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EXISTENCE OF A HOMOTOPY OPERATOR
FOR SPENCER’S SEQUENCE IN
THE ANALYTIC CASE

C. BurTiN

According to E, Cartan’s prolongation theorem, an analytic
system of linear partial differential equations becomes an
involutive system, after prolongation in a finite number of
steps, and an involutive system has local solutions, by the
Cartan-Kidhler theorem.

Recently, a homological procedure has been developed, in
terms of which the notion of involution is equivalent to the
vanishing of a certain type of cohomology (so-called ‘‘5-coho-
mology’’). Moreover, the local solvability of a linear system
of partial differential equations has been shown by Quillen to
be equivalent to the exactness, at degree one, of a certain
resolution introduced originally by Spencer, which is canonically
associated with the given system. The terms of the resolution
are sheaves of germs of jet forms, i.e,, differential forms with
values in jet spaces.

The exactness of this resolution, providing a replacement
for the Cartan-Kihler theorem in the linear case, in the
analytic case is known. We shall have given another proof,
based on the construction of a homotopy operator which is a
natural generalization, to jet forms, of the well-known
homotopy operator used in proving the Poincaré lemma for
the exterior derivative d. '

Some estimates will be necessary in order to study the existence of
this operator, and we use here extensively the estimates obtained by
Sweeney in [5] which are related to the bounds obtained earlier by
L. Ehrenpreis, V. W. Guillemin and S. Sternberg in the paper [1].

1. Notation. Let M be a C= manifold of real dimension .
Since everything we shall do is local, we shall always work in a
neighborhood, U, of a reference point 0 of M. A coordinate (z*, 22 ..+, 2"),
vanishing at 0, will be chosen in U.

If E is a C~ bundle over M, E denotes the sheaf of germs of C~
sections of K., But, for the sake of simplicity, and because E can be
supposed trivial over U, we shall in general use the same notation E
for both.

Also for the sake of simplicity, we shall use the following, now
classical, condensed notations:

D = (Py, D, +++, D,) is a multi-index of nonnegative integers p;.
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220 C. BUTTIN

The length of p, denoted |p|, is the sum p, + p, + -+ + p,.
p! is the product p.! p,! --- p,!
x? is the product (x')P2(x*)2 .. (x™)?»,

orf _ oI for the derivatives of the differentiable
ox? (0x)?L « o o (0a™)Pn

functions in U.

We can define the sum p + ¢ of the multi-indices p and ¢, by:
P+a=®+qD:+t ¢, Dut ),

and also their difference » — q, whenever ¢, = p;, +++, ¢, = p,, by
P—q=D—quD:— @yt Pu— o)

(The inequalities ¢, = p,, +++, ¢, = p,, may be condensed into g < p.)
Finally, p + 1, will denote the multi-index (p;, ++«, p; + 1, -+, D).

2. Definitions and results required in the sequel. In this
paragraph we shall recall, very briefly, some results which can be
found in [3], [4(c)] and [5].

Let E be a C= vector bundle over M, with fiber R™. We denote
by J*(&) the vector bundle, over M, of all the jets of order y of the
germs of C= sections of K.

There is a natural projection n*:J*(K)— J*'(&). We can cover
JHE)| U, if E is trivial over U, by the coordinate (x, g), where z is
the coordinate (2!, -+, 2" in U, and 0 = (0}), j=1,2, -+, m, |p| = p
is the coordinate in Hom (@,<y<. S"(R"), R™) where S"(R") is the v-fold
symmetric product of R".

From now on, whenever there is no possibility of confusion, we
shall omit the subscript j, thus writing, for instance, ¢ = (0,).

Finally, there is a map j*: E— J*(¥) which is given in a local
coordinate by

akolf
! oxr

Now let E and F be two C= vector bundles over M, with fibers

R™ and R?, supposed trivial over U.
A linear differential operator <7, of order p, is a linear mapping

. E— F

locally given by
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where the a? are C~] x m matrix-valued functions.
We associate to = the (algebraic) linear operator:

F: J(E) — F
defined by
LAo)w) = 3 a(w)a,@)
and we prolong &4, inductively, by differentiation, as follows:
L)) = 5 @@ .

=r

IS pprscq

Then &7,,, will be defined by

Gfo)@) = 5 (0,m) + ax@)o,., @)

= 2 0 (@)o,(@) .
p=r+s
[rl=pp,sCq+1;

p=r+
Il =#9,8Cq

Here a?(x) is naturally identified with a?(x).

The collection of the maps &, for |q| < p, st = pt,, which we
shall denote by .&#*, is called the g prolongation of .&%. It maps
JH#E) into J**(F) and makes the following diagram commute:

E 2. F

j;zl lj/z~/10

JH(E) =, Jewo(F)

Let 2* denote the kernel of &7,

We shall suppose, once and for all in this paper, that & is regular,
that is:

(i) 2* is a C= sub-bundle of J*(¥).

