 > 0 and an open surface
S(y) lying between these two planes. For fixed y let

2.1) D(y) ={(@,9) 0=y =7, & y) e V) — S}

where V(5) and S(5) are the closures of V(5) and S(7) respectively.
The goal is to determine a pointwise bound at an arbitrary interior
point p = (2, ¥,) € D(¥,), 0 < y, < 7, of the boundary value problem:

T =@ W)~ 22 =) @we Ve
2.2) Wz, 0) = g() @, )€ D(O)
O — a1 Win; = Us, 9) (v, 3) € S)

where the boundary data f, g and [ are integrable and square integrable
over their domains of definition and a sufficiently differentiable solution
function W = W(x, y) satisfying (2.2) is assumed to exist. As usual,
the symbol ,; indicates partial differentiation with respect to ' and
the summation convention is used throughout,

The coefficients of (2.2) must satisfy certain auxiliary conditions,
The components of the symmetric matrix a* = a*(x, y) and the function
z = #(x, y) are continuous in V(y), a*/ is piecewise continuously differ-
entiable with respect to the ' on every D(y),0 <y <7, and z is
piecewise continuously differentiable in y along every line in V(x)
perpendicular to the y hyperplane. To eliminate degeneracy, the
existence of the following positive constants is assumed:

2.3) min 302 = m, > 0
Slyy) i=1
(2.4) min 2(x, y) = m, > 0
V(yp)

and for all (z,y)e V(y,)
N N
(2.5) 0=a 21:' g =a¥gg; < a, 21:« &}

where the n; are the first N components of the unit outer normal
(n;, m)) = (Mg, +++, Ny, m,), the & are any N numbers, and equality
holds on the left if and only if all the &; are zero, At the point
pe D(y,), at which the pointwise bound is desired, it is necessary to
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require that o’/ and z satisfy a Lipschitz condition for (x, y)e V(y,),
i.e. there exist numbers A" and A such that

@8 |t v) — o) { — v + S — o] = 4
and

@D ey a0 {o -9+ S —aty) =4
for every (z, y)€ V(y).

3. The parametrix. The parametrix function v, is defined with
respect to the point » by

(8.1) 7, = [da(y, — )] ¥2(p) 1" aip) exp [ —2(p) 04y, — ¥)>7']
where
(3.2) 0" = . (p)(x” — @p)(*° — x7)

and a(p) is the determinent of the inverse matrix a,;(p). On the surface
D(y,), the parametrix and its derivatives are of course defined as the
limits of these functions as (x, ) — (z, ¥,) with (z, ¥) € V(y,).

For (z, ) e V(y,) the adjoint J(v) of J(v) is given by

3.3) ﬂw:wwm+§vw.
Y

LEMMA 3.1. The parametrix v, possesses the following properties:

(@) At all points (x,y)e V(y,) — {p}, the parametriz is twice
continuously differentiadble.

(b) The function

(3.4) (Yo — 9) ¥ exp [L(Ys — ¥)~2(D) 0"} (7,)?
is 1ntegrable over V(y,) for L and N satisfying
(3.5) c<-;- and 1> 0.

(¢) For any bounded function + which is continuous on V(y,),
the parametrix is such that

3.6) lim SSDW)“IW”dS = Y (p) = Y (@, Yo) .

Y=Yy
¥<yp

Proof. From the definition of v,, it is obvious that part (a) is
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satisfied. To establish parts (b) and (c), perform the indicated inte-
grations, The necessity for the constants given in (2.6) and (2.7)
should be noted when part (b) is established.

4. An auxiliary function. In this section a sufficiently smooth
function &, is defined which is such that

(4.1) Fpz0 (2, ) € V(y,)
and
4.2) J(F,) =0 (2, y) € V(v
' J(F,) <0 @, y)e Viyg—e)  ve>0

where J is the adjoint of J. In addition it is necessary that &,
possess a singularity at pe D(y,) which is of a slightly lower order
than that of v,. The desired construction is accomplished by first
defining

4.3)  F,= (Y — y)" T exp[—(2N — 1)2(p)0X8N(y, — ¥))']

and using (2.6) and (2.7) to observe that there exists positive numbers
0, and o, which are such that

