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ON THE WEAK LAW OF LARGE NUMBERS AND
THE GENERALIZED ELEMENTARY

RENEWAL THEOREM

WALTER L. SMITH

{Xn} is a sequence of independent, nonnegative, random
variables and Gn(x) = P{Xi H V Xn^x). {an} is a sequence
of nonnegative constants such that, for some a > 0, γ > 0, and
function of slow growth L(x)9

A Generalized Elementary Renewal Theorem (GERT) gives
conditions such that, for some μ > 0,

(*) Ψ{x) = ΣarGr(x) ~

The Weak Low of Large Numbers (WLLN) states that
(Xi -f + Xn)/n —> μ, as n -» oo? in probability. Theorem 1
proves that WLLN implies (*). Theorem 3 proves that (*)
implies WLLN if, additionally, it is given that

( i ) ΣiP{Xj > nε}->0 as n -> oo, for every small e > 0;
P{Xj > x}dx is a bounded

0

function of n. Theorem 2 supposes the {Xn} to have finite
expectations and proves (*) implies WLLN if it is given that

lim sup - ^ X l + r^X2+ ••- + S?Xn ^ ^

in which case ( g7 Xi -f- + %?Xn)/n necessarily tends to μ
as n—>oo. Finally, an example shows that (*) can hold while
the WLLN fails to hold. Much use is made of the fact that
a necessary and sufficient condition for the WLLN is that,
for all small ε > 0,

— \ Σ Γ P{Xj > x}dx —> μ, as n —> °o .
n Jo

Let {Xn}, n = 1,2, ", be a sequence of independent, nonnegative,

random variables; write Fn(x) = P{Xn ^ x}; Sn = Xλ + X2 + + Xw;

Gn(sc) = P{Sn ^ x}; when the first moments exist, write μn = &Xn.

Let {an} be a sequence of nonnegative constants such that, for some

constants a > 0, 7 > 0, and some function of slow growth L(x),

(1.1) Σ an ~ ^ M ^ , as ΛΓ-, co /

1 We carry the factor Γ(l+γ) to simplify comparisons with Smith (1964).
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By a Generalized Elementary Renewal Theorem (GERT) we shall mean
a theorem that establishes conditions such that

(1.2)
rγ)\μ

for some constant μ > 0. The special case of (1.2) when αΛ = 1 for
all n is the Elementary Renewal Theorem (ERT).

By a Weak Law of Large Numbers (WLLN) we shall mean a
theorem that establishes conditions such that

(1.3) -£».-*" as w-> oo .

in probability.
This paper extends and leans heavily upon an earlier one (Smith,

1964) which we shall henceforth refer to simply as S. It will be
concerned with weakening conditions of S for a GERT to hold for
nonnegative random variables (specifically, we drop the assumption of
finite means) and with investigating to what extent a GERT implies
the WLLN and vice versa.

Two conditions play an important role in our work. They are
(A) For every small ε > 0,

+0, as n~> oo ;

(B) For every small ε > 0,

— \ Σ {1 — FAx)}dx —> μ, as n —+ co .
n Jo i=i

It is an easy exercise to show that (B) implies (A); all we can infer
from (A), concerning (B), is that the upper and lower limits, as
n —> oo f o f

n Jo i=i

are independent of the small ε > 0.
It is known from the work of Bobrov (1939), described by Gnedenko

and Kolmogorov (1954; see especially page 141), that condition (B) is
necessary and sufficient for the WLLN (1.3) to hold. Thus the WLLN
implies (A) and (B). It is interesting, therefore, that we are able to
prove (in §2):

THEOREM 1. A sufficient condition for the Generalized Ele-
mentary Renewal Theorem (1.2) is that (B) shall hold. Thus the
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WLLN implies the GERT.2

The question naturally arises, does the holding of a GERT (1.2)
imply the truth of the WLLN? After some efforts we have discovered
that the answer to this question is in the negative. In §5 we shall
present the necessary counter-example for which (1.2) is true and (1.3)
false. However, it transpires that the validity of a GERT does imply
the WLLN if a weak supplemental condition is given to be satisfied.
The situation is perhaps comparable to that arising with Abelian and
Tauberian theorems in analysis; the Abelian theorem usually holds
"in general," the converse Tauberian theorem usually requires the
satisfaction of an extra "Tauberian Condition." We shall prove, in
§3 and §4 the following two theorems relevant to this paragraph.

