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GENERALIZATION OF A THEOREM OF
MARCINKIEWICZ

By H. D. MILLER

Let P(z) be a polynomial of degree m > 2 and ¢(z) an
entire function of order less than m. According to a result
of Marcinkiewicz the function ¢(z)exp {P(z)} cannot be the
characteristic function of a probability distribution. The special
case, that exp{P(z)} cannot be a characteristic function, is
generally known as Marcinkiewicz’s theorem. In the present
paper it is shown that if f(2) is any nonconstant entire func-
tion then neither g(2)f[ exp {P(2)}] nor f{P(z)} can be char-
acteristic functions. Also, necessary and sufficient conditions
are discussed for functions of the form f[exp{P(2)}] to be
characteristic functions.

1. Marcinkiewicz’s theorem and its extensions. Let F(x) be a
distribution function, that is a nondecreasing, right-continuous function
satisfying F(— o) = 0, F(c0) = 1, The Fourier-Stieltjes transform

(L.1) 6 = | e=aF@),
which always exists for real z, is the characteristic function of Fi(x).
We shall be interested in cases where 4(z) exists for all complex 2
and under such circumstances ¢(z) is an entire function of z (Lukacs
[4], p.132). One of the problems connected with characteristic funec-
tions is that of characterizing them, i.e., given a funection, can we
say whether or not it is a characteristic function. Necessary and
sufficient conditions are given by Bochner’s theorem (see e.g. Lukacs,
[4], p. 62) but these are difficult to apply in individual cases and so
it seems worthwhile to seek characterizations of a more particular
kind.

If #(z) is an entire function, then the moment generating func-
tion (m.g.f.),

1.2) M(t) = Sle”dF(x) ,

is an entire funetion of . We prefer to work with the m.g.f. rather
than the characteristic function since this avoids frequent and slightly
inconvenient multiplications by 7.

In connection with the characterization of entire m.g.f.’s, Mar-
cinkiewicz [5] proved a strong necessary condition, namely that an
entire function of finite order o > 2, the exponent of convergence of
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whose zeros is less than p, can not be a m.g.f. In particular this
result implies that if P(t) is a polynomial then exp{P(t)} is a m.g.f.
if and only if P(f) = a,t* + a,t with a, = 0 and a, real. This latter
result is usually known as the theorem of Marcinkiewicz, Lukaes
([4], p. 146) has extended this result to functions of the form c,e{P(¢)}
where e,(2) is the k™ iterated exponential function defined by e,(2) =
e, e(z) = exple_()}(k=23,.---) and ¢, is a normalizing constant.
Lukacs [3] has also shown that the function

(1.3) exp (et — 1) + nlet — 1) + P(t)]

a, = 0 and a, real. Some further extensions of Marcinkiewicz’s theorem
have been given by Christensen [2], who shows, in particular, that
for certain specified m.g.f.’s g(t), a function of the form

crg (Ve P (1)}

cannot be a m.g.f. if the degree of P(t) exceeds 2. Some of the
results of Ostrovskii [6] partially overlap those of the present paper;
see Section 7.

Some further generalizations are stated in the following section
and proved in subsequent sections. We rely on certain elementary
properties of m.g.f.’s. Firstly the function M(¢) defined by (1.2) is
obviously real and positive when ¢ is real. Further, M (¢) is a strictly
convex funection of ¢ when ¢ is real unless M(¢) = 1 (Lukacs, {4]
p. 136). Further if ¢ = w + 2w(u, v real) then

is a m.g.f. if and only if A, =0, A\, = 0 and P(t) = a,t* + a,t with

b

(1.4) | M(u + 1) | < M(u)
or, writing ¢ = re*,
(1.5) | M(re®)| = M(rcos ).

In establishing that certain functions are not m.g.f.’s we shall, in
common with previous authors, show that these functions contradict
the elementary inequality (1.4) or (1.5).

2. Statement of results. Essentially, Marcinkiewicz’s results
can be stated as follows: if P(t) is a polynomial of degree m > 2
and if g(t) is an entire function of order p < m, then ¢(t)exp {P(t)}
cannot be a m.g.f. More generally, we prove the following.

THEOREM 1. Let f(t) be a monconstant entire function, P(t) a
polynomial of degree m > 2 and g(t) an entire function of order
o < m. Then g(t)f[ exp{P(t)}] cannrot bz a m.g.f.