44) JF)=0 (@yelnylp=p,0=y—ysil

and

45) J(F) <0 (@ ye{ylp=SpeSy—y=d} Ve>0.
Next 0, is determined such that

92 (e — gy (N=L\ g — e — N = D2(p)0}
@ 2+ (S ) - v D, <0

for all (z, y)e{x, v | (2, y)e V(y) — V(¥ — 0)}. The number 4§, exists
due to (2.4). Next set

4.7 0, = min {0y, 00}

and then define the desired auxiliary in terms of still undefined con-
stants a and B,
(4.8)

= F, + aly, — y)" " exp {—(2N — 1)2(p)oK8N(y, — ¥)>™'}
o (%, y) € V(yo) — V(y, — 0y)
*|= oyR(y, — y)flexp {— (2N — D)z(p)0*8N(y, — v)>™}

+ aexp {—@2N — 1)z(»)0iK8N(y, — >~ (2, y)e Vg, — ) .
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On D(y,), &, and its derivatives are defined as the limits of these
functions as (z, y) — (z, ¥,) with (x, )€ V(y,). By inspection, (4.1) is
valid for any positive a, Using (4.6) and the definition of &, it is
easy to see that a > 0 may be chosen so that (4.2) is valid in the
region {V(y,) — V(¥, — 0,)}; and, with « fixed, we next use (2.4) to
choose B so that (4.2) is also valid for the region V(y, — d,).

As for differentiability in V(y,) — {p}, it follows from (4.8) that
&, and its first two partials with respect to the ' are continuous
while the partial of &, with respect to v is only discontinuous across
the surface D(y, — d,).

Concerning the singularity of &, it is easy to verify by means
of Lemma 3.1 that the integral

(4.9) -], =g rav
exists and that for any function + bounded in V(y,)
(4.10) thS b FdS =0 .

Z:gg D(y)

5. Pointwise bound for the linear problem. The desired bound
for the solution is obtained by choosing an arbitrary function o(z, y)
which is such that J(p), dp/dv and ¢(x, 0) approximate f,!, and g
respectively where ¢ is required to be twice piecewise continuously
differentiable with respect to the a* and piecewise continuously differ-
entiable in y for (x, y)e V(y,). Let

(5.1) Y@, y) = W(x, y) — o, v)

and compute

J () = F(x, y) (@, )€ V(yo)
(5.2) ¥(@, 0) = G(x) (¢, y) € D(0)
%~ L@, v) @, ¥) € S@w) .

With J and v, defined by (3.3) and (3.1) respectively, it follows from
the divergence theorem with 0 <y < ¥,

B SSD(”)przwdS - SSS(u)nﬂpqude + SSD(O)’szqlde '

In (5.3), take the limit as y — ¥,, rearrange terms and apply Schwarz’s
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inequality to obtain

| WD) — 1) | < )SSSWO)N(A/?)dV]

(5.4) e s i
{11, a8t {0, G + maes)as)

where

20) = plan ) + || L wm,dS

oJ

(5.5)
[ mae@is (|| vF@ v,
Do) V(yg)
The terms on the right of (5.5) are all known and thus it only
remains to bound the unknown terms on the right of (5.4).
First the surface integral is considered. To obtain the desired

result, introduce the function  given by

(5.6) v = ¥ exp [—K(y, — )]

and calculate

(5.7 J(p) = J(F) exp [~ K(y, — ¥)]

where

(5.8) J@F) = J(F) — Kz

with K a constant which is to be selected later, Next a bounded set
of functions f(x,y), -+, f¥(,y) is chosen which possess bounded

piecewise continuous partial derivatives with respect to the x¢ for
(¢, ¥) € V(y,) and which are such that

(5.9) min n,f* = m; > 0,

8(yg)

For starshaped domains such a set of functions was considered by
Payne and Weinberger in §3 of [8]. From this reference it is clear
that, if S is starshaped in « with respect to some line perpendicular
to the y hyperplane, then this line can be chosen as the x origin with
ft=a* Also if V(y,) is a domain bounded by the y = 0 and y = ¥,
hyperplanes and by two surfaces each of which is starshaped in z with
respect to some line perpendicular to the y hyperplane and if a
eylindrical shell of Euclidean radius 7, from this line can be imbedded
in V(y,) such that its bases lie in D(0) and D(y,), then the desired
result is obtained by setting f* = a* (r — r,) where r is the Euclidean
distance of the surface S(y,) to the reference line. Additional infor-
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mation with respect to construction of the vector field f* may be
obtained by referring to [3] or [4]. By extending these discussions
to the parabolic case, it is evident that the functions f* may be defined
for quite general domains,

To shorten the notation, the following convention will be employed
in the remaining portion of the paper. When y = y, the symbols S
and V replace S(y,) and V(y,).