(ii) The map X*— X¥** (induced by #*) is surjective. This map
will still be called =*,

2= will signify the projective limit of X*.

We finally introduce the following sheaves of germs of differential
forms over M:

30t = 3@ A T*M)

where T*(M) is the cotangent bundle of M. Moreover, 7 induces
the projection, still denoted n*,

TTHs J? —y FLT

and Y%7, is by definition the kernel of 7#. An element o4’ of 297,
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is represented, in the local coordinate, by the components,

019 = SZSJ‘ Upl...pn;jl...jrdx“ VANKEIVAN daxir
<=

i
which we can write, more succinctly,
0, = 2,0,,dx7 .
We now define the map 6, namely the map
0: Xr —— Jhmhret

which is locally given by

(Sa)p:;dxi/\opﬂi, lp|=p—1.

It is easy to check that ¢* = 0.
Let 44" be the kernel of g: 24" — Y47, One has the following
sequence:

0
00— A4tH" —— FhFbT —— gl —— 0

since 6* = 0. But this sequence is not exact, in general. However
(0-Poincaré lemma), it has been proved ([1], [4(a)], [5]) that there
exists a positive number g, = p,, 1, depending only on p, n, m, and
I, such that the sequence is exact for p£ = p,. We can choose a norm
in 34" by defining, for a form o =, ...; dat A\ -+- A da’r, belonging
to Xt || o ||, = sup | 64,;,...; (%) | for x e U, all 7,3, +-+, j, and all the
p of length g, It has been proved (see [5]) that, choosing the coordinate
(xt, - -+, 2™) appropriately, one can assert the existence of a splitting of
the sequence by a map

Our AlpTit —— hthT

(

such that || p.|| < C where the constant C depends only on < and
the choice of the coordinate. In particular, C does not depend on .

One can, in the same way, define the map ¢ on J/,(E), kernel
of the map

e JHE) — J-H(H) .
Since J* is locally isomorphic to @!-,J>_,, 6 can be regarded as a map
01 J W7 —— JELTHL

But an element of 3*” is not in general sent into X*~“"+! under 9.
(It is locally true, however, when the coefficients of <=7, the matrices
a®?, are constant.)
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Again, except in the constant coefficient case, the operator d,
exterior derivation on the components of a jet, which are differential
forms, does not send X*" into X*"*'. But, roughly speaking, the
difference d — 0, between “actual” and “formal” derivations, preserves
the structure. More precisely, there is a map

D 3w y S u—1,7+1 ,

which is locally defined by
D#g* = d(mto*) — do* .

We shall often abbreviate D* by D, incorporating also in the same
notation the projective limit D= of D*, which sends XY= into 3=,
(For a more intrinsic definition of D, see [3].)

We come now to the resolution of the sheaf & of germs of solutions
of the differential equation <f = 0. This resolution is the sequence
(cf. 4(c))

0— @ —s 3o 2, g LA
where
51l
s, = 2L for feo.
oxr

It is easily checked that Do¢ = 0 and that the sequence is exact at
2=° But it is not usually exact any further. When it is exact, we
say that the D (or better D=)-Poincaré lemma is true,

Note that the D=-Poincaré lemma is equivalent to the D*Poincaré
lemma for ¢ = g, We shall here indicate the details of the proof,
for we shall use the process later, in the evaluation of the estimates.

First let us suppose that the D-Poincaré lemma is true for some
1= p; and let us consider a o~ belonging to X< and satisfying
Do~ = 0. The projection ¢* of ¢~ in X»" satisfies D*o* = 0, and thus
there exists a t#+te ¥ttt guch that D't = ¢#, Let = be any
prolongation of z#*' and let 6 be Dz=. The form ¢= — ¢ is closed
under D and belongs to the kernel, ¥,,, of the projection Y=~ — 3w,
Now the D-Poincaré lemma is trivially true for ¥,: no integration is
necessary—it suffices to apply infinitely many times the §-Poincaré
lemma. Therefore, 0* — G~ is a D-coboundary and so is o=,

Conversely, suppose that the D<=-Poincaré lemma is true, and let
o* be an element of 3*" such that D#o* = 0, p = p,. Since I+ — 3¢
is surjective, there exists a prolongation of ¢* in JX**!, Let §*' be
any such prolongation, Then D#+'¢**' is actually an element of X7t

u—=1 9

closed under o, therefore it belongs to 447, We can now apply the
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0-Poincaré lemma, asserting the existence of a 4+ e I¢+“" such that
ottt = D¢, By construction, o' = 6" + t4*' belongs to F#+u7,
projects onto o¢¢, and is closed under D#*, This process can be
repeated, thus giving us an infinite prolongation, ¢, of ¢, satisfying
Do> = 0. Therefore there exists a = such that Dz~ = 0>, and it
suffices now to project z= into X**»"', in order to obtain a z**' such
that D#'z# = o*,