THEOREM 2. If the GERT (1.2) holds, if all the means μn =
gf Xn are finite, and if

lim sup r ι r2 r n <̂  μ ,
n<-oo γi

then the WLLN (1.3) holds and

t*\ + !J"2 + • • + μn _ > __̂  ^
n

THEOREM 3. Suppose the GERT (1.2) holds together with con-
ditions (A) and the following:

(C) For some e > 0,

lim sup — I Xf {1 — Fj(x)}dx < oo .

Then the WLLN (1.3) holds. Condition (C) must be satisfied if
there exists no sequence {nk} such that n^γ ^£k Xd tends to infinity
in probability.

As we have said, this paper leans heavily on S; one result buried
in S turns out to be especially important. The argument of §5 of S
(pp. 689-698) essentially (if not ostensibly) proves the following:

FUNDAMENTAL LEMMA. Suppose condition (C) holds and there
exists a δ > 0, such that, for every ε > 0,

lim inf — Γ* J\? {1 - F0(x)}dx ^ δ .

2 Consequently it is impossible to have (1.2) and (1.3) holding simultaneously,
but for different values of μ.
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Then for any small η > 0 we can find a large C(η) such that

for all large x.

One further comment is called for. If 7 = 0 in (1.2) the constant
μ disappears from the right-hand said and we have a simpler relation

(1.4) Σ aJjrn{x) ~ aL(x), as x—* °o .

It seems that this special case needs special treatment, and that (1.4)
will hold under considerably more general conditions than Theorem 1
suggests; we hope to study (1.4) elsewhere, and throughout this
present paper take 7 > 0.

2* Proof of Theorem !• To begin with we shall establish
(leaning heavily on arguments in S) the following.

LEMMA 2.1. Under conditions (A) and (B) there is an unbounded
nondecreasing function l(n) such that

1 n Crll(r)

l im- Σ {1 - Fr(x)}dx = μ .
n—oz γi r = l Jo

Proof. From (A) and (B) we can evidently find an unbounded
nondecreasing X(n) such that, as n—> oo ,

(2.1) Σ ίl - FI—^—)\ — 0 ,

(2.2) λ['λin) Σ ? {1 - Fj(x)}dx - μ .
n Jo

Lemma 9 of S then shows that we can find another unbounded
nondecreasing w(n) ^ X(n) and such that w(n)/n decreases to zero as
n—> co. But

1 Γnlw(nΓnlw(n) 1 (
Σ? {1 - Fά{x)}dx £ _ i _ ΣΓ U -

Uiλ(n) w(n) IΣΓ U FΛ^ττ)\

Since the right member tends to zero as n —> °°, we can infer from
(2.1) and (2.2) that, as n-+ 00.

(2.3) Σ j i i
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1 Γnlw{n)

(2.4) \
n Jo

Let l(n) increase much more slowly than w(n); we make the
function l(n) more precise later. Support t(n) is the least integer
such that r/l(r) Ξ> n/w(n) for all r ^ t(ri). Then, for any ε > 0,

(2.5) < — - — < ε
w(n)t(n) ~ l(t(n)) "

for all large n.
Since w(n) ] we have, for large n,

W { 7 1 ) >

w(n) 1

Thus, if

s(n) =
w(n)

we have

s(n) > n
log w(s(n)) ~ w(n)

But we may assume n/w(n) } with n, and hence n/log w(n)) } also.
Thus, if l(n) = log w(n) we have τ/l(r) ^ n/w(n) for all r ^ s(ri).
Hence t(n) ^ s(w). But s(n)/n—>0; thus t(n)ln—+0.

