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ON PRODUCTS OF MAXIMALLY RESOLVABLE SPACES

J. CEDER AND T. PEARSON

A maximally resolvable space is one which can be de-
composed into the largest number of "maximally dense"
subsets. Answering a previously posed question, we show
that an arbitrary product of maximally resolvable spaces is
again maximally resolvable, not only with respect to the or-
dinary product topology, but with respect to other natural
topologies as well.

Given a topological space (X, τ) let Δ(X, τ) denote the least among
the cardinals of nonvoid τ-open sets. A space (X, τ) is said to be
maximally resolvable if it has isolated points or X is the union of
Δ(X, τ) pairwise disjoint sets, called resolvants, each of which inter-
sects each nonvoid open set in at least Δ(X, τ) points.

In [1] the first author showed among things that locally compact
Hausdorff spaces and first countable spaces are always maximally re-
solvable. Moreover, it was shown that in certain cases the product
of maximally resolvable spaces is maximally resolvable. In this paper
we settle this question of the maximal-resolvability of products by
showing that an arbitrary product of maximally resolvable spaces is
maximally resolvable with respect to the ordinary product topology,
the generalized product topology, and the box topology. Other results,
as well as some interesting unsolved problems regarding products of
maximally resolvable spaces, are also presented.

In the sequel we will consider ordinals and cardinals defined so
that each ordinal is equal to the set of its predecessors, and a cardinal
is an ordinals which is not equipollent with any smaller ordinal. Car-
dinals will be denoted by the aleph notation or by the symbols k, m, n,
etc., and ordinals will be denoted by lower case Greek letters a,β9y9

etc.. The cardinal number of a set A will be denoted by | A | . A
subset B of a topological space X is said to be m-dense in X if
I B Π UI Ξ> m for each nonvoid open subset U of X. A subset B of
a given set M is said to be small (resp. large) with respect to M if
B\ < \M\ (resp. | M — B | < | M\). When no confusion is likely, we

will denote Δ(X, τ) by Δ(X).

Given a Cartesian product Π {Xa : oceM) of topological spaces Xa,
let *2S be the collection of all sets of the form Y[{Ua:aeM} where
Ua is open in Xα. Let & be the topology generated by the base
^ . Let ^(resp . &) be the topology generated by the base consist-
ing of all members of *2S for which Ua = Xa except for finitely many

31



32 J. CEDER AND T. PEARSON

indices (resp. Ua = Xa except for a small subset of indices [here, we
assume fc$0 ^ \M\]). Then ^, & and ST will be called the box,
ordinary product, and generalized product topologies respectively.

2Φ The ordinary product topology* In this section we will
consider only product spaces equipped with the ordinary product topology
&. We begin with two lemmas.

LEMM 1. (Ceder [1]) A finite product of maximally resolvable
spaces is maximally resolvable.

LEMMA 2. // X is maximally resolvable with A(X) Φ 1 and Y
is such that A(Y) ̂  A(X), then X x Y is maximally resolvable.

Proof. Since Δ(X) is necessarily infinite, we have
Δ(X x Y) = Δ(X) Δ(Y) = Δ(X). If {Xa : a < A{X)} is a collection of
resolvants for X, than obviously {Xa x Y: a < Δ(X)} gives a maximal
resolution for X x Y.

If X and Y are related as in the hypothesis of Lemma 2, then
we will say that X dominates Y. This terminology will be used
repeatedly in the proofs in the sequel. Next we have our basic theorem.

THEOREM 1. Suppose m ^ fc$0 and \ Xa | > 2 for each a < m. If

sup \X

for each finite subset A of m, then Π {X<χ'. & < m} is maximally
resolvable.

Proof. Let

Szf = U {Xax x Xa2 x x Xan '. {cclf ct2, , aj a finite subset of m}.

Denote A(Y[{Xa: a < m}) by n and put W — Stf x n x n. Clearly
Sz? I ̂  n-rn = n so that | TF| = n. Thus we can well-order W as

{wα}α<7l. We shall now define the desired resolvants for the product
by means of transfinite induction on the ordinal n.