COROLLARY. If f(t) is a nonconstant entire function and P(t)
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a polynomial of degree greater than 2, then f|exp{P(t)}] cannot be
a m.g.f.

Necessary and sufficient conditions for f| exp {P{(t)] to be a m.g.f.
are available if we restrict the class of entire functions as in the

following theorem.

THEOREM 2. If f(t) = 3 ooofat” is a monconstant entire function
satisfying f(1) =1,f,=0n=0,1,---) and if P@t)=at+ --- +
a,t™, then flexp{P(t)}] is a m.g.f. if and only if P(t) = at + at’
with a,, a, real and a, = 0.

It may be thought that the condition of nonnegativity on the
coefficients f, is a necessary condition for flexp {P(¢)}] to be a m.g.f.
when P(t) = at + a,t*(a, real, a, > 0). (It clearly is necessary if a, =
0.) That is not necessary is shown by the simple example given by
taking f(t) = 2t* — ¢, P(t) = t*/2, so that

flexp {P()}] = 2¢” — ™,
which is the m.g.f. of

AP (@) = {_1: @ _ L e }dou .
V' V' 2r
(It is easily verified that (d/dx)F(x) = 0.)

However, we can, as in the following theorem, write down neces-
sary and sufficient conditions for flexp {P(t)}] to be a m.g.f. without
restrictions on f(f). But these conditions are rather obvious and at
the same time difficult to apply to individual cases; i.e., it would be
difficult to determine whether a given entire function f(¢) = I f.t"
satisfies the condition (2.1) below.

THEOREM 3. If f(t) = 3 o,f.t" is a nmonconstant entire function
and if P@) = ait + - +a,t™, then flexp{P({)}] is @ m.g.f. tf and
only if P(t) = ait + at* with a, real, f, is real (n = 0,1, --+), £, =0,
fQ) =1 and

(i) a,>0 and
2.1) St exp (= 2 yimz 0 0<y=D)
2=1 4a,

or
(i) aa=0and f,=20 (=12 ).

One may also ask what may be said of functions of the type
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f{P ()} where f is an entire function. Clearly, even if P(¢f) were of
degree 2, f would have to be rather special for f{P(¢)} to be a m.g.f.
However, in the following theorem we show that we may rule out
all entire functions if the degree of P(t) exceeds 2.

THEOREM 4. Lei f(t) be a nonconstant entire function and P(t)
a polynomial of degree greater than 2. Then f{P(t)} cannot be a
m.g.f.

Finally, the following result generalizes that of Christensen ([2],
Theorem 3.1) and partially generalizes that of Lukaes ([3], p. 489 or
[4], p.158), in connection with (1.8).

THEOREM 5. Let ¢g(t) = Dimwgnt”y 9, =0 (=0, =1, --+), be
regular and nonconstant for 0 <|t] < oo and let f(t) = > mofut”,
=0 (n=0,1.-.), be a nonconstant entire function. If P(t) =
at + o + a,t™ and if a is real, then g(e*) flexp {P(t)}] is a m.g.f.
of and only if gL)f (1) =1 and P(t) = a.t + a,t* with a,, a, real and
a, = 0,

3. Proof of Theorem 1. We require the following lemma.,

LEMMA A. Let R be a large positive number and let ¢(R) be a
bounded function of R. Let

P(t) f— amtm + am—ltm_l 4 e E alt + a, (m g 1)

where o, = «, exp (18,) = 0. Then the roots t,(R) of the equation
P(t) = R + 14(R) satisfy

t,(R) ~(aﬂ>l’m exp {W} (R cos =1, -+, m)

m

Proof. Clearly, the result is exact if P({) = a,t™ and $(R) = 0.
The result is also intuitively clear in general, since P(t) ~ a,t™ and
R + i¢(R) ~ R for large |t| and R respectively. However, a proof
is easily obtained by means of Rouché’s theorem. Without loss of
generality we may take a, = 1, for otherwise we make a change of
variable s = {«,, exp (¢8,./m)}t. The result is clear if m = 1. Suppose
m > 1 and let R = C™(C > 0). Define

Af) =t" + ap_id™ "+ «++ +at + a, — C™ — is(R) ,
B(t) =t™ — A(t) — C™ .
For given ¢,0 <e <sin(x/m), consider a circle with centre

C exp (2¢z/m) and radius eC. For ¢ on this cirele and for C large, it
is easily seen that
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B(t _
BM) _ gy,
A(t)

and hence for C sufficiently large | B(t)/A(t)| < 1, so that A(t) and
A(t) + B(t) have the same number of zeros inside the circle, But
A(t) + B(t) = t™ — C™ has exactly one zero in this ecircle, namely
C exp (2ir/m). The ecorresponding zero, ¢(C) say, of A(t) therefore
satisfies | ¢(C) — Cexp (2ixr/m)| < € C. Hence

t(C) ~ C exp (2iz/m) (C— o).

