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THE DILATATION OF SOME STANDARD MAPPINGS

TlLLA KLOTZ

It is not unusual to consider on a surface a conformal
structure determined by a positive definite quadratic form
which may or may not be the official Riemannian metric on
the surface. Given a smooth mapping with positive Jacobian
between a pair of surfaces each provided with such a con-
formal structure, we describe in this paper an obvious pro-
cedure for computing the dilatation of the mapping. Next,
we consider surfaces smoothly immersed in Ez, and mappings
(called allowable) for which dilatation is a function of the
principal curvatures at corresponding points. Referring to a
conformal structure as geometrically significant if determined
by a linear combination of the fundamental forms with coef-
ficients which are smooth functions of the principal curvatures,
we show (for example) that a mapping which preserves lines
of curvature is allowable between any pair of geometrically
significant conformal structures if it is allowable between any
one pair of geometrically significant conformal structures.
Finally, we prove that a complete surface smoothly immersed
in Ez on which K ^ 0 and H2 — K = cΦθ is conformally
equivalent either to the finite plane or to the once punctured
finite plane.

1* Computing dilatation* The material in this section is not

in any sense original. (See, for example, [2], p. 103 and 118, a
source suggested by the referee.) What we present is the procedure
by which dilatation will be computed throughout the remainder of
the paper.

Consider a pair of abstract, smooth, oriented surfaces S and S,
and a smooth mapping

f:S->S

with positive Jacobian. Next, suppose that an arbitrary pair of smooth
positive definite quadratic forms A and A are used to determine con-
formal structures on S and S, respectively, yielding Riemann surfaces
RΛ and R% ([1], p. 26). At each point p of S, the induced mapping

has the dilatation ([1], p. 1)
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where, for the moment, we use A and A as metric tensors, compar-
ing, as indicated on the right hand side of (1), the lengths they assign
to corresponding nonzero tangent vectors at p and f(p) respectively.
For convenience, we square both sides of (1) to obtain

max-
( 2 ) ^ 2 ( Λ , A) \p = ^

min-
A\p

It is, however, always possible (since / is locally a diffeomor-
phism) to express A and A in terms of arbitrary local coordinates x, y
on S throughout their domain of definition on S as follows

A = adx2 + 2βdxdy + ydy2

A = άdx2 + 2βdxdy + ydy2 .

The expression for dilatation in terms of the six coordinate functions
a, β, y, a, β, and y is given by observing that

(4) 3 ? ? ^ ^ = %^ " " ' - * '
Hf - VH} - Kf '

where

TT ay + ay - 2ββ
jtif =

2(ay - β2)

and

K — ^ ~" ^ 2

7 ~ ay - β2 '

The functions Hf ~ Hf(A, Λ) and Kf — Kf{A, Λ) are, of course, in-
dependent of the choice of coordinates x,y.

The notation above was suggested by considering the following
special situation. Take for S and S one and the same surface smoothly
immersed in 3-space. Assume that Gaussian curvature K is positive,
and orient S so that its mean curvature H is positive as well. Now
set A = I, A = II, and take for / the identity mapping

Here, computation of

<5^2/ T TT\

involves, by (2), taking the ratio of the greater to the lesser principal
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curvature on S. In this special case, Hf = H and Kf = K. Con-
formal points for / are characterized as umbilics on S.

The old formulas ([8], p. 83) giving ordinary principal curvatures
in terms of the six coefficient functions of the first and second funda-
mental forms are exactly the formulas which still apply to compute
numerator and denominator on the right hand side of (2). Thus, us-
ing (3), we obtained (4). By similar imitation ([8], p. 80), we find
the directions of greatest and least stretching by / (given A and A)
as solutions of the equation

( 5 )

dy2 —dxdy dx'

a β 7

a β 7

= 0

Analogous to the lines of curvature in ordinary surface theory, we
have here the integral curves of (5). These form a net with singu-
larities only where

/
7~) 7~> .

is conformal. This special (/, A, A) net can be characterized, except
where AaΛ, as the only net on S orthogonal in the A metric which
is carried by / (at least locally) to a net on S orthogonal in the A
metric. Corresponding to lines-of-curvature coordinates in the familiar
case, we have those special (/, A, A) coordinates x, y in terms of which
in (3)

β = β = 0 .