It has been proved (see [3]) that the resolution is exact at Y=
if and only if the nonhomogeneous equation <7 f = g, where ¢ satisfies
the required compatibility conditions, is locally solvable. But this
equation is not always locally solvable, as Quillen has pointed out,
namely the equation (H. Lewy’s example)

o g of

0% ox?

where z = o' + 12°, Z = 2! — ¢2°, has a solution if ¢ is analytie, but
no solution in general if g is C=. Therefore, the D-Poincaré lemma
is generally false, However, we can say that

(i) It is “formally” true (see [3]).

(ii) It is true in the constant coefficient case, in view of theorems
of Ehrenpreis and Malgrange.

(iii) It is true in the analytic case. Analytic means here that
the coefficients of the equation &7 f = 0, and the jet o are analytic
(cf. Lewy’s equation).

The exactness in case (iii) is known (see [3], [4]). However, our
purpose in this paper is to give a new simplified proof of the exactness
in case (iii) by defining a natural homotopy operator K, which, we
think, is natural in the analytic category, but, (see end of §7) may
be defined under weaker assumptions of analyticity, i.e. supposing
only that the coefficients of <7 are analytic and the Spencer sequence
is exact,

3. Definition of the operator K. Let us first recall the existence
of an operator k, acting on ordinary differential forms defined in an
open set U, starlike with respect to the origin, in which coordinates
(%) have been chosen, and satisfying:

kdo + dko = o if the degree of o is positive,

1
(1) = g(x) — a(0) if the degree of ¢ is 0.
The operator © may be obtained in the following way. One uses the
interior product o A @ of the differential form ¢ =0, ...; dxit A -+« A dair

Gyt dp

by the vector field « = 3" «*(3/0x"), which is defined by
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<N .
oAT=0j. JT(Z (=L wikdzit \ v oe A dpiE N eee A dmfr)

in positive degree, ¢ A ® = 0 in degree 0. Let us recall that the
operator A « is a derivation:
(@ABARe=@R2) ANB+ (—1)YaANBR )
where r is the degree of @. Then one defines the operator Vo (Lie
derivative) by
Vo =do N x+ doR x).

An easy computation shows that

Vo = <Z gcao 31 Jr - 7'0-]1 ) >dx11 A s A dair R
Jo=1

thus proving that V is invertible on the differential forms of positive

degree. In fact, the equation

a3

2ot

=49
has a unique C= solution, when g is C=, given by
1
f= S trig(tat, - - -, taM)dt r=1.
0

Let ko be

V¢ & « in positive degree,
0 in degree 0 .

It is now easy to check that k satisfies (1), and therefore, as is
well known, % can be used to prove that a differential form closed
under d is locally a d-coboundary (d-Poincaré lemma).

We would like to generalize this process, in order to obtain an
operator K, acting on the differential forms o ¢ Y=, and satisfying

(2) DKo + KDo = o

in positive degree. We recall that we are here working in a neighbor-
hood U of a point 0 of the manifold, covered by a coordinate (z7).

We can apply k to all the components of ¢, and define the operator
W by

Wo = Dko + kDo .

But here the operator W is not generally invertible, and it is not so
easy to see directly when it is invertible. We have
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Dko + kDo = (dk + kd)(o) —(0k + ko) (o)
o — (0k + ko)(o) in positive degree,
o(x) — 0(0) — kdo in degree 0.

Symbolically speaking, W will be invertible if the series 33>, (0k +k6)*

converges, or, equivalently, if the series 377, (dk)' does. We shall
define

Ko =
(3) {ki‘, (0k)to in positive degree, when the series is convergent,
1=0
0 in degree 0.

The operator K has been constructed in order to verify (2), but it is
necessary to check it, because of the slight irregularities introduced
by the forms of degree 0. If both 3}, (0k)'c and 3>, (0k)'Do converge,

DKo + KDo = dk S, (9k)'o — S (0k)'o + k> (9k):Do
=0 =1 =0

= % (0kY'o — kd 12;(51(;)10' — g (6k)'o + k i (k) Do

il

o+ k lﬁ ((0k)'Do — d(ok)'o)

and the last sum is easily seen to be equal to zero, by using dk -+
kd = identity, and dé + éd = 0.
In degree 0, (2) is no longer true, but we find,

(3') KDo = o(z) — 3, (k8)'6(0)
=0
if the last series is convergent. The component
(5 to)yo()
=0 P

is a power series in 2!, ..., x", actually the Taylor expansion of an
analytic function ¢,, whose derivatives at the origin are

alql
Txfl(O) = 0,.,00) .