Suppose fy has been chosen for each 7 < β and consider wβ =
<A, μ, vy where A = ζxai, x«2, , α?βn> e J ^ . Put

C4 = {/e Π {X : a < m): /(^) = xa.}.

Since Λ g | Π {%a : α: £ A} | we have | CA \ ̂  /ι, so that C^-{/y: 7 <
0. Now pick fβeCA - {fy:Ύ<β}.
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Now, having defined the set of distinct points {/«}«<„, we define
for each a<n the set Ba = {fβ: there exists A e sf and 7 < n such that
wβ = <A, a, 7>}. Obviously, \Ba f] CA\ = n for each AeSϊf and a < n,
so that each Ba is /i-dense. Hence, {Ba}a<n is a family of n pairwise
disjoint, n-dense subsets of Π {Xa - oc < m) so that Π {Xa :ot<m} is
maximally resolvable.

As a corollary of the above result it follows that an infinitefold
product of any space with itself is maximally resolvable.

The technique of the proof of Theorem 1 suggests a way of
obtaining a sufficient condition for the maximal-resolvability of an
infinite completely regular space X, namely : embed X in βX, define
CA and Jzf in the analogous manner, and duplicate the proof of Theorem
1. The condition essential for the success of this method is that
I <if I <̂  Δ(X), where c^ is the family of all continuous functions from
X into [0,1]. But since χ(X) ^ | <ίf | this condition implies χ(X) ^ Δ(X),
where χ(X) is the weight of X (i.e., the least among the cardinals
of bases of X). However, Theorem 3 of [1] asserts that any space X
is maximally resolvable whenever ^ 0 ^ X(X) ^ Δ(X). Therefore, the
method of Theorem 1 applied to the image of X in βX gives no new
results.

We remark in passing that the techniques of the proof of Theorem
1 yield a proof of Theorem 3 of [1] which is much simpler than the
original.

THEOREM 2. If Xa is maximally resolvable for each a < m, then
Π {Xa : a < m} is maximally resolvable.

Proof. In view of Lemma 1 we can assume that m is infinite
and each | Xa | ^ 2. Let n = J(Π {Xa : a < m}). We first note that
the set {β :\Xβ\ > n} must be finite. If it were infinite then n =
A(U {Xa <% < rn}) ̂  k > n, where k is the next cardinal bigger than
n. Now we clearly have one of the following three cases.

Case I. The set C = {β : | Xβ \ = n] is infinite. In this case, the
hypothesis of Theorem 1 is obviously satisfied for X = Π {X« :aeC}.
Hence, X is maximally resolvable. Clearly, Δ(X) ^ ri*° ^ n = Δ(Y),
where Y = J[{Xa:aiC}. Hence, by Lemma 2, X x Y= Π {Xa :a<m}
is maximally resolvable.

Case II. For some ξ, A{Xξ) ^ n. In this case we must have
Δ{Xξ) = n. Let n^ = zf(Π Xa: oc Φ ξ}). Then, it is easily verified that
n = Δ(Xξ) n! = ri-ri^ Hence nY ^ n so that the maximally resolvable
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space Xζ dominates Tί{Xa : oc Φ ξ} and Π {Xa & < m) is maximally
resolvable by Lemma 2.

Case III. The set C = {β : | Xβ | ^ n] is finite and A{Xa)<n for
all a. The case where C = 0 will be seen to be a trivial modification of
the case where C Φ 0 , so assume C Φ 0 . Put X = Π {-<£« : α g C} and
^ — Π {̂ « : ^ G C } . By Lemma 1 Y is maximally resolvable. Moreover,
it is easily seen that n — | Π Δ{Xa) : ae C} \ Δ(X)m But since each
A(Xa) < n and C is finite, we must therefore have A(X) = n. Now
the hypothesis of Theorem 1 can easily be seen to be satisfied for X.
Firstly, | Xβ \ ̂  n = Δ{X) for each β. Secondly, for any finite set A
there exists a finite superset B for which

A(X) = I Π {Δ(Xa): α e 5} I I Π {-3Γ« : « ί S} |

Hence, in Case III, Π {Xa : OL < m} is maximally resolvable, completing
the proof.