The conclusion of the lemma therefore follows for & = 1 and similarly
for k=2 -+, m,

We proceed now to the proof of Theorem 1. Let F'(R) be the
maximum modulus of f(z) on the circle |z| = ¢* and suppose that this
maximum is attained at a point z = exp {R + 14(R)} where 0 = g(R) <
2w, Let

Pit)y= Sia;t
=

where ¢, = «,, exp (16,) =0 (0 = B, < 2r). Let tp = ¢,(R) be a root
of the equation P(t) = R + i¢(R), so that by Lemma A,

3.1) to (i)”m exp {M} (R— ).

a, m

If tp = ur + Wg(ug, vy real) then ag R— co,

~ (.C%)”” cos <ﬁf_;@ﬂ> (cos (ﬁl;ﬁ) - 0)
L om (cos (M) - o) :

m

Hence for large R it follows that
~ R cos 5., cos™ (M)
m

Z1P ()] (cos £ = 0, cos (ZE—Ee ) 2 0)

= o(R) (otherwise) .

Now for m = 3 and for any ¢ satisfying 0 < 6 < 27 we have |cos (6/m)| < 1.
It follows that |cos™ {(2r — 8,)/m}| < 1 and hence

(3.2) FBP(tg) — P(ur)] = R — 2[P(uz)] > KR

for all sufficiently large R and some fixed K > 0.
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Now if f(z) is not a linear function, i.e., f(2) # f, + fiz, then the
function

(3.3) L max 1 £(2)]
P olzl=r

is ultimately a steadily increasing function of ». This can be seen by
applying the maximum modulus principle to the funection f(z)/z in the
annulus 0 < 7' < |z| <r for 7' fixed and r increasing. If f(z) = f, +
fiz(fi # 0), then the function (3.3) tends to a finite limit, namely | 1|,
as r— oo, In all cases, however, it follows that if R > R’ and if R
is sufficiently large, then

F(R) > ¢ (R

e” e

7

5 F(R) R—R7
(3.4) 1.e.,, W > ce ,

for a fixed ¢(0 < ¢ =1). We may take ¢ =1 if f(z) is nonlinear, but
we must take 0 <c¢ <1 if f(z) is linear. It therefore follows that

for all sufficiently large R,

Flexp{Pt}] | F(R)
Flexp (P(un)}]l [flexp{P(ua)}]
. F@®
(3.5) = FLZ{P(ua)]

> cexp [R — (P (ug)}]
> g<1f (K, > 0),

the last inequality following from (3.2).
We now turn to the function g(¢). Suppose g(f) has an infinity
of zeros, 7, = r,e%(n=1,2, ---), where r, =r, = ---. If

g0 <e<m— )

is given then outside the circles with centre 7, and radius r;*™ we
have, according to a theorem of Borel (Cartwright, [1], p. 22), that

(3.6) log [g@)| > —[¢f™  (¢]> T(E) .
Further, since g¢(¢) is of order p, we have
(3.7) logg@®) | <[t (t]> Tue) .

It g(t) has no zeros, or a finite number of zeros, then (3.6) holds a
fortiori for all |t| sufficiently large and (3.7) also holds.
Now define
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M(t) = g@t) flexp {P(D)}] .
Then

M (tr)
M (ug)

flexp{P ()}
flexp {P (uz)}]

Consider the sequence of values P(r,)(n = 1,2, ---). If Z2{P(r,)} is
bounded above as n— oo, then for R sufficiently large, all the points
tr are outside the circles with centre 7, and radius 7;*". We may
therefore apply the inequality (3.6) to (3.8). Using also (3.5) and
remembering that p + ¢ < m we obtain

M{(tz)
M (ur)

