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BOUNDARY VALUE PROBLEMS FOR A CLASS OF
NONLINEAR DIFFERENTIAL EQUATIONS

GERALD H. RYDER

For certain functions /, positive in (0, oo) and continuous
in [0, oo), the partial differential equation Δx = x — xf(x2) has
spherically symmetric solutions xn(t), n — 1, 2, , which vanish
at zero, infinity and n — 1 distinct values in (0, oo). This and
similar existence theorems for the ordinary differential equation
V — V + yF(y2, t) = 0 are proved by way of variational problems
and the solutions are thus characterized by associated "eigen-
values". The asymptotic behavior of these eigenvalues is
studied and some numerical data on the solutions is furnished
for special cases of the above equations which are of interest
in nuclear physics.

We begin by considering differential equations of the form

(1.1) y - y + yF(y2, t) = 0 ,

were F(η, t) satisfies the following conditions:
(la) F(η, t) is continuous in η and t for 0 < t < oo and 0 ^ η < oo;

(Ib) F(η, t) > 0 for rj > 0, t > 0;
(Ic) there exists a δ > 0 such that, for every fixed positive t and

0 ^ ft < ft < co, r^F{r)2, t) > ft"δF(ft, ί).
In the special case in which F(y2, t) = f(y2/?), the substitution

(1.2) x(t) = t

transforms equation (1.1) into the form

(1.3) x + — = x - xf(x2),

which is satisfied by spherically symmetric solutions of the partial
differential equation

(1.4) Δx = x- xf(x2),

where Δ is the three-dimensional Laplace operator and t denotes dis-
tance from the origin.

To simplify our statements concerning solutions of (1.1) and (1.3),
we shall employ the following terminology.

DEFINITION I. A solution y(t) of equation (1.1) which is continu-
ous in [0, oo), positive in (0, oo), and satisfies y(0) = 0, limy(t) =0,

ί-»oo

shall be called a fundamental solution of (1.1) for the interval [0, oo).
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DEFINITION II. A solution x(t) of equation (1.3) which is continu-
ous in [0, CXD), positive in (0, oo), and satisfies lim x(t) = 0 shall be

ί->oo

called a fundamental solution of (1.3) for the interval [0, oo).
Special cases of equations (1.1) and (1.3) have been studies by a

number of authors [1, 3, 7, 9} in connection with problems in nuclear
physics, and the existence of fundamental solutions for the interval
[0, oo) was suggested by physical considerations when (1.1) is of the
type

(1.5) y-y +

and A: = 2, 3. Nehari [4] has shown that such solutions do in fact
exist whenever 1 < k < 5. In addition, lim t~ιy(t) exists as t —> 0 for
1 < k ^ 4. This shows that, in view of (1.2), the equation

α β\ A » I — /γ rγ /γ ι» 1

has fundamental solutions whenever 1 < k ^ 4. Synge [8] also studied
equations (1.5) and (1.6) for k = 2 and set up a numerical procedure
for the calculation of y(t) and x(t). Although no proof was given
that the procedure converges to a solution, Synge's numerical results
were accurate, as we shall see in §8.

Our purpose is to prove the existence of not only fundamental
solutions to equations (1.1) and (1.3), but also solutions yn(t) and xn(t)
possessing (n — 1) distinct zeros tu t2, , tn_λ in (0, oo) and which are
such that yn(t) and xjt) do not vanish in (tv, tυ+1), v = 0, 1, , n — 1
(t0 = 0, tn = oo). Such solutions which change sign as t —> oo are again
suggested by physical considerations for the case f(x2) — x2 in (1.3) [3].

We shall establish the following result.

THEOREM I. // F(η, t) satisfies conditions (la)—(Ic) and, in
addition,

(Id) lim F(c2, t) = 0 for all finite c,

(Ie) [aVll2)-*F(c%t)dt< +oo for all finite c, 0 < α < oo, and
Jo
some e Ξ> 0,

then equation (1.1) has a discrete infinity of solutions {yn(t)}, n —
1,2, , whose derivatives are continuous throughout [0, oo) and are
such that yn(t) has exactly (n — 1) zeros in (0, oo). Moreover, yn(0) = 0,
lim t~ιyn(t) exists as t —• 0 and yn(t) —> 0 as t —> co, for each n.

Since condition (Ie) is not satisfied for F(y2, t) = (\y \k-1)ltk~1 when
4 <; k < 5, the known existence of fundamental solutions to equation
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(1.5) for 1 < k < 5 suggests that, when it is not required that
lim t~ιy{t) exist as t —> 0, condition (Ie) may be relaxed to assume the
form

(If) (V 8F(c 2 ί, t)dt < oo for some ε > 0 and all finite c, 0 < a < co.
Jo

Indeed, such is the case at least when F(y2, t) = p(t)yla, and we can
prove a result similar to Theorem I for the equation

(1.7) V-V + p(t)y2a+1 = 0

when the following conditions (equivalent to (Ia)-(Id) and (If) are
satisfied.