In other words, there exists a function ¢, analytic in U, such that
0"\ p/ox? = @,, thus showing that 372, (kd)'0(0) = ¢=(p). It can be seen
that the function @ belongs, in fact, to #. The demonstration is

analogous to the one we shall give later in order to prove that K
preserves X=*,
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Everything we have said in this paragraph applies to the “formal”
case, in the sense that it is correct for formal power series.

REMARK. Among formal homotopy operators on 3=* the above
homotopy operator is uniquely determined by the following conditions:

(i) DK + KD = I in positive degree;

(ii) Ko is in the image of the derivation Az, that is Ko has
the form Ko = w R~ =z.

We have defined such an operator, symbolically written
= k (3k)l

Therefore, this particular operator has the additional property that
(i) KwAx) =0,
As a consequence, we observe that K* —

Now let K’ be any other (formal) operator satisfying (i) and (ii).
Then, in positive degree, we have

DK —-—K)Y+ (K—K)D=0.
Applying on the left the operator K, we obtain, by using (ii) and (iii),
KD(K —K')=0.

But KD =1 — DK in positive degree, and also in degree 0 when
applied to a jet form vanishing at 0. Therefore,

K—-—K =0,

4. Explicit expression for K, applied to a form of positive
degree. It is enough, because K is linear, to make the computation
when all the components of ¢ involve the same differential element
do’ = dxit A <o+ A dair,

We shall compute the first two terms of the series, and the
generalization is straightforward.

Let o be (0,d27). Then

(ka), = <Slt’—la,,(tm)dt>(dx1 X @),

(oka), = }:_, (S g, (tx)dt)dx’ (da’ 7 2)
(kdka), = >: <Su(§ 0, (tvx)dt)du)(dfc A (daT K @) T @

I
e

8,
N

Il
[:/_}:

s
i
—

S (g t“lopﬂi(tx)dt)du)(dx“' A )
S 1

_ t)t*—lﬁpﬂi(tx)dt)(d:c’ = o).
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More generally,

(k(5k)'0), = Tida’ 7~

where
(4) = =0 (2 Lo, (o)t
0 =t q!
and
Ko = (r,d2’ 'R @)
where
(4') 7, = 3,17

T
L

if the series converges.

5. Sufficient condition for the existence of Ko. Let V be a
compact set contained in U, and let ¢ be an element of 37, with
components

J
O,

AN e A daiT 7=1,2 -+, m,

We recall that [|o ||, = sup|a},;,....; (¢)| for xe V, all 4,4, ---,7, and
all the p of length p. We shall say that o satisfies the condition
(C) if and only if there exist two numbers M and £, finite and positive,
such that

(©) l|oll. = Mplht for all o .

Condition (C) means that, as far as their growth is concerned, the o,
behave like the derivatives of an analytic R™-valued function.
With the notations of §4, we have, when (C) is fulfilled,

7L < M(|p| + Z)zhw_@(lx»‘
!

where p(x) = 37, |%*|. We can suppose that U is small enough to
insure

1
@ _
o) < -
and the series 7, is now uniformly convergent (for o(x) = (1/h) — ¢),

for all p. Therefore, in this case, Ko converges, and we can permute
integration and summation, thus obtaining
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Ko = (Slt—(}; 1— t)l<’ ) x—:0p+q(toc)>>dt>dacJ Rw.

q=t @.

6. Conservation by K of the structure of X=*, In §4, we
have associated, to the form ¢ = (¢,)d2’, the form Ko = (z,)da” R =z,
at least formally. We want to know whether = = (r,) satisfies the
equations &(t) = 0 (see §1) as & = (o,) does. Our proof will show
that this is formally true, but in order to prove that it is actually
true, we shall need some assumptions of analyticity.

LEMMA 1. If there exists a number A, such that, for p(x) < A,
the o,(x) are analytic, for all p, and satisfy the condition (C), then
Ko exists locally and belongs to I=*,

LEMMA 2. If there exists a mumber A, such that, for o(x) < A,
the coefficients of = are analytic, and ¢ satisfies the condition (C),
then Ko exists locally and belongs to X=*.

Proof of Lemma 1, The equation .&(x)(a(x)) = 0 actually involves
only the o, with |p| = |q|+ .. In &(x)(o) let us replace each
o,(x) by

Bt 2) = S (L— 1) 5 20, (i)

and let us call ¢, (¢, ) (or symbolically .&(x)(Z(¢, x))) the result of this
substitution. We shall prove that, for x fixed and small enough,
@ (t, ) is identically zero, in a neighborhood of the closed interval
[0,1], and the desired result will follow directly by integration with
Tespect to .