Theorem 1 gives a particular sufficient condition for an infinite
product of arbitrary spaces to be maximally resolvable. The next
result gives another, and simpler, sufficient condition.

THEOREM 3. Suppose m ^ ^ 0 cmd n = sup {| Xa \ : a < m}. If
{a : I Xa I = n} is empty or infinite, then Π {Xa : <% < m} is maximally
resolvable.

1.

Proof. The proof consists of verifying the hypotheses of Theorem
If A is any finite subset of m, then there exists β < m such that

max{| Xa

quently
: a e A} ^ Hence | Xβ | ^ | Π {Xa : oί e A} \ and conse-

Iί{Xa:a< ^ I Π {X« : a < m)

a: a £ B} \ ̂  n,

Π {Xa & < m}

Secondly, for some finite set B, Δ(U {Xa : a < m}) ^ | Π {
whether {a : | Xa | = n} be infinite or empty. Hence,
is maximally resolvable.

The previous theorems naturally suggest the question: is the
product of two spaces, one of which is maximally resolvable, again
maximally resolvable ? Unfortunatelly we are unable to settle this
question, a discussion of which appears in § 4. However, we are able
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to obtain the following partial results.

THEOREM 4. Suppose Δ(X) = ^ α and \ Y \ = Δ(Y) = ^ α + 1 . Then
X x Y is maximally resolvable whenever X is maximally resolvable.

Proof. Well-order Y as {rβ β < ^α+1}, and for each β < #a+1

put Bβ = Y - {ry;y < β}. Then each point in Y belongs to at most
^ α members of {Bβ: β < W«+i}. Hence, for any y e Y we can en-
umerate those members of {Bβ: β < #a+1} which contain y as
{By(ζ): ξ <m} for some cardinal m ̂  ^ α . Now let {Xμ: μ < #a} be
a resolution for X. For each β < y$α+1 we put Aβ = U {M x Xμ:
there exists μ such that ByUι) = Bβ). It is easily checked that
{Aβ: β < ^α+i} gives a maximal resolution for X x Y, completing the
proof.

As an immediate consequence of Theorem 4 we obtain by induction

COROLLARY 1. If Δ{X) = ^ α and | Y*| = J(Y<) = ^ a + i for ί =

1, •••,%, ί/^e^ X x ΓΊ x ••• x Y"% is maximally resolvable whenever
X is maximally resolvable.

Next we present two theorems, the first of which generalizes
Theorem 4 and Corollary 1 to infinite products.

THEOREM 5. Suppose | Xa \ = A(Xa) = ̂ « whenever μ ^ a < ξ.
/£ Xv is maximally resolvable for some v, μ ^ v < f, ίΛβ'̂

Π {X«: i" ^ α < 5}

is maximally resolvable.

Proof. We divide the proof into two parts according to whether
V = μ oτ V > μ.

Part I. v — μ. Without loss of generality we may assume that
μ — 0. If ξ has no last member (i.e., ξ is a limit ordinal), then
Theorem 1 gives maximal-resolvability. Under the assumption that ζ
has a last member then, it suffices to prove by induction on ξ that
for each β < ξ, Π {X« : a ^ β} is maximally resolvable. By hypothesis
this assertion is true for β — 0. Suppose it is true for each y < β.
Then we have two cases.

Case I. β is a nonlimit ordinal. Then in particular

Π {Xa: α < £} = Π {X«: α ̂  /S - 1},
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which is maximally resolvable by the inductive hypothesis. Also,
I Π {Xa: a < β} I ̂  I Xβ_, \ = ^ β-i. In case | Π {Xa: a < β} | = χβ_t

we apply Theorem 4. On the other hand, if | Π {Xa :a < β}\ > \$β_lf

then

z/(Π {*« : oc < β}) = i Π {Xa :a<β}\^#β = A(Xβ)

so that Π {Xa :a < β} dominates Xβ. So in either case Π {Xa : a ^ β}
is maximally resolvable.