If we set

1 ί(w)

= - Σ

then, by (2.5),

Thus Γ^n) —> 0 as n — co.
If we set

1 «

2\(«) = - Σ

then it is clear that (μ — ε) <Z Tx{n) + T2(n) for large n, and hence
that T2(n) > μ — 2e for large n. Therefore

I n Γjll(j)

lim inf — Σ {Σ
j=>l Jo
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But

1 n CjH(j) 1 n Cn/l(n)

- Σ {1 - F,(x)}dx <: ±- X {1 - Fs(x)}dx ,
U i=iJo % i=ijo

since j/l(j) j , and this, in turn, is smaller than

n i=iJo

for large n, since ϊ(w) —» ©o. Thus

1 » CJlKj)

lim sup — X I {1 - F^αOJdα; ^
^ i l J O

and the lemma is proved.
To prove the theorem we begin by setting

Yr = Xr if Xr ^ r

= r/l(r) otherwise.

For ε > 0 we write

n Jo

But if r <: n, for all large n, r/l(r) ^ n/l(n) ^ εn, so that

n

and hence, by Lemma 2.1, Ln(ε)—>μ as n—> oo.
The sequence {Yn} satisfies the conditions of Theorem 1 of S.

Thus

(2.6) Σ α r P { Γ r ^ x]

Furthermore both {Yw} and {Xn} satisfy conditions (A) and (B).
Thus, by the result of Bobrov already quoted, as n —* oo 9

-y I . . # _ι_ ~y

—x —^- —> μ , in p r o b a b i l i t y ,

l + ' ' ' +

n

Hence, if Z n = Xn - Yn,

Zx+ + Zn

-2- —> // , in p r o b a b i l i t y .

0 , in probability.
n
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Plainly Gn(x) = P{XX + + Xn ^ x] ̂  P{Y1 + + Yn ^ x}.
In all that follows let us write

Thus to prove our theorem we need only show

(2.7) lim inf *& > «
χ>X(α;) μrΓ(l + 7)

It is not hard to show that {Yn + ε} also satisfies Theorem 1 of
S, with μ increased to μ + ε. Thus

-L V ^ 7~> ί ΛT i T7" i i T Λ i Λ Λ ^ ^-^ Λ»Ί ^

(μ + 8)^(1 + 7)

Also, by the "fundamental lemma" of §1, given any η > 0 we
can find C = C(oy) such that

XrL(x) n=O

for all large *. Therefore

lim inf — i — - Σ a>.P{Yi + • - • + Yn + nε ̂  x}
(2.8) *-" xrL(x) 1

= (μ + εyΓ(l + 7) ^ '

Now

• + Xn ^ x]

^ P{ Y1 + + Yn + nε ̂  a; & ̂  + + Zn ^ nε}

- P{Zλ + + Zn > nε} ,

and so

Σ anP{Xx + + Xn S %} ^ Σ a.P{Yι + ' + Y» + nε ̂  x}
(2.9) - 1

- Σ « Λ + ••• + Zn>nε) .

But P{ZX + + Zn > nε} —> 0 as n —> oo, so that one can establish
easily that

+ + Z% > ne) = 0(xrL(x)) .
1
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Hence, from (2.8) and (2.9) and the arbitrariness of η we finally deduce
the desired (2.7).

3* Proof of Theorem 2* For this theorem we shall make
considerable use of Laplace-Stieltjes transforms. If A(x), say, is a
function of bounded variation in every interval we write

A*(s) = [° e~sxdA(x) ,
J o -

for this transform, for those values of s which make the integral
exist. We shall restrict s to real values.

To begin we need:

LEMMA 3.1. As k —> oo, for fixed s > 0, p > 0,

k Pr

Proof. (Recall 7 > 0) Let Dk(x) be the distribution function
associated with atoms of probability

at the points pr/k, for r = 1, 2, ••-,&. Then it is easy to see that

UmDr(x) = li

from (1.1) and the familiar properties of functions of slow growth.
Thus, by the continuity theorem for the Laplace transform, we find
that, as k —• 0,

e-sxdDk(x) —>— Ve-sxxr-ιdx .
Ωr Jo

The lemma is an immediate consequence of this limit.