(3.8) 1og§ = log | g(ts) | — log | g(us) | -+ log

(3.9) log ‘

> [t = s P 4 KR

for R sufficiently large, in virtue of (3.6) and (3.1). If <#Z{P(z,)} is
not bounded above, let R, =< R, < ---, R, — o, denote all the positive
values of “#{P(r,)} and let g,, 0, - - - denote the corresponding members
of the sequence {r,}. Let ¢’, ¢’ be any two points in the circle with
centre o, and radius |o,|™™. For all o, sufficiently large we have

[P(@) — P@") | = O(lo. |7
and we can therefore find a constant K, such that
| P — 2P} < K.lo, ™" (m=1,2,--+).
Hence if R > 0 lies outside the intervals
(3.10) R, — Ko;" ", R, + K,0,"" n=12---)

then ¢ lies outside the circles with centre ¢, and radius |z,|™®".
The sum of the lengths of the intervals (8.10) is 2K, 3 o;™* which is
finite since m + 1 exceeds the order o of g¢g(f). Hence we can let
R — <o outside the intervals (3.10) and so again we obtain the inequality
(3.9). We have thus contradicted (1.4) and M (¢) cannot be a m.g.f,

4. Proof of Theorems 2 and 3. We need the following result
which seems natural enough but a simple proof has eluded the author.

LEMMA B. Let f(z) = > v0fs2" be a monconstant entire function
and P@) = a,t™ + a,_ """+ -+« + at(a, # 0) a polynomial of degree
m= 1. If flexp{P(t)}] is real for all real t, then the coefficients
fan=0,1--2) and a,(n=1,--- m) are all real.

Let a, = b, + 1c, where a;, b, are real (k =1, --- m) and define
B(t) = 2 bit*, C(t) = i eit’. Let p and ¢ be the degrees of B(t),
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C(t) respectively. Then m = max (p, q) and
P(t) = B(t) + 1C (1) .
Let

(4.1) H(t) = flexp {P({)] = 2 f. exp {nB(t) + inC(t)} .

For real ¢, H(t) = H(f{), where the bar denotes complex conjugate.
Hence, for real ¢

2 Sfiexp[n{B®) +iCON = 37 exp[n{B@) — iCHM,

but since both sides of (4.2) define entire functions of ¢, the relation
(4.2) holds over the whole t-plane.

Suppose first that B(f) = 0. Then putting z = exp {tC(t)} we obtain
from (4.2) that for all z == 0,

M

fu2t = Zo .
P

0

n

Since a Laurent expansion is unique, it follows that f, = £, f, =0
(rn=1,2, ---) so that f(z) = constant, contrary to our hypothesis.
Hence B(t) %= 0.

Suppose we can find a path L extending to infinity in the ¢-plane
such that as ¢ — < along L,

(4.3) FBB(t) + iC(t)} ~ F{B(t) — iC(t)}

with both sides of (4.3) tending to — <. The exponential terms on
both sides of (4.2) tend to zero and we obtain f, = f; so that f, is
real, possibly zero. The relation (4.2) now holds with the summations
starting at n = 1. Suppose f, is the first nonvanishing coefficient
after f,. Dividing through by exp [k{B() +¢C (¢t)}] we have,

8

fe + +1f” exp [(n — ENB(t) + 1C(®)}]

44 f. exp {— 2kiC(t)}

1
-

|
=

+ n;k‘il foexp [n{B(t) — iC(t)} — k{B(t) + iC(t)}] .
If we now let £{ — oo along L all terms inside the summation signs in
(4.4) tend to zero and we have
lim, ... exp {— 2kiC(t)} = fu/f: .

Sinee C(¢) is polynomial with zero constant term, if follows that C(z) = 0.
From (4.2), therefore, f, is real for all #. It remains to show that
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the path L exists.
We choose L from among those curves in the ¢-plane on which
F{C(t)} = 0. We have, for t = re®,

C(t) = ct? + «++ + it = ¢re™® + «++ + ¢,re®,
and
F{C@)} = ¢,r?singh + --- + ¢ sinf .

Each of the rays ¢ =0, =n(z/¢)(n = 0,1, --+) is an asymptote to a
curve _#{C(t)} = 0. We choose n so that b, cos pd, < 0 and then take
L as the curve _#{C(t)} = 0 which is asymptotic to the ray 6 =9,.
Then, as t— o along L,

F{B(t) + 1C(t)} ~ b,r? cos po,, ,
(r— =)

F{B(t) — iC(t)} ~b,r* cos pb, ,

and L therefore satisfies our requirements. We observe that since
¢ = 1 and p = 1, we can always find an integer n, such that cos (pn,7/q) <
0 and an integer n, such that cos (pn,z/q) > 0. We choose L asymptotic
to the ray 0 =6, or 6 =0, according as b,>0 or b, <0. This
completes the proof of Lemma B.