When using such special (/, A, A) coordinates, dilatation has the parti-
cularly simple expression

(
7

2* Allowable mappings* Henceforth, we assume that the
oriented surfaces S and S are smoothly immersed in Ez. Among the
various structures RΛ available on an S in Ez are two already noted,
ordinary RΣ structure, and the structure Ru ([5]) defined wherever
H and K are positive. Three other structures Rn,, Rnl and RI+III

will be specifically alluded to below. The first Rir is defined wher-
ever K < 0 on S by the form

//' = Λ/H2 - K{HΠ - KI)
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([6]). The second RIΠ is determined wherever K Φ 0 on S by the
form

III = 2HII - Kl,

and eliminates need for explicit reference to the unit sphere when
only conformal properties of the spherical image mapping are of in-
terest. Finally, the third structure RI+III is cited as one example of
a simple, nonstandard conformal structure globally definable on an S
in E* without restrictions on curvature. The following definition is
meant to characterize those A which can be expected to yield inter-
esting structures of the sort just cited.

DEFINITION. A positive definite A on a smoothly immersed surface
in Ed is geometrically significant if and only if

A = gΣ{K kz)I + gn(K k2)II

where the smooth, real valued functions gz and gn depend only upon
the values of principal curvatures kλ and k2 on S. We call RΛ geo-
metrically significant if and only if A is.

The sort of mappings f:RΛ—>R% which will concern us here are
those (still with positive Jacobian) for which standard restrictions
such as quasi-conf ormality have immediate interpretations in terms of
geometric quantities on S and S. More specifically, consider the class
of mappings defined below.

DEFINITION. / : RΛ —* R% is allowable if and only if the dilatation

i ) = g(klf k2; ίcu fc2)

can be expressed as a function of the four principal curvature values
at points of S and S in correspondence under /.

Note that A and Λ need not be geometrically significant for / to
be allowable. Any f;RΛ—+R% with constant dilatation is automati-
cally allowable. We shall be concerned however with /'s which are
allowable between geometrically significant conformal structures, and
as an aid in their study, we prove the following result.

LEMMA. Let f: S —• S preserve lines of curvature. Then if f
is allowable for one pair of geometrically significant forms A and
A,f is allowable for all pairs of geometrically significant forms A
and A.



THE DILATATION OF SOME STANDARD MAPPINGS 121

Proof. Away from irremovable umbilics on S, introduce, locally,
lines-of-curvature coordinates x, y. Then, since / preserves lines of
curvature, we have for any geometrically significant pair of forms
Λ, A that

U) U) U)

/ = Edx2 + Gdy2 ,

ϊl =k$dx2 + k$dy* ,

and
(•O ( ) ( ) ( )

= (gz + Jcx gn)Edx2 k2 gn)Gdy2 .

Thus, by (6),

( 7 ) , A) = max

(di -

(Qi -

Wi-\

(<7H

h kλgu)E

V kλgn)E

V k2gn)G '

- k2gn)G

(Ui + hUu)G

(Qi + k2gπ)G
(9i + hgn)E
(91 + kxgu)E

Knowing f:RΛ—> R% allowable for any one fixed pair of geometrically
significant forms A, Λ gives dilatation for that pair as a function of
principal curvatures at corresponding points. This, using (7), gives
the ratio

( 8 )

E_

(JΓ

~G

as a function of principal curvature values. Now, given a rb i t ra ry

geometrically significant A, Λ, subst i tut ion of (8) on t h e r ight hand

side of (7) gives t h e new dilatation itself as a function of principal

c u r v a t u r e values. Finally, note t h a t / preserves irremovable umbilics,

since it preserves lines of curva ture . On t h e o ther hand, any geo-
U) U) U) U)

metrically significant A is proportional to / at an umbilic p on S. Thus
the value of the dilatation for / at an irremovable umbilic p is fixed
over all possible geometrically significant pairs A, Λ. Since dilatation
at p can be determined by the curvature values at p and f(p) for one
geometrically significant pair A, Λ, those values automatically determine
the same dilatation for any other geometrically significant pair J, A
at the irremovable umbilic p.

COROLLARY. If f:S—*S preserves lines of curvature while
*3έf(A, A) = constant for any one geometrically significant pair Λ, A,
then f:RΛ—>R% is allowable for all geometrically significant Λ, A.
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This corollary implies, for example, that the reflection of a surface
in a sphere is allowable between any pair of geometrically significant
structures, since both Rx structure and lines of curvature are preserved.
Less specifically, where K K Φ 0 and /: S—> S preserves normals, the
fact that 3ίTf(III, III) = 1 leads to the following result.