LEMMA 3.2. As k—> 00, for fixed s > 0, p > 0,

AYexp - f (

Proof. We have that

oo k

2p Σ Σ
k + l fC r = l r=l
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Lemma 4 of S (p. 682) shows that

r p s ~ a k ϊ

a k prsr

as k—*oo. This relation and Lemma 3.1 now establish Lemma 3.2,
if we use the relation

e~sxxr-ιdx = JLΠL, Ύ > 0 .
o Sr

Let us now turn to the proof of the theorem. Note that Gn(x) is
the d.f. of Xx + X2 + + Xn and thus is the d.f. of a nonnegative
random variable with mean μλ + μ2 + + μn. Thus, by Jensen's
inequality, for real s > 0,

Gi(s) ^ e-(μΊ+~ +μ *)8 .

Further, if we set

λ - l i m f t + + μ

it follows that, for an arbitrary ε > 0 ,

(3.1) G*(s) ^

for all s > 0 and all sufficiently large n.
Now, from Lemma 3.1 and (3.1) we can conclude that

liminf

" (λ +

Evidently,

G*(s) - F1*(s)Fi*(8) 1^(8) .

If r > ά, F(*+I)(s) jFr*(s) is the generating function of X(&+1) H 1- Xr

Thus, for all large k, all s > 0,

) F*(s) ^

Let us set

k

Then the last inequality and Lemma 3.2 show that, as
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arFι*t+J-f)...F*(±rL(k)

Let

kΊAJe) *A

JcrL(k) (*+i) \ ft / \ ft

Then (3.2) and the last inequality prove, in view of the arbitrariness
of ε,

(3.3) lim inf Ak(s) ^ — ^ — \^-'x^dx

(3.4) lim inf Bk(s) ^ — - — [°e-'W^dx .
XrΓ(y) h

But, if we recall that

then

= Ak(s) + e^sC

However, our assumption that the GERT holds implies (see S):

so that

Φ*(s) - α L ( 1 / g ) as s ! 0 ,
μrsr

ψ*(JL

krL(k)

Thus

r e—xxr~ιdx

{lim sup e^sGt(—)\ ——
I *-oo \ft/J λrΓ(τ)

a
μrsr
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which implies

lim sup e^B

k

I ersxxΊ~Ύάx

Γ(7)\(X/μY-l]

But e^sGt{sjk) ^ 1. Thus we must have (X/μY - 1 ^ 0 . Since we
are given that X <^ μ we are forced to conclude that λ = μ and that

(3.6) ewGt(jλ — 1, as k — oo .

From (3.6) we can infer that

(3.7) A - v / c - > Q , as &->eo ,
k

in probability. Thus, given any small ε > 0, we have, for all large n,

Therefore

Ψ(nvn + ε) ^ Σ arP{Sr ^ ^y% + ε}
r = l

(3.8) ^ { t ψ ^ ^ nvΓTΊ}

^ (1 - ε)\±ar] .

If we set xn = n(vn + e) then xn —> oo a s i t - ^ « and

xlL{xn)

Thus, from (3.8),

(1 - ε) lim sup - ^ " ΐ ffiy

7)

From this inequality and well-known properties of functions of slow
growth (plus the fact that (vn + ε) lies in a bounded interval not
containing the origin) we infer
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(1 - ε) lim sup ^ — .
n->oo (yn -j- s)1 μr

Since ε is arbitrary we may deduce that

lim inf vn ^ μ
n->oo

and that vn-+ μ as % ^ co (since we are given lim sup vn ^ μ). This
proves part of the theorem. However, from (3.7) we deduce the
W.L.L.N.:

-£=- — μ, as ^->co ,
n

in probability. This completes the proof.