Turning to Theorem 2, we see that the sufficiency of the condi-
tion is clear since if P(t) = a.,t (a, real), then flexp{P(t)}] is the
m.g.f. of a lattice distribution, while if P({) = a,t + a,t*(a,, @, real,
a, > 0), then flexp{P(t)}] is the m.g.f. of an infinite mixture of
normal distributions together with a discrete probability f, at the
origin.

To prove the necessity, we observe from Theorem 1 that if
flexp {P(¢)}] is to be a m.g.f. at all, then P(t) can only be of the
form P(¢) = ait + a,t*, and from Lemma B, the coefficients @, and a,
must be real. Further we cannot have a, <0 for in this case
exp {P(t)} and, therefore, flexp {P(¢)}] would be bounded as ¢ — =+ o,
which is impossible for a convex function. The theorem is therefore
proved.

In proving Theorem 3 we see from Theorem 1 and Lemma B that
for flexp{P (¢)}] to be a m.g.f., it is necessary that P(t) = a,t + a.t*
(a;, a, real) and that f, be real (n = 0,1, ---). By the argument at
the end of the previous paragraph it is also necessary that a, = 0.
Now let

@5 M) = flexpat + 0t} = 5, exp{n (@t + )

where f,(n=0,1,---), a, and a, are real and a, > 0. We clearly
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have

M) = S "edF ()

where

@)  dF@ = fdHE) + | 5 7(4—;&—) exp {— L Vg,

H(xz) being the unit step function with a jump at  =0. We thus
have

A7) dF () = f.dH exp(;ii)“ 0t na 5 g
(4.7) (x) = fodH (x) + m—%fnn Z{GXP<“ 4a2>}y” X

where y = exp (— 2*/4a,). We now see that for M(¢) as defined by
(4.5) to be a m.g.f. it is necessary and sufficient that f, = 0, f(1) = 1
and that the sum on the right hand side of (4.7) be nonnegative for
O<y=1.

If a, = 0, the result is obvious and so Theorem 3 is proved.

5. Proof of Theorem 4. We may assume without loss of
generality that the coefficient of the highest power of ¢ in P(¢) is
unity. For if P(t) = a,t™ + a,_t™ " + -+ 4 ay(a, #= 0) and if f(z) =
S\ S, then F{P(®)} = 3 fLan{Put)}* where P(t) = t™ + (@, _/a,)t"" +
-+« + (a/a,), and then f{P(t)} = f{P.(t)}, where fi(z) = 3, f,alz" is an
entire function. Accordingly, let

P)=1t" + ap_t™ "+ ++» + q (m > 2).

Consider the complex number Re*, where the argument ¢ may
depend on R but is always defined to be in the interval #/2 < ¢ < 5r/2.
We consider the roots of the equation

P(t) = Re™ .

We assert that for given ¢, 0 <e<x/2m, there is always a root
tr of this equation which satisfies

‘tR[ ~ RU™
(5.1) (RB— )
O<—L—e§arg(tg)§—5£—+s.
2m 2m

We observe that if P(t) = t™ and we take |t;| = RY™ and arg ¢, =
é/m, then t, satisfies (5.1). In general, if we consider a circle Cg
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with centre RY™exp (i¢/m) and radius R“™~3(0 < 6 < 1/m), then for all
sufficiently large R, the circle Cy lies within the angle
T 57

(5.2) = —e<argt < — +e¢.
2m 2m

It is now easily verified that for ¢ on Cpg,

| P(t) — Re| ~ mR"™®
(R— ) .
|P(t) — t] = O(R™™)

Hence, since 1 — 6 > 1 — (1/m), it follows from Rouché’s theorem that
for all sufficiently large R, P(t) — Re* and t™ — Re*® have the same
number of zeros inside C,. Since ¢™ — Re* has a zero at ¢ = R!™e/™,
the centre of Cg, if follows that P(t) — Re** has at least one zero, say
t = tp, inside C;. It immediately follows that for all sufficiently large
R, t; lies in the angle (5.2) and that

ItR . Rl/meid)/mi < Rl/m—é ,

which gives the result (5.1).
Now consider the function

(5.3) M(t) = f{P @)} .