Let us first remark that o,(1, x) vanishes, because 7,(1, ) = o,(z)
and therefore it satisfies the equation

Z@)(Z(1, 2)) = 0.

Next, for « fixed, o(x) < A, we see, by using (C), that the 7,(¢, x)
are analytic functions of ¢, in the domain

A 1
o TS T
If we impose, for example, the condition o(x) < inf (4/2,1/2h),
the element 7,(¢, #), and also ¢,(t, «), will be analytic functions of ¢
for —1 < ¢ <2, ie. in a neighborhood of [0.1]. It now remains to
prove that all the derivatives of ¢ (¢, ) are zero for ¢ = 1. We remark,
by using the analyticity of o, and the condition (C), that all the series

[t <
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intervening in the argument can be differentiated term-by-term. For
instance:

0T,(t, @) _ S — t)z[ > i 200, (0 41y s _@igm(w)]
ot =0 lsi=1 i=t g ox’ lsi=1+1 s!
b » 1 00 51y .(t:c))
1 — t) ol (S T pret
Z ( ) lwi=14+1 v <Zi (w — 1,)! ox?

_ O.quw(t:c) ]
(4 1) Lt |

=0 wi=i+1 iz (w — 1;)! oxt

S l—ty 3 ﬁ_ﬂT[M(m) ,,;w(tx)]

—YerSaoy s & (a"p S (t) — Oy, (m))
|

ox’®

We have denoted by & the elements of 3=° whose components are (7,).
Let us denote by «,,.da’ the components of D&, in other words

where

Z (1 - t)l sz; _a:uﬂ—s z(tx)
We note that 7,,; has the same form as 7,. The element (¢,) has
simply been replaced by («,,;), both belonging to X¥~. In particular,
Z,:(1, 2) = a,,(x) and Op,(t, ®)/ot is zero for ¢ = 1. This process can
obviously be repeated indefinitely, thus proving our assertion.

Proof of Lemma 2. Here we prove again that the function ¢,(¢, x)
is identically zero in a neighborhood of [0, 1] for « small enough, but
in order to do it we shall make the change of variables

1

te = X, —=1T.
t

The function ¢,(t, ) becomes
9T, X) = L(TX)E(T, X)),

where this expression involves the terms 7,(7, X) for |[p| = |q| +
and
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(0 X) =50 -1 5 2o, (X)
As in the preceding proof, we see that @,(1, X) = 0. Since .&(TX)
is analytic, and 77T, X) is a power series in (T — 1), we see that
PT, X) is, for X fixed, p(X) < A, an analytic function of 7T in the
domain | T|o(X) < A, | T — 1| p(X) < 1/h, which is simply the trans-
form of the domain previously considered, i.e. the domain

ple) <A, |1 —=t|ol) <1/,

with the condition |¢]p(x) < A.

Therefore, if we can show that all the derivatives of #,(7, X)
vanish for T = 1, our proof will be complete.

Here the series intervening in ¢, are power series in (T — 1),
therefore they can be differentiated term-by-term, and we have,
symbolically:

A1) 5 xS o, x) + rx)(ZE(T, X))
- (’}\xz 8T

oT iz
But
o7 ha . Xs
(T, X) =2 (0 + (T = 1) > —0,,(X)
0T i=0 Isi=t+t 8!
n . : Xs—l,;
=R X RN -1 3 S, (X)

An easy computation now shows that

DAL X)Xz (TXET, X))

Again all the derivatives of @7, X) will have similar forms, and
will vanish for 7 = 1.

These two lemmas prove that, whenever Ko converges, it respects
the structure of X=* if either the coefficients of <2, or the components
of ¢ are analytic. Unfortunately, as we shall see in the next paragraph,
we need the analyticity of both coefficients and components to obtain
an element satisfying the condition (C).

However, in the constant coefficient case, and more generally under
the assumption that the resolution associated with some operator =,
with analytic coefficients, is exact, it will be possible to prove that,
given a o*e Y%7, closed under D", " can be prolonged to a o= e3>,
closed under D, in such a way that (C) is fulfilled by o=, ie. Ko=
exists.

In order to prove that the resolution is exact, in the case where
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both the coefficients of <7 and components of o¢*c 3" are analytic,
we shall show that a o¢* closed under D# can be prolonged to a o=
closed under D, in such a way that (C) is fulfilled by o=, i.e. Ko=
exists.

7. Estimates.

LEMMA 3. If the coefficients of < are analytic, any o*eX*"
can be prolonged to a o=ec =" in such a way that ¢ satisfies the
condition (C).