4. Proof of Theorem 3* The Laplace transform argument of
the last section does not seem to carry over to the case when means
are infinite. We are forced to the following quite different approach.

Let us choose ε > 0 and set

n i=i

LEMMA 4.1. // vjβ) is bounded, then for any rj > 0,

P{Sn ^ n[vn(ε) - Ύ]]} ^ p(τ), ε)

uniformly in n, where p(η, ε) can be made arbitrarily small by
choosing ε small enough.

Proof. Suppose vn(ε) < A for all n (and note, by the way, that
this inequality is preserved if ε is reduced). By a much used argument
of S (see p. 679 of that paper), we get, for every t > 0,

P{Sn ^ n[vn(ε) - V]} ^ e^^ , say,

where

Qn(t) = ntvn(ε)[l - e~^] - ntη .

Thus

QJXInVl) ^ -A- [1 - exp -Vε] - V
[/ ε v ε

and the right-hand side of this last inequality can be made as large
and negative as we wish by choosing ε small enough. This establishes
the lemma.
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LEMMA 4.2. / / a G.E.R.T. holds, together with condition (A),
then

lim inf vn(e) Ξ> μ .
n—»<χ>

Proof. Suppose there is a number μλ < μ such that vn(ε) < μλ for
infinitely many n. These inequalities are not upset if ε is reduced.

Define a truncation scheme as follows:

Xrn = Xr if Xr ^ nε ,

= %ε if X r > nε ,

for r, w = 1,2, 3, . . . . Set

The argument of Lemma 4.1 applies to Tn and shows

But &Tn = w^Λ(ε); thus we can employ an argument already used in
S, as follows.

Let Ύ]u η2 be two small positive numbers.

vn(ε) ^ K(ε) - Vl}[P{Tn ^ n[vn(ε) + 7j2]} - P{Tn ^ n[vn(ε) - Vl]

+ {K(e) + y2}[l -P{Tn^ n[vn{ε) + V2]}] .

Let us suppose η2 > η. Then

and so

P{Tn £ n[vn(ε) + V2}] ^ K - [vn{ε) - ηMVu e) .

Suppose we choose η1 = 2̂ and assume n is such that vΛ(ε) ^ jw1#

Then we have

P{Tn ^ n[vn(ε) + ^2]} ^ 1 - δ(V2, ε) ,

where we can make d(η2, ε) as small as we like by first choosing rj2

and then ε.
Put

By condition (A) we know χw(ε) —> 0 as
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Put

a* = n[vn(e) + η2] .

Then it is not hard to see that

P{Sn < xn} ^P{Tn^ xn) - χn(ε) .

Now we have, as in the previous section,

Ψ{xn) ^ P{Sn ^ xn) £ a5
3=1

^ [1 — δ(v2, ε) — χn(ε)] Σ a3- ,
3=1

if n is such that vn(e) ^ μx.
Thus

lim inf ' Λ ) -r h\ ^ 1 — 8(v2, ε) .
μr

i.e.

- ^ ^-L ̂  1 — δ(292, ε) .

Since τ̂ 2 and ε can be chosen arbitrarily small we conclude μ1 ^ μ.
This proves the lemma.

LEMMA 4.3. If vn(έ) is unbounded for some ε > 0 then there
exists a sequence of integers {nk} such that SnJnk tends, in probability,
to infinity as k increases.

Proof. Suppose that for an arbitrarily large A we can always
find n such that vn(ε) > A. This implies that Qn{ε) > A, if we set

QΛ%) — Σ \ {1 — Fό(nu)}du .
i Jo

But, since Qn{x) is the indefinite integral of a nonincreasing integrand,
we must therefore have Qn(x) > (x/ε)A for all x < ε; plainly Qn(x) > A
for all x > ε. Thus, if we denote the ordinary Laplace transform of
Qn(#) by Ql(s), then

A Γε Γ°°

ε Jo

•4-α-

But computation shows that
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= s~2Rn(s), say

Hence we have shown that

Rn(8) < As
εs

If we observe that

G*(s/n) ^ e~R-

then it follows that

G*(s/n) ^ exp{-
I V εs

If we restrict s to the interval (0, ε"1), since we can choose A
arbitrarily large, there will be a sequence of integers {nk} such that
Gίk(s/nk) tends to zero as k increases, at every s-point in (0, ε"1).
This proves the lemma.