Case II. β is a limit ordinal. Then we have | Π {Xa

 a < /5} =
Nίί1 ^ «^ = ^(X/3). By Theorem 3, Π {Xa \a<β] is maximally re-
solvable. Hence, Π {Xa : a < β} dominates Xβ so that Π {Xa : OL ^ /9}
is maximally resolvable.

Pαrί II. v > μ. Then v = λ + w where λ is a limit ordinal and
n is a natural number. Then we have two cases.

Case I. μ < λ. Then Π {-X* : /̂  ^ α: < λ} is maximally resolvable
by Theorem 3, Π {Xa ' v ^ oc < ξ} is maximally resolvable by Part I,
and finally the finite product Π {Xa ' λ ^ α: < v} is maximally resolvable
because it is dominated by Xv. Hence, by Lemma 1, Π {Xa : μ ^ oc < ς}
is maximally resolvable.

Case II. λ ^ μ. Then Π {^ : y ^ α: < ί} is maximally resolvable
by Part I and the finite product Π {X<*: μ < a < v} is maximally re-
solvable because it is dominated by Xv. Hence, by Lemma 1 againr

Π {Xa :u <L a < ξ) is maximally resolvable, completing the proof.

THEOREM 6. Suppose \ Xa \ ̂  | Xβ | = Δ(Xβ) whenever a ^ β ^ ζ.
If Xζ is maximally resolvable, then Π {Xa <% ^ <f} is maximally
resolvable.

Proof. Define an equivalence relation ^ on ζ + 1 by a ^ β if
and only if | Xα | = | Xβ \. Then let Γ be the set of all first members
of the & equivalence classes. Let B be the set of all y eΓ such that
the interval [7, ζ] intersects only finitely many equivalence classes.
Let λ bo the first member of B and let {A^ , An} be the collection
of those equivalence classes which intersect [λ, ξ] and assume ζ e An.
If any A3 is infinite, then Π {Xa : OL e A3) is maximally resolvable by
Theorem 3. However, Π {Xa : α e An] is maximally resolvable even if
An is finite, because in that case J (Π -3Γα: α € An — {f}}) = 4(Xe) so
that Xξ dominates Y[{Xa:aeAn — {ζ}}. Now if any At is finite we
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obviously have A(\\ {Xa : &e A{}) ^ A{{ ΐ[a:ae An}) so that

Π {Xa : α e Aw}

dominates Π {-X« : aeA{}. It follows then that Π {Xa : λ <g α <s f} is
maximally resolvable by Lemma 1. Obviously, either λ = 0 or λ is
infinite. In the latter case, Π {Xa : OL < λ} can easily seen to be
maximally resolvable by Theorem 3. Now, applying Lemma 1 we
conclude that ΐ[{Xa : a ^ ξ} is maximally resolvable.

3* Other topologies on the product* In this section we con-
sider a product space in both the box ( ^ ) and the generalized product
(SΠ topologies and show that the product of maximally resolvable
spaces is again maximally resolvable with respect to both £$ and ^ .

This result for the box topology is an immediate generalization
of Lemma 1.

THEOREM 7. If each Xa is maximally resolvable, then

(Π {Xa: a < m}, <%?)

is maximally resolvable.

Proof. Obviously z/(Π {X« : a < m}) = | Π {Λ(Xa) : α < m} |. For
each a < m let {Aa

β : β < A{Xa)} denote a maximal resolution for Xa.
For any / G Π {A{Xa) : a < m} put Af = ]J {Aa

f{a) :a < m}. Then it is
easily checked that {̂ 4/ : / e Π {Λ(Xa) - a <m}} gives a maximal resolu-
tion for Π {Xa :oc < m} with respect to ^.

The next result is the generalization of Theorem 1 to the gener-
alized product topology.

THEOREM 8. Suppose m ^ ^ 0 ctnd \Xa\ ^ 2 for each a < m. 1/
/or βαcfe small subset A of m

(Π {Xa : « < m}, 2̂ ') is maximally resolvable.