Proof. 1t is obviously sufficient to consider only the forms of
degree 0.
Let

2f = 3 A, f + Bf,
where the A; and B are ! X m matrix-valued functions. (One can
always reduce to this case. Cf. Quillen’s thesis.) Here we can write
explicitly our equations (o) = 0, in the form
__%(x)(ﬂ') = Z AiO‘orHi + Boo

7

o) = 3o, 4 STt

1,qCD

where the integers », are multinomial coefficients, coming from Leibnitz’
formula,

We know that the map X*+'— 3¢ is surjective; therefore, there
exists an element g4*, belonging to J/ (&), such that ¢ + G4 belongs
to 3#*, In other words, if we denote by ¢“** the sum o¢* + G4, we
have

G5 =0
for all p satisfying |p| = pt. In particular,
- LI, A oB
_p(aﬁJr):Z 2-1 1 «q —q+1; +ZT aqap—qy
=1 X

uva

where o denotes the symbol of 2. (See [3] for the definition of the
symbol.)

It has been proved in [5] that there exists a map », defined on
o(J T (K)) restricted to a neighborhood U of the origin, such that
oor = identity, and || || = H, uniformly in this neighborhood, where
H is a constant independent of fe.



EXISTENCE FOR ANALYTIC SYSTEMS

This proposition enables us to replace 4™ by a o4 satisfying
o(ott) = (g4 and |lo4t || = H| (@4 ]]. In other words, o4t will
be bounded in terms of the derivatives of A; and B, and also of the
components ¢y, of ¢ in J,,0=v = px. We call M, the bound of

v
‘0-1/-1-

Now, since the functions 4; and B are analytic, we can assert
the existence of two numbers N and H, and of a compact set V

contained in U, such that, in V

0B

ox?

= NH/" |q|!

and

|n 28| < NHE(q| ~ 1)1
ox?

In the last inequality, we are actually using the analyticity of the
first derivatives of A;, and the purpose is simply to make the compu-
tation easier. We shall call & the supremum of H and H,.

Now we have, in V

0B

> Tos—0pq|| = NZ”:I C,fh”v'-Mﬂ_,,
9cp 0x? v=0
where
cr=—H
vl — v)!

In the same manner

z 0A,;
Z Z 'rq_o-p—-qﬂi

= NE e - DM

i=1 qCp o0x?
lgl21
ie.,
n aA “—-1 1
SN 2o, || E NS CEIM,., .
i=1 |q]C§1 ax y=0
qlz

Finally, by using the equality C + C.™ = C;i], we have
_‘uﬂ v v
lo@:™]l = N X C:tivIM,_,
and

M. = Nb S, CHowl M, .
v=0
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We can always suppose that, in V

M, = NMh*(l + N)yw!, for 1=y =g,

It follows that
My = NMJe(p + (e DS, N N

L

0 vy +1
= NMA“H 1 + N pe + D),

v

We call o#+* the sum o%™' 4 ¢, and define, in the same way, an
element o4} satisfying ¢ + o4l 3“* and

M,., = || 02| = NME 1 + N5y + 2)]

and this can be repeated indefinitely, thus proving the existence of
an infinite prolongation of ¢*, satisfying the condition (C).

REMARK. In this case, i.e., when the coefficients of < are analytic,
the resolution is exact at XY=, In fact, this is equivalent to saying
(see §2) that the map D#': Yettn—t— 3mn g surjective for ¢ = y,,
and this map is actually surjective for all ¢ = 1. Indeed, as we have
just seen, the element o" can be prolonged to a o=", satisfying the
condition (C), hence Ko>" exists. But, in degree #, since ¢ is auto-
matically closed, DKo reduces to ¢. Therefore, 0= is a D-coboundary,
and o*" is consequently a D“*'-coboundary.

This is, of course, exceptional; for the other degrees, in order to
prove that the D*-Poincaré lemma is true, we must be able to prolong
a form o*" closed under D*, to a form ¢=7, closed under D (this is
possible, as we have seen in §2) and satisfying (C), and for the latter
condition we shall need more assumptions, as will be seen in the
following theorem.

THEOREM. If the coefficients of < are analytic, and if "
denotes an analytic jet form, closed under D*, where pt = p, v > 0,
ot" 1s locally a D#+'-coboundary.

Proof. We shall prolong ¢* into a form o=, closed under D and
satisfying (C). Let us first observe that the process used in the
demonstration of Lemma 3 respects the analyticity; in fact, the map
defined by Sweeney can be chosen to respect analyticity. Therefore,
going back to the notations at the end of §2, we can choose an
element 6%+, analytic and satisfying

1551l = Nh 35 Gl M., .
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But, as we have seen in the proof of the fact that the D=-Poincaré
lemma implies the D#-Poincaré lemma, the desired element o4 (i.e.
element satisfying D®*(o" + o4 = 0)) is obtained by adding to &4*,
an element 4" such that

ottt = D No" + 647 = doli_, — 064"
and we have (by the §-Poincaré lemma with bound)
ot = Clidog_, — 60| .
The element ¢/_, is analytic; therefore, in V,
dot || = nhlloi_] .
Furthermore,
foag s mijar .