With the f¢ defined as indicated above

“ FdS < __SS FindS

ms

A [[] w5507 + (L + )] ey

M3, Mg Mg

(5.10)

lIA

where «, is any positive number and

(5.11) M, = max {ﬁ fif *}
and
(5.12) M, = max {fi} .

For the function <, it is clear that

|\, #7@av =, [«lfﬂ — nay *Jas

(5.13) + SSSV[—«%,@“«% — Kept 4+ A (gZ )«/f ]dV

_SS F2dS + SS FENGAS
Dy D)

By rearranging (5.13) and separating the product terms as indicated,
it is easy to obtain

W Lo5a7s = (roms = 0 = e [av + 5], 708

< (a3+M4)SS JdS + = SSD(O)GQzexp [2Ky.]dS

(5.14) B
+ 222 S”VF? exp [2K(y, — y)[dV
+ 21 “ L* exp [2K(y, — ¥)]dS
o, s

where
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(5.15) M, = max {ﬁ} , M, = max {—mn,z}
v oy 8

and the a’s are any positive numbers. Except for the first integral,
the right side of (5.14) is completely know. In addition the left side
has the same form as the right side of (5.10) except for the third
term which may be neglected since z satisfies (2.4). Inspection of (5.14)
and (5.10) reveal that a bound for the integral of the square of 4 over
S is available provided the arbitrary numbers a; and K are properly
chosen, In a particular problem the best choice of these numbers
would depend on the functions F, G, and L. For definiteness the
following selection is made, Let

a = __’”;3;0 A+ M)

1

5.16) {a,=a,=1

K- L{a + MM, L+ MM, | L i} =K.
my mia, ms 2 2

Substitution of (5.16) into (5.10) and (5.14) yields in terms of the
function :

(5.17)
= +1 i {“D(O)Gzzds + NVF exp (—2Ky)dV
+ SSSL exp (—2K1y)dS} I K <0
SL«/f“‘dS - 1 o 2
=< m{“m)G zexp (2K.y,)dS + SSSVF exp[2K.(y,—y)]dV
+ Sgsp exp [2K,(u, — 9)1aS} = &7 K =0

and thus a bound for the surface integral of (5.4) is available,
If a function I, can be determined which satisfies Lemma 3.1
and is such that

(5.18) JI) =0  (z,9)¢€ V()

then it is clear that I", is a fundamental solution of J and the volume
integral on the right of (5.4) is zero. Dressel [6] and [7] established
the existence of such a solution when the coefficients of the differential
operator are sufficiently smooth. From these references it is clear that
even when its existence is guaranteed such a function may be quite
difficult to construct; hence in the following it is assumed that I", is
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not known and that the first term on the right of (5.4) must be
bounded.

By means of the divergence theorem and the previous remarks of
this section

(5.20) SSSV{Z%“/’J(“P) — P I(F,) + 27,00, AV
| = SSS(‘%L)WS + M7 + SSD(O)%,ngdS = 7

where <# is given by (5.17) and

_ _0F, _
(5.21) M, = max {0, 1-22 nl,ﬁ;z}.

Due to the singularity of &, each integral on the right of the in-
equality below exists

| s

(5.22) B e _
= (-l ([ ey

thus it is clear that

{_ mvj (F)d V}uz

(5.23) = {S S Sv[_j(z " (FF)d V}‘“
: + {7+ |[| 1-rErryav)”

— /71/2

The desired bound is obtained by noting that

R ||\ 2

={[|{ 1-r=raeyav}” 7= 7

where the existence of the integral on the right follows from part b
of Lemma 3.1,

By combining the results of this section, (5.4) may be rewritten
as follows:

625 W) — 1) = + 7 + {{[ (2 + mav, ) as} 7
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where the computable bounds <# and j are given by (5.17) and (5.24)
while the constant y(p) may be obtained by reference to (5.5).