If M) is to be a m.g.f. then clearly f(¢) cannot be a polynomial,
for if f(t) were a polynomial, then M (t) would also be and a polyno-
mial cannot satisfy the inequality (1.4). We suppose therefore that
f(t) has an essential singularity at infinity, If F(R) is the maximum
modulus of f(¢) on the circle |z| = R, then F(R)/R is ultimately a
strictly increasing function of R. Hence for all sufficiently large R,
R, with R, < R, we have

F(R)_ R

>4 F(R) ™ R,

Suppose that | f(z)| attains its maximum on [z| = R at a point Re*
where ¢ is defined to be in the interval 7/2 < ¢ <571/2. Choose t; so
that P(tz) = Re* and so that t, satisfies (5.1). Let up = “Ztz. Then

Mt | _| APt

Mg | |F{Pus)}
_F®

(55 " AP sy
F(R)

\%

T OF{ P}
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Now in virtue of (5.1) we have, for all R sufficiently large,

0<URKCOS<5—E+S> éugéitR[cos<f——e).
2m 2m

Hence there exists B, > 0 and 7(0 <7 < 1) such that
[Pup) | <7 lte|™ < R (R> Ry,
so that on applying (5.4) to (5.5) we obtain

M (tz) = R
M(ug) | | P(ug) |

>1,

for R > R,. It follows from (1.4) that M (¢{) cannot be a m.g.f. and
Theorem 4 is therefore proved.

6. Proof of Theorem 5. The sufficiency part of theorem 5 is
clear. For g(e**)/g(l) is the m.g.f. of a lattice distribution and
flexp {P(®)}]/f (1) is the m.g.f. of a lattice distribution if a, = 0 or of
a mixture of normal distributions if a, > 0, with possibly a discrete
probability at the origin.

To prove the necessity part of the theorem, suppose that

(6.1) M(t) = g(e*) flexp {P()}]

is a m.g.f., where P(t) = a;t + --- + a,t™. Then M(t) is real for
real ¢ and since g(e*?) is real for real ¢ so also is f[exp {P(¢)}]. Hence
by Lemma B, the coefficients a, ---, a,, must be real.

Suppose m = 3 and a, > 0. If £ is real and positive then P(§)
is a positive strictly increasing function of & for all sufficiently large
&. For given &, consider the equation

P(t) = P() .
By Lemma A, there is a root of this equation, say ¢ = t,, which
satisfies
1/m y
o~ R (25
G m
(6.2)

~eep(ZL) o).
m

Hence as &— co, we have ZZt. ~ &cos (2n/m)(m + 4), Zt. = 0(&)
(m = 4). Since P(&) ~ a,&™, it follows that

(6.3) P(t;) = P(§) > P(Zt,)
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for all sufficiently large &, say & > §&. Now _#t¢. is a continuous
function of & and _#t. ~ &sin (2z/m); hence we may choose & > &, in
order that _# te, is an integral multiple of 27/, It then follows that

(6.4) glexp (at:)} = glexp (a.F2t. )} .
Hence

M(t.) _ _ flexp{P()}]

M(#t:)  flexp{P(Zt)}]

Now since f(x) is nonconstant and has nonnegative coefficients
fn(n: 0? 1? ...)7

we have f(2') > f(x”) if «’ > a” > 0. If therefore follows from (6.3)
that
M(tél) > 1 ,
M(=t:)

which contradicts the inequality (1.4). A similar argument deals with
the case a, < 0. It follows that if M(t) as defined by (6.1) is to be
a m.g.f. then we must have m =< 2, ie., P(t) = ait + a,t* with «,
and a, real.

Finally if a, < 0 then on letting ¢ — o along the imaginary axis
through integral multiples of 27i/a we find that M () — - on account
of the periodicity of g(e*!) and the nonnegativity of the coefficients
fu(n=0,1,---), This again contradicts (1.4) and so we must have
P(t) = ait + a,t* with a,, a, real and a, = 0. This completes the proof
of the theorem.

7. Remark on the results of Ostrovskii. The author is in-
debted to the referee for drawing his attention to the paper of
Ostrovskii [6] which he had unfortunately overlooked while writing
the present paper. Theorem 4 would follow from Ostrovskii’s Theorem 4
under the more restrictive hypothesis that | f(t)| = f((t]) for all |¢]
sufficiently large. Otherwise, the results of the present paper are
independent of those of Ostrovskil.
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