By combining the last three inequalities, we find
u
ot = nChM, + 1+ nC)Nh ‘Z:‘_(,) ClhinvIM,_, .

Let » = N1 + »C) + »C, and let us suppose, inductively, that
M, = MNhy! for 0=y =g,

Then

M=+ SV Vo1
= (1 nC)MNR (st + 1)!</v F R o 1)

+ nCMN R pe]

The last bound can be written

Mg + 1)!<M‘+1 + % I R, )

7] -+ 1
iz n—1 1
CM1 (e 11[ M e s MT N ]
+ nCMA (g + 1) ot+1 2 z r+1
= Mh* (e + DI + Mo (pe + 1)14
where
A\ A N
4:(_ e L M
2 - M7 p+1>
AeTE N 1
T IR S U
1 T2+ +#+#+1

It remains to show that 4 is negative. Since nC can be taken larger
than 1, it will be sufficient to prove that
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A 15 A J% AT 1 1
_— e - R e
2 M Tu+1 p+1 2 2 p+1

and this inequality is always true for positive A and p.

Now, since the splitting of the J-sequence can be made to respect
analyticity, and since 647 is analytic, it follows that %' is analytic,
and we have just seen that

o] = MR (e + 1)1

Y3

This reasoning can be repeated, and it completes the proof of the
theorem.

In this theorem, we used sufficient conditions. In some cases, it
may be possible to see that K exists, without all the assumptions of
analyticity, as the following examples will show.

ExampPLES. (1) The case where the prolongation vanishes for all
sufficiently large ¢ as, for example, in the case of the system of
equations where the (n x m)-matrix (0f7/ox*) belongs to the Lie algebra
of a compact Lie group. Then there is no problem of convergence,
and K will provide a solution for the D-Poincaré lemma,

(2) Let &f = 0 be the equation

of
oxt

of _y.

ox*

(Here m =2, m = 1,1 =2, ¢, = 1.) This is a very special example of
the constant coefficient case, and here, too, K will actually provide a
solution for the D-Poincaré lemma, in the following way. Any jet
form ¢= belonging to 3> admits locally the components

{Upl,pz =0if p,= 0,

o = 0Og,

pl,O
Let 0 = o~dx'. We have

. ) . o L1\
Ko — wS (L — t)l@l',)—l‘gz,o(tw)dt = %S Too(tw) 2, (1 — t)l_“(aiv) dt

= xlglexp {X — t)a'}-o,(tx)dt .
0

We see that the convergences of the series does not involve here any
question of the analyticity of . Unfortunately, this does not generally
happen, in the constant coefficient case. Therefore, the operator K
cannot be used to prove that the resolution is exact. However, as we
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shall see in the following proposition, the exactness can be used to
prove the existence of K.

ProposiTioN. If the coefficients of < are analytic, and if the
D-Poincaré lemma is true, then any o*e 37", closed under D*, where
pt =, 1t >0, can be prolonged to an element o« ¢ 3= closed under
D and satisfying (C). Therefore, Ko~ exists,

This lemma does not prove much, of course. It just says that,
in some cases, when the D-Poincaré lemma is true, then the homotopy
operator K can be defined. Another problem would be to define a
similar operator in general, whether the coefficients of <7 are analytic
or not, whether the D-Poincaré lemma is true or not. In the cases
where the D-Poincaré lemma is not true, we would have to add a
“harmonic’ term H, and write

0 = KDo + DKo + Ho

as in harmonic theory. We know that this is a difficult problem.
Before proving the proposition, we shall treat a simple example.

ExampLE., Let of = JA,(0f/ox) where the A, are | x m constant
matrices, and let us suppose that <& is involutive (i.e., ¢, =1). In
this particular case, we know that the D'-Poincaré lemma is true.

Let ¢' be an element of 3" with components.

0%, in X%7
o in Xb7 .