Proof. Denote by S? the set of all small subsets of m and put
j / - U { Π ^ : ^ e ΰ } } : ^ 6 y } . Letting n = J(ΐ[{Xa : a < m}, %?)
we have | J ^ | ^ | ^ | -sup {\^{Xa:aeB}\:Be S^} ^ 2m-n ^ n n = n.
Defining CA for A e j / as in Theorem 1 we have

CA\ = \U{Xa:a
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for some Be S^. The rest of the proof is the same as in Theorem 1.

LEMMA 3. Suppose m is infinite and n = J(Π {Xa a < m),
If n H I Π {Λ(Xa) : Oί < m} \ or | Π {Xa :oceA}\^n for each small subset
A of m, then (Π {Xa

 a < #*}> ̂ ) is maximally resolvable whenever
each Xa is maximally resolvable.

Proof.
Case I. Suppose n ^ | Π {Λ(Xa) :a <m}\. In this case the proof

of Theorem 7 shows that Π {Xa oc < m} is maximally resolvable with
respect to <&.

Case II. Suppose n ^ | Π {Xa :(xeA}\ for each small subset A of
m. Now, if for each small subset A we had n ^ | Π{X* :a$A}\, we
could apply Theorem 8. So let us suppose that for some small subset
A of m, | Π {Xa :a£ A}\ < n. However, for some small superset B
of A we have n = \ Π {Δ(Xa) :aeB}\>\Jl{Xa:aem-B}\, from which
we conclude that n = | Π {^(Xr) :aeB}\. But the induced S^7-topology
on Π {Xa :cίe B} coincides with the ^-topology in which, by Theorem
7, Π {Xa :ae B} is maximally resolvable. Let {Aa}a<n be the resolvants
for Π {Xa: α e S}. Then {Aα x Π {^ : β Φ oί}}a<n gives a maximal
resolution for (Π {Xa :oc < m}, ^ ) .

Next we need the following purely set-theoretic lemma which is
a generalization of the cardinal arithmetic property that Π«<m^« = WlΓ!.

LEMMA 4. Suppose k is a function from an infinite cardinal m
into some set of cardinals. If sup {ka : aem — A} ^ n for each small
subset A of m, then \ Π {ka ' cxem}\ ^ nm.

Proof. L e t B = {a : ka ^ n}. If \B\^ m, t h e n obviously

I Π {K :aem}\^ nm.

So let us assume that | B \ < m. Since | m — B \ = m and finite unions
of small sets are small, without loss of generality we can assume that
B = 0 .

Since the range of A: is a subset of the ordinal n it is well-ordered
by " ε " and therefore is order isomorphic to some ordinal 7, which is
necessarily a limit ordinal. Let β be the isomorphism from 7 onto the
range of k and define, for each α e γ , Ea — {β : kβ = e(a)}. Now let
Stf consist of all subsets A of 7 + 1 which satisfy the following three
properties : (l)0eA;(2)a + meA wheneveraeAand a + me7 + 1
(3) B ξΞ: A implies I) B = sup ΰ e i . Since 7 + 1 eSzf, J ^ is nonvoid,
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and we can put Γ = Π j y \ Obviously Γ satisfies properties (1) through
(3). Let C = Γ - {7}. Then ξ = U C = sup C e Γ and 7 = ζ + μ where
μ ^ m.

Case I. Suppose μ = m. Then the set D — {ξ + a : oc < m} is order
isomorphic to m. Since m-m = m it follows that m contains m pairwise
disjoint cofinal subsets. Consequently J9 has a family {J9α}α<m of
pairwise disjoint subsets, each of which is cofinal in D and 7. Hence,
each k~ιe{Da) = F α is cofinal in n so that | Π {kβ: £ e î α} | ^ n.

Therefore,

I Π {kβ : /S < m } I ^ | Π α < m ( Π { k β : β e Fa}) \ ̂  n™.

Case II. Suppose ^ = 0. For each a < m, let Da = {σ + a : σ e Γ}.
Then {Dα}α<m is a family of pairwise disjoint subsets of Γ, each of
which is cofinal in 7. The remainder of the proof is as in Case I.

Case III. Suppose 0 < μ < m. Then for each v < μ,

sup {| Eβ ί : ξ + v ^ β ^ 7} = m.