We are now fully prepared for our proof of the theorem. Since
a G.E.R.T. is assumed to hold, we have

Γ(l + 7) V μ

Let us fix ζ and for reasons to emerge later suppose ς > μ. Then,
a s n —> oo,

Under the hypotheses of the theorem the fundamental lemma applies.
Thus, if we choose a small η > 0 we can find C = C(η) such that

X arGr(nξ) < aηζr

for all large n (since L(ξn)/L(n) —> 1). Thus

(4.1) lim inf Γ ( ^ | ^ g arGr{nξ) ^ ap{ J - - rλ .
n->oo nrL{n) r=i I μr J)

At this point we are led to consider

Cnξ

X arGr(nζ) = Xi (n) , say.
r=n+l
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Suppose ω < μ. Set 2η* = μ — ω. By Lemma 4.2 we see that
(whatever fixed ε we choose) vn(e) — η* > ω for all large n. Thus,
by Lemma 4.1, P{Sn ^ nω} ^ p(η*, ε) for all large n. Since ε is
arbitrary in this result, and since p(η*,e)—>0 as ε—>0, we infer

(4.2) P{Sn ^ nω} -> 0 as % — co

for any fixed ω < μ.
Let ?&! be the least integer such that nλω Ξ> w£.

But we have just seen that Gn(nω) —> 0 for a fixed ω < μ. Thus we
can conclude that

Thus

Cnξ

Σ arGr(nς)

X1111 o u p —iiίίi_ ^ Km sup
nrL(n) n-*co nrL(n)

But 2Ί(w) does not depend on ω, so we may allow ω ] μ and obtain

lim sup Σ.<
7)

From (4.1) we then deduce that

lim inf nrL(n)

However, η is arbitrarily small, so we must have

lim inf * a

WL(n) - i r

But since Gr(nξ) ^ 1 necessarily, this inequality implies

1 \ r a

as π-+ co; this limit holding for any fixed ζ > μ.
Take a constant c, 1 < c < ξ/μ. Then, as n—> oo,
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(cn)rL(cn) £=ί \ '\c// Γ(l + 7 )

Thus

hm inf ̂ -—-^-—- Σ ar + , ̂ v : 6 ς ; , ^ α r | ^
="i (cn)rL(cn) ?=r» J ~~ Γ ( l + 7)

which implies

— + (1 - — ) lim inf Gn(nζ) ^ 1
cr V cr / »-»<»

and thus that

Gn(nζ) —> 1 as w —* 00 y

whenever ζ > μ. But (4.2) states that (?%(wω)-^0 as w—> 00 whenever
co < /J. Thus we have established that SJn tends to μ in probability
as n—> co( i.e. the W.L.L.N. holds, and the theorem is proved.

5* A counter-example* For simplicity we shall deal with the
ERT and the renewal function

H(x) = Σ GΛx) ,

rather than with the more complicated GERT.
Let xn have a d.f. Fn(x) such that, for some 7 > 1,

The right-hand side of this equation is recognizably the Laplace-Stieltjes
transform of a nonnegative infinitely divisible random variable.

Then

H*(8) = v exp \-7\Ί1-e~US)du\ ,

Thus, as s I 0 + ,

(5.1) sH*(s) -> Γexp [~

Let us write J for the integral on the right. Then J will be finite
since 7 > 1. Plainly by varying 7 we can give J any real positive
value. However, by a well-known Tauberian theorem we have from
(5.1) the ERT result
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H(x) ~ Jx, as x —• co

Now

and so

Thus (Xi + X2 + — - + Xn)jn has the same d.f. as has Xλ. This
completes our demonstration of a sequence {Xn} which satisfies the
ERT by not the WLLN.
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