THEOREM. Let f:S—*S preserve lines of curvature and normals.
Then (except perhaps where K-K — 0) f\RΛ-+R% is allowable for
any geometrically significant pair A, A. Listed below are the
^ι}2(A, A) values for such an f relative to various familiar conformal
structures.

Note. The values which follow apply only where the structures
in question are defined, and need not be valid where K'K— 0.

The following pairs (A, A) are considered: J, /; I, 77; I, 77'; I, 77/
or I, III; I,ί+ III; II, 77; II, 77'; II, III or II, III; II, I + III; IT, 77';
//', III or //', III; //', I + III; III, I + III or III, / + III; / + ///,
I + 777. The value of J%}2(Λ, A) for each pair above is the max of
the corresponding term in the list below, and its reciprocal.

rC2 (J- ~r 1^2)^2^1 ι^v^2 &2 \J- ~r

For the values of 3ίίf\II, I), St}\IΓ, I), J$γ(IΓ, II), etc., interchange
k1 with k1 and k2 with k2 in the expressions for St}2(I, II), J%}2(I, 77'),

<=%>~z( TT frr\ p t o

COROLLARY'. For the standard map (where regular) of S onto
a parallel surface, for the spherical image map of S (where K Φ 0),
and, of course, for the identity map of S onto itself, dilatation re-
lative to any pair of geometrically significant A, A is a function of
the principal curvatures on S.

Proof. For the standard map onto a parallel surface t units
distant, set

7" kλ r K
IV\ . IX/O ~ ~ ~ ~ " ^ -

in the expression for J%}{Λ, Λ) in terms of ku ku ίcu k2. For the
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spherical image map, set

rC\ = rC>2 == -*-

in the same expression. For the identity map, of course, just sub-
stitute

Note that by the Corollary', the condition of quasi-conformality
on any of the three mappings concerned becomes an inequality on the
principal curvatures on S. Similarly, requiring that J?f}(Λ, Λ) be con-
stant for geometrically significant A, A, one gets a Weingarten condi-
tion on S.

Our theorem thus provides an alternative proof for most results
in [3], [4], and [7], and can be used, for example, to establish the
corresponding statements involving RI+III structure, thus describing
Teichmiiller mappings (/: Rz —> RΪ+IZI, f Rn —* Rί+iϊi, etc.) between
surfaces in E3 which preserve lines of curvature and normals.

3* An application* Each geometrically significant conformal
structure on a surface provides a fresh opportunity for the use of
complex analysis in the solution of differential geometric problems.
An example seems in order of the sort of geometric argument which
can be based upon the use of a nonstandard geometrically significant
structure, an allowable mapping, and the computation of a dilatation.
We choose the proof of a small fact about the ordinary conformal
structure of a very special sort of surface.

Fact. If a complete S is immersed smoothly in E3 with K <£ 0
and H2 — K = 1, then S (i.e., Rz) is conformally the plane or the
once punctured plane (and is thus in particular parabolic).

REMARK. Requiring H2 — K = c > 0, amounts to saying that
principal curvature values differ by 2~ι/ c . Our normalization to c = 1
(solely for convenience) makes this difference equal 2.

Proof. The Codazzi equations force the existence in the neigh-
borhood of any point on S of coordinates x, y in terms of which

/ = ekdx2 + e~kdy2

II = kekdx2 + (k + 2)e~kdy2 ,

where k and (k + 2) are the principal curvature values. Since

K = k(k + 2) ^ 0 ,
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we have

- 2 £k ^ 0 .

On the other hand, since the local coordinates x, y are determined
anywhere on S up to additive constants and/or simultaneous multi-
plication by 1 or —1, we recognize

A = dx2 + dy2

as a flat metric on all of S which is complete because I is complete
while

Ke2Λ .

It follows that the universal covering surface Σ of S provided with
the complete, flat metric Λ is isometric to the (finite) plane. But
then, using (6),

so that f\id\Rτ-+ R% lifts to a quasiconformal homeomorphism of Σ,
making Σ provided with the metric I conformally the plane. It fol-
lows that RΣ must be the plane, the once punctured plane or the
torus. The last possibility is discarded since no compact S exists in
Ez with K £ 0.
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