If this were not the case then, for some t < m and some v < μ,
sup{| ^31 : ί + 2; ^ /S < 7} ^ t <m. Hence the set

A =

is such that | A \ <̂  t-\ μ \ < m, i. e. A is small. Then

sup{A:α : α: e m-A} ^ β(f + v) < n,

which is a contradiction. Next, enumerate each Eβ as {ea

β:a < \Eβ |},
and for each a < m define

Aa = {x : there exists β ^ ζ such that x — ea

β] .

It is readily verified that {Aα}α<m is a family of nonvoid pairwise dis-
joint subset of m such that each k(Aa) is cofinal in n. Hence,
I Π {kβ : β G AJ I ̂  n for each a < m, and

which completes the proof.

THEOREM 9. If each Xa is maximally resolvable, then

(Π {Xa : a < m}, Sf)

is maximally resolvable.
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Proof. Let us assume that (Π {Xa : <% < m}, &) is not maximally
resolvable. Then, for each small subset B of m the following inequality
is satisfied for some small subset D of m — B:

« :aeD}\I Π {Δ(Xa) : a e m-B} | < z/(Π {X« : a e m - B}) <

If this were not the case then Π {Xa :ocem — B} would be maximally
resolvable by Lemma 3. However, Π {Xa : ocz B) is also maximally
resolvable by Theorem 7. Hence, Π {Xa : oc < m] would be maximally
resolvable with respect to 2^, a contradiction.

By taking B = 0 in the above assumption we have for some
small subset Ao of m :

{Δ(Xa) : a < m}\ < < m})< \U e Ao}

Let C be a small subset of m for which

m}) = C}

Mx of m with
If this were not

Then it follows that we can find a large subset
sup{| Xa\ : ae Mλ) < n0 where n0 = sup{| Xα | : a e Ao}.
the case then we would have sup{ | Xa \ : a e m — C — A} ^ n0 for every
small subset A of m. Then an application of Lemma 4 yields

{Xa:a < m}) ̂ ΐί{\Xa\ : aem - C] ^ n? .

But this contradicts the original assumption that

{Xa:a< m}) no»

Hence, a large subset Mi of m exists such that sup{| Xa \ : a e MJ < τι0.
Now applying the original assumption to the set B = m — M1 we

obtain a small subset Ax of M1 for which

Π

Now put zii = sup{|

Π

Then nλ ^ sup{| Xα | : a e Mλ) < nQ.

Repeating the argument above we then find a large subset M2 of Mλ

for which sup{| Xa \ : a e M2} < nx.
Continuing in this way by induction we obtain sequences {M7J"=0,

{Ak}ΐ=0 and {nk}ΐ=0 such that Mk+1 is a large subset of Mk (where
Mo = HI), ^ is a small subset of Mk, nk = sup{| J α | : α G M }̂ and
Â+i < nk for each fc. But this gives a contradiction since there is no

(strictly) decreasing infinite sequence of cardinals, which completes the
proof.

An interesting question is whether or not maximal-resolvability is
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preserved under other natural topologies defined on the product. For
example, let g7 be any family of subsets of the given index set m
which contains 0 and is closed under finite unions. Then the family
<?/ of all subsets [ [ { ^ | α e m } of Yl{Xa\azm} for which Ua = Xa

except for a belonging to a set in g7 is a base for some topology
τ(gΓ). If g7 is taken to be the family of finite (resp. small, all)
subsets of the index set, then τ(if) is & (resp. gf, ^).

A τ(9f) different from g^ and & can be obtained by taking m
to be a limit cardinal and S? to be the set of all subsets of m of
cardinality less than or equal to k (or alternatively less than k if
k > #o), where k is an infinite cardinal less than m. Neither the
proof of Theorem 2 nor that of Theorem 9 appears to generalize to
this particular τ(%?). It may be noted that if a product space with
respect to one of these τ(gf) topologies should fail to be maximally
resolvable, then the three unanswered questions of § 5 would be
settled.