If problem (2.2) admits a solution W, then theoretically the point-
wise bound may be made arbitrarily small by improvement of the
approximation function . In this regard, note that the right side of
(5.25) is zero if F'=L = G =0, Furthermore, due to the form of
the bound, it is clear that the result may be improved by means of
the Rayleigh-Ritz technique. In order to ascertain the form of the
bound obtained by the methods of this section, the above results are
collected in the following theorem,

THEOREM 5.1. Poitntwise bounds at an arbitrary interior point
pe D(y,) of the second initial-boundary value problem of parabolic
type (5.2) are given by

6 [ s - [, s
R B P
+ Sud|] fute pras + [ suweas

' S S S Jul@, y)Fd V}l/e

(5.26)

where k;,,t =0, 1,2, are known constants and f,, fi;,t =1,2 and j =
1, 2, 8, are explicitly determined scaling functions. The constants k;
and the functions f, and f;; are continuous with respect to the point
p€ D(y,); however certain of the k; f, and f;; become arbitrarily
large as p approaches the boundary S.

6. Pointwise bound for the nonlinear problem. The mildly
nonlinear problem for which an a priori bound is desired is as follows:

J(W) = fw, y, W,F W) (@, y) € Vi)
(6.1) Wz, 0) = g(x) (@, y) € D(0)
% = Uz, v, W) (z, y) € Sy)

where the boundary data f, g, and [ are assumed to be square integrable
over their domains of definition for any bounded continuous funection
W which is continuously differentiable in « for (z,y)e V(y). In
addition f and [ are required to satisfy a Lipschitz condition in all but
their first two arguments. Hence there exist positive numbers i1, I,
Mi i=1, ..., N such that



SECOND INITIAL-BOUNDARY VALUE PROBLEM OF PARABOLIC TYPE 215

e, y, W, VW) — flx,y, Wy, FWy) | = MLlW1 — W
6.2) W= Wes| - @) e V) —eo <W,TW < oo
[, y, W) — U, y, W) | = M, |W, — W, |
(@, ¥)eS@); —co <W < o0,

The present problem is a generalization of the problem of the last
section; thus, except as altered by this section, all conditions of §2
remain in effect. Specifically, the differentiability requirements for
the coefficients, the Lipschitz condition which the ai/ are to satisfy at
pe D(y,), as well as the condition for the outer normal on S(y, are
all as stated in §2 of the paper.

The pointwise bound is obtained in a manner very analogous to
that of §5 and hence frequent use will be made of the applicable
equations and inequalities of the linear case.

A bound at an arbitrary interior point p e D(y,) is obtained by
choosing a function @(x, y¥) which is such that J(p); dp/oy and o(z, 0)
approximate f(x, y, @,V o), l(x, ¥, ) and g(x) respectively. The function
o(x, y) given by (5.1) is introduced and we calculate,

J(y) = f@,y, WFW) — fle,y, 9,V p) + Flo,y)  (x, )€ V(y)

6.3 9@ 0 =G@) (@, y) € D(0)
%” = U, y, W) — Uz, v, @) + L(w, v) (@, v) € S(y,)
where
L(x, y) = Uz, ¥, @) — %’ .

Equation (5.4) becomes
w1 = |([], vTeav|

* lmmw%{ﬂ“’ y, W,F W) — f(z, 9, o, V@)}dV,
+ {SSs<y0)w2ds}1/2<{ggs(yo) (% =+ ny27p>2dS}1/2
+ Mﬁ{gggzds}”2>

where x(p) is given by (5.5). As in §5, the first step is to obtain an
a priori estimate for the unknown boundary integral, By using
techniques similar to those employed for the linear case, it is easy to
establish the following generalization of (5.14)

(6.5)
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O e

Qy
%ngoﬂ” 2dS = '“(“3 + M, + 2M)SS 7:dS
+5)
2

(6.6) X G 1 SSSVFg exp [2K(y, — »)]dV
+ i: SSst exp [2K(y, — ¥)]dS

where

(6.7) M, = 3y

and the a’s are arbitrary positive numbers, While the best choice of
the a; and K is a function of F, G and L, for definiteness the follow-
ing selection is made, Let

:%(ﬂ 1 LM)“I
(24} 4M1 2+ 2 + ) 4
a=0a,=1
a4:&
(6.8) M,
_ 1M g M1
_m2{2+M1 2a, 2
+ @i+ 14y 2R LE MM, | LAY g
am; Mg