We suppose that D'¢' = 0. Let @ be an element of 3%, with
components @’,, @}, @}, such that D*e«* = d', i.e.

dw’, — 0wy = 0%,

dw) — 0w} = o0y .
The element @® may be prolonged to an element @ e X~ by adding
the zero element of I, since the A; are constant and the equation

contains terms of first order only.
Now let 0= = Dw>, This form has only three components, namely:

0%, = dw, — éw} ,
0y = dw; — 0w},
0! = dwj .
Therefore, o= is a prolongation of o', closed under D, and Ko= exists,

This can be generalized to the case where the assumptions of the
proposition are satisfied.
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Proof of the proposition. Let o* be an element of 3" such that
Dro* = 0. By hypothesis, there exists an element z#*'e X**"! such
that D+#+'z¢+t = g#,  An infinite prolongation 7, of ¢!, can be chosen
(see Lemma 3) in such a way that 7= satisfies (C). Now, ¢~ = Dt~
will be an infinite prolongation of ¢*, and we just have to prove that
o> also satisfies (C).

But Do= = dr= — 6t=. The form dz= obviously satisfles (C)
whenever 7= does. The same is true for dc=, although ¢= is not
necessarily analytic. In fact, 74t} for instance, is a linear combination
STy, as we have seen in the proof of Lemma 3 and, as we
have remarked, the coefficients )\, are analytic. Therefore, driii will
be bounded in terms of the \,, 7i_,, and their first derivatives. The
further prolongations will only involve the first derivatives of 7J_,,
for 0 = v = ¢t + 1. Therefore, the condition (C) will be satisfied.

Appendix. Homotopy operators in the complex case. Let us
consider a complex analytic manifold M, of complex dimension n. A
coordinate (z;) is chosen in a neighborhood of the origin. Let <&f be
the operator

of

0%;

of

0z,

An element ¢ of = has components ¢,, where the multi-index p
is here written (p,, - -+, D, 01, +++, P;). We have o, = 0 whenever one
at least of the p; is different from 0.

Now, let ¢ = (0,) a differential form of bidegree (r, s), belonging
to Y=+, The form Do, belonging to XY= *+*' gplits in two parts:

D'c = o0 — é0, of bidegree (r + 1, s)
D"¢ = do, of bidegree (r,s + 1)

Where ¢ means the derivative with respect to the z;’s, and o the
derivative with respect to the z,’s.

Both D’-Poincaré lemma (for # = 1), and D"-Poincaré lemma
(for s = 1) are true, but unfortunately our operator K does not give
any solution for these lemmas,

In fact, Ko (when it converges) is the sum of two forms

Ko, of bidegree (r —1,s) if r=1;, 0if »r=0
K., of bidegree (r,s — 1) if s=1; 0if s=0,

and we have the following
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D"K.o + K,.D"g =0
D'Ko + K.D'o + D"K,o +~ KD"oc =0 if r +s=1
D'Kyo + K,D'og =0,

Nothing more can be said. In other words K, does not solve the
D’-Poincaré lemma, nor K, solves the D”-Poincaré lemma.,.

The reason of this failure is obviously that all the variables play
symmetrical parts in the definition of D-which is therefore ill-adapted
to our problem. But we can think of defining two operators K’ and
K", for D' and D”, in a way analogous to the one we used to find K.

We shall restrict ourselves to analytic jets. We first define the
operator h;, operating on functions, by

1
B f) = B Sy o 2y By o B e EDE
0

and we construct k”w, for a form ® of bidegree (r,s)s =1, in the
following standard way.

(1) if dw = 0, we wite ® = dz; A a; + 5,
where B, only contains dz,, ---, dz,, dz,, - -+, dZ,.

We apply h;, to each coefficient of «;, thus obtaining a differential
form v, such that (9v,/0%,) = a..

We next consider w — dv,, which does not contain dz, any more,
and the coefficients are holomorphic with respect to z,, since 8(w —av,)=0.

Again, we write  — dv, = dZ, A &, + B;, apply h;, to each coef-
ficient of «,, thus obtaining a form v, and @ — 3y, — 3y, does not
contain dz, and dZ,; its coefficients are holomorphie with respect to z,
and z,.

After p such operations (p < n) there with be no dz; left. We
shall define k”w to be the sum v, + v, + +++ 7,.

(2) if 0w # 0, we define k"w = k" (w — k"0w) and this has a
meaning since (@ — k"9w) = 0.
For a differential form ¢ = (¢,) € 3=, we define K"¢ = (k"0,). It is
now easy to check that

DIKN + KIIDI — O
DIIKN + KHDN — I .
In the same way, for a differential form of bidegree (r,s)r =1, we
can define k’o, thanks to the operators
hzz(f) = ziglf(zly R tzir crty Ry .z-i’ ) En)dt
0
and K’ =k >, (0k') and this operator satisfies
DHKI + KIDH — O
D'K'+ K'D'=1,
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In conclusion, for s =1, K” solves at the same time the D-and the

D”-Poincaré lemmas, and for » = 1, K solves at the same time the
D-and the D’-Poincaré lemmas.

We wish to express our deep gratitude to Professor D. C. Spencer,
who guided and encouraged this work.
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