4. Minimal Spaces* Before posing and discussing some unsolved
problems it is necessary to review the concept of a minimal space as
originally introduced and studied by Hewitt [2] and Katetov [3]. A
dense-in-itself space (S, σ) is called minimal [3] if for any dense-in-
itself (T, τ) any one-to-one continuous function from T onto S is
necessarily a homeomorphism. Minimal spaces form a subclass of the
τ-maximal spaces of Hewitt [2], For our purposes, the main results
about minimal spaces are the following :

THEOREM 10. (Katetov [3], Hewitt [2]) Any dense-in-itself Haus-
dorff space (X, τ) has a larger topology σ such that (X, σ) is minimal.

Proof. (Katetov [3]) Let Sf be the collection of all subsets of X
each of which is dense-in-itself. Let j y consist of all families c<f of
subsets of X such that τ s ^ g & and c^ is closed under finite
intersections. Applying Zorn's Lemma to (Sf, £Ξ) one obtains a
maximal member of s^f which is easily seen to yield the desired
minimal topology.

COROLLARY 2. (Katetov [3], Hewitt [2]) Any dense subset of a
minimal space is open; hence, there exists no pair of disjoint, dense
subsets.

Proof. If A is a dense set which is not open, then the family
of all sets of the form (A Π G) U H, where G and H are open, gives
a larger topology, contradicting the maximality of the minimal topology.

Let us now modify the definition of a minimal space to require
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that both A(S) and Δ(T) be equal to m. Such a space will be called
m-minimal. Then analogously to the above results we obtain

THEOREM 11. Any dense-in-ίtself Hausdorff space has a larger
topology which is A(X)-minimal.

Proof. The proof is the same as that of Theorem 10 except that
we add the requirement that ΰ e ^ implies | D | ^ Δ{X).

Corollary 3. In an m-minimal space each m-dense subset is open;
each dense set is m-dense and open; there exists no pair of disjoint,
dense subsets.

Proof. The proof that each m-dense subset is open is similar to
the proof of Corollary 2. Suppose A is dense and U is open such that
I U Π A I < m. Then U — A would be m-dense in U and hence be an
open set missing A, a contradiction.

As mentioned in § 2 an infinite-fold product of a minimal space
cannot be minimal. We can actually strengthen this remark to the
following result.

THEOREM 12. Suppose m ̂  ^ 0 and \Xa\ ̂ 2 for each a < m.
Then (Y[{Xa : cc < m}, &) contains infinitely many pairwise disjoint
dense subsets.

Proof. Suppose for some infinite subset A of m,

B = {aeA:\Xa\ = n}

is void or infinite, where n = sup{| Xa\ : aeA}. Then Π {X« : oc e A} is
maximally resolvable by Theorem 3 and hence, contains a sequence
{Dn}n=i of pairwise disjoint dense subsets. It follows then that
{Dn x Π {Xa : oc $ A}}ζ=1 is a sequence of pairwise disjoint, dense subsets

of Π {%« : (X- < "*}•
So let us suppose that there exists no infinite set A for which the

above property holds. Then by induction we can easily construct
sequences {Bk}%=1 and {nk}ΐ=1 such that nγ — sup{| Xa \ : a < m} and
B, = {a : I Xa\ = nλ) and nk+1 = sup{| Xa | : a £ {Jϊ^ B,} and

Bk+1 = {aem- \Jk

i=1 Bi:\Xa\ = nk+1},

with the properties that each Bk is nonvoid and finite and nk+1 < nk

for each k. But this is a contradiction since there is no decreasing
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sequence of cardinals.
Since minimal spaces must contain more than one point, the follow-

ing is immediate.

COROLLARY 4. Any infinite product of minimal spaces is not
minimal.

5* Some unsolved Problems. The previously mentioned ques-
tion Qi: " Is the product of a maximally resolvable space with any
other space again maximally resolvable V is related to two other
interesting unsolved questions, namely :

Q2: Do there exist infinite cardinals n, m and a nonmaximally
resolvable space X which has n disjoint, rc-dense subsets and for which
n < m =J(JSΓ)?

Q3: Does there exist a maximally resolvable space having an open
subspace which is not maximally resolvable ?