With the «; and K chosen by (6.8), we may combine (6.6) and (5.10)
to obtain a result equivalent to (5.17) except that the factor (1 4+ M,)™
on the left is replaced by (2If, + 1 + M)~

To bound the first term on the right of (6.5), replace (5.20) by

I\, 5w — #1(57) + 279,095 + 2Ke7, 394V
69 =] (FLrexp2K@, — 9IS + M, F exp (2Ky)
+ SSD(O)%G% exp (2Ky)dS =_Z (K)
where _#(K) is a function of the arbitrary constant K and

(6.10) M, = max{ , 07,
8 v

Since f satisfies a Lipschitz condition in all but its first two variables,
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it is clear that
[\| 27admav = 2[[{ 77Fesp k@, — wiav

-4mm+wmﬂ&;zde~(ﬁ;“&;ﬁwww%ﬂv.

(6.11)

Comparison of (6.9) and (6.11) leads to a selection of the arbitrary
constants as follows:

C(5 = %_
2a,
(6.12) 1 "
K=__{2M1 -|-—-“-}=K2.
2m, 2a,

An inequality analogous to (5.22) may now be used to obtain
(6.13)

‘SSSVMWV‘ = {{{{ 1=Frdepavt”
.<{SS§V[_=T(-57P N (FLF ) exp [2Ky(y, — y)]dv}llz
w{rm + ([ 1-Aerry e - iV} = A

which is a result analogous to (5.24).
The second term on the right of (6.5) is bounded by using similar
techniques; due to the Lipschitz condition, it is clear that

lSSSMw, v, WP W) — f@, 9, ¢, Vo)d v’

(6.14) = {{[], 77 exo 12K, — 1av}"
"

(1] etz + 22 5 7. 1av)

The first integral on the right of the last inequality exists; to bound
the second observe that

(27,9 F exp [K(y, — y)] |

(6.15) L
=< 7%F2 exp [2K(y, — ¥)] + @ F ,¥*
6

and then combine (6.15), (6.11) and (6.9) to obtain

SSSV{_ i o exp [2K(y, — ¥)] + 2Kz — o — 21, — AR
(6.16) 8
+ ( - M )%am},ﬂ%}dVg _F(K).

(2410
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The arbitrary constants may now be fixed so that
a5 = Msa-o—l
=1

K= 21 (U + 20, + Ma:* + a,M; 03 = K, .

2

(6.17)

After substitution of (6.17) into (6.16) the desired bound may be
obtained by writing

T ———
618) = {{(] 57 exo 280 — w1V}
Lemary| s @) + (|| 7 e 2k, — piav) Y= o

By means of the inequalities developed in this section, (6.5) is re-
written as:

Wi a2 5+ ] s

- {11 e as} e

which is the pointwise bound that was desired, The results of this
section may be collected in the following theorem,

THEOREM 6.1, Pointwise bounds at an arbitrary interior point
of the nonlinear second inmitial-boundary value problem of parabolic
type (6.1) are given by

vio) [ oras ]
(6.20) < ko{gggyfo(ac, w)Fd V}m + zk{s szm(x, y) LS

N

7,2GaS + (|| Fav|

where k;,t = 0,1, 2,3, are known constants and f,, fi;, © = 1,2, 3 and
i =1,2,8, are explicitly determined scaling functions. The constants
k; and the functions f, and f;; are continuous with respect to the
point p € D(y,); however, certain of the k., f, and f;; become arbitrarily
large as p approaches the boundary S.

7. Additional remarks. Since it was possible to handle the
nonlinear case of § 6, it should be noted that the form of the operator
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J and the symmetry of the @’/ may be relaxed., Thus the method
may clearly be used to obtain bounds in either of the following cases:

(1.1) JW) = (@ W.),; — 297
0y
or
(7.2) W) = aiiW,, — 220
0y

where the matrix @'/ is not symmetric. It is evident that the methods
of this paper can be easily adapted to apply to systems of parabolic
equations or to higher order operators; as of this writing, the author
has not carried out such generalizations in detail. Specific results have,
however, been obtained for nonlinear parabolic problem of the Dirichlet
type and for certain degenerate parabolic problems., These results will
appear in sequels which are soon to appear.

The author is indebted to Professor I.. C, Payne for valuable advice
and suggestions.
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