An affirmative answer to Q3 was prematurely claimed in [1] as
being obvious. Indeed, this is the case whenever | X\ = Δ{X) or
χ(X) ^ Δ(X), but in general the problem remains unsolved. In fact,
questions Q2 and Q3 are equivalent as shown by

PROPOSITION 1. Question Q2 has an affirmative answer if and only
if Q3 has an affirmative answer.

Proof. (=φ) Suppose (X, σ) is a nonmaximally resolvable space
which has n disjoint, /i-dense subsets where n < Δ(X). Choose a set
Y disjoint from X such that \Y\ = n. Equip Y with the topology
τ consisting of all large subsets of Y, together with Φ. Put Z = X [j Y
and give Z the topology whose base is a U T. NOW Y is obviously
maximally resolvable with Δ(Y) = n so that Δ(Z) = n and Z is max-
imally resolvable. Yet X is an open subspace which is not maximally
resolvable.

(<==) Suppose U is a nonmaximally resolvable, open subspace of
a maximally resolvable space X. Then U has Δ(X) disjoint, z/(X)-dense
subsets, yet U is not maximally resolvable.

If n in Q2 is not required to be infinite, then the answer to Q2

would be affirmative, as shown by

EXAMPLE 1. There exists a space Y, with Δ{Y) infinite, which
has two, but not more than two, disjoint dense subsets.

Proof. Let X be an m-minimal space with m ^ ^ 1 # Give {1, 2}
the indiscrete topology, and put Y = X x {1,2}. Let Y have the
ordinary product topology. For any subset D of X, let us put



44 J. CEDER AND T. PEARSON

Di = D x {i} for i = 1, 2. We shall use Theorem 20 of Hewitt [2], which
states that a space is resolvable if and only if each open subset con-
tains a resolvable subspace. (A space is resolvable if it admits two
disjoint dense subsets.)

Now suppose A, B and C are three pairwise disjoint, dense subsets
of F. Let UΊ be an open subset of Xx which contains no resolvable
subspace. In particular, i Π ί and B f] Xi are not both dense in Ulf

so there exists an open subset Vλ in Uλ which misses, say, A. Since
Vγ is not resolvable, either B f] Xi or C Π Xi fails to be dense in Vλ.
Hence, there exists an open set Wλ in Vx which misses, say, B. It
follows that Wι is an open set which is nonresolvable and is contained
entirely in C, and of course W2 is also nonresolvable. However, since
W1aC and A and B are dense in F, both A f] X2 and B f] X2 must
be dense in W2, a contradiction. Therefore, there cannot be more
than two disjoint, dense subsets of Y. Obviously Xx and X2 are
disjoint dense subsets of Y.

If we now let Y = X x {1, 2, , k} (X as before) and define
topologies on {1,2, •••,&} and Y in the analogous manner, then it is
not difficult to show that this space admits k, but not k + 1, disjoint
dense subsets.

From these considerations it is clear that the space Y = X x N,
where N represents the positive integers with the indiscrete topology,
is an obvious candidate for a space which has ^ 0 m-dense subsets
but is not maximally resolvable. However, if | X\ — in = ^ l y Theorem
4 shows that Y is maximally resolvable. On the other hand, the case
where m ^ ^ 2 is seemingly much more difficult, and we conjecture
that in this case Y is not maximally resolvable. If this conjecture is
true, then it of course also answers Q2 and Q3 affirmatively. In gen-
eral, then, a negative answer to Qλ implies positive answers to both
Q2 and Q3.

Question Q2 can be restated in a simpler-appearing form in case
I X\ = A(X) = V$o, as shown by :

PROPOSITION 2. Suppose X is maximally resolvable with \X\ =
A(X) = #o, and let Δ{Y) = m ^ fc$0. Then X x Y is maximally re-
solvable if and only if there exists in 7 a point-countable family of
m distinct m-dense subsets.

Proof. If X x Y is maximally resolvable, then the projections of
the resolvants provide such a family in F. On the other hand, the
proof of Theorem 4 shows that X x F is maximally resolvable when
such a family exists.

We conjecture that for sufficiently large m, m-minimal spaces can
be found to violate the condition of Proposition 2.
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