(la') p(t) is continuous in (0, co);
(Ib') p(t) > 0 for all t > 0;
(Ic') a > 0;
(Id') lim pit) - 0

(Ie') \ f~2+ap(t)dt < + co for some ε > 0 and 0 < a < co.
Jo

It is easy to verify that conditions (la')—(Ie') are satisfied for
p(t)y2a = (I y \k-1)ltk~ι and 1 < k < 5. (i.e., for a = (k - l)/2, p(t) =
1/ί*"1) if we let ε = (5 — k)/4. This is in agreement with the results
stated for equation (1.5). Moreover, it was shown in [4] that no
fundamental solution to (1.5) can exist for k = 5.

Finally, in the special case in which (1.1) reduces to (1.3), Theo-
rem I takes the following form.

THEOREM II. // f{rj) satisfies the conditions:
(Πa) f{η) is continuous for 0 ^ rj < co,
(lib) f(η) > 0 for η > 0,

(Πc) 7]28f(y}2) > Vϊ8f(Vi) for 0 = Vι < 7λ < °° and ^ome positive δ,

(Πd) \°η2~{bl2) f(η)dη < + co for some a > 0 and ε ^ 0.

then equation (1.3) has solutions xn(t), n — 1, 2, , whose derivatives
are continuous in (0, co), are such that \imxn(t) exists as t—> 0,
xn(t)-+0 as ί—> co, α^d ajw(ί) Λαs exactly n — 1 ^ros m (0, co).

This result is merely a corollary to Theorem I where the condition
corresponding to (Id) is automatically satisfied whenever (He) is true.
Indeed, by (Πc),

and thus, for fixed ί0 > 0, we have
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(1.8) f(^\ S # - 4 - for fixed positive K, t > ί0.

In addition to proving the above existence theorems, we shall show
that the solutions to (1.1) and (1.7) are characterized by a minimum
problem and associated characteristic values λΛ. For a = 1, p(t) =
1/t2 in (1.7), i.e., when y(t) satisfies

(1.9) y-y + lL = Oi

we shall calculate λx and find bounds for the asymptotic values of the
nth "eigenvalues" Xn which are defined by

By converting the existence proof into a numerical procedure for
computing the fundamental solutions of (1.5), we abtain additional
numerical information concerning the solutions to (1.9) and the corre-
sponding equation

(1.10) x + — = x - x3 .

Both (1.9) and (1.10) were studied by Mitskevich [3].

2. A minimum problem* As a first step in the proof of Theo-
rem I, we show that equation (1.1) has a fundamental solution for
which lim t~ιy(t) exists when F(η, t) satisfies the stated conditions.

ί—0

To do this, we shall set up a variational problem as in [5] and show
that this problem has a solution which must satisfy (1.1) and the
boundary conditions for a fundamental solution. We consider the
problem

(2.1) J(y) = Γ [ # + y2 - G(y\ τ)]dτ = min.
Jo

where y(t) is subject to the admissibility conditions y(0) = 0, y(t) ^ 0
in (0, oo), y(t) ^ 0 in [0, oo), y(t) e D' [0, co), and the normalization
condition

(2.2) [°(y2 + y2)dτ = [~y2F(y2, τ)dτ .
Jo Jo

The function G{y2, τ) appearing in (2.2) is defined by

(2.3) G(y2, τ) = [ F{η, τ)dη , for each τ in (0, oo).
Jo
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Because of conditions (Ib) and (Ic), it can be shown that any
function y(t) satisfying the admissibility conditions, and for which

I (ύ2 + V2)dτ exists, can be multiplied by a positive constant a such
Jo

that ay(t) satisfies (2.2). We first show that the existence of
(y2 + y2)dτ implies that of I y2F(y2, τ)dτ.

0 f oo JO

Setting I (y2 + y2)dτ = σ2 and noting that y(0) = 0, we have
Jo

(2.4) y\t) = [ J W J ^ t^jpdτ ̂  tσ2

(2.5) y\t) = 2 [yydτ ^ ( V + y2)dτ ^ <72.

Hence, taking some ί0 in (0, ©o), T > ί0, ε *> 0, and using (2.4) in
[0, ί0] and (2.5) in [ί0, Γ], we have

y2F(y2, τ)dτ ^ σ ^ ί V - ^ ^ τ , τ)dτ + max
JOΓ

Jo Jo

This shows that

(2.6) ( V W > τ ) d τ ^ AΓiί^V + M2(σ2)σ2,
J

where ikf̂ σ2) = i j i V - ^ ^ r , τ)dτ and M2(CJ2) = max [F(<72, ί)] are both
JO ί 0 ^ ί < o o

finite for all finite σ2 when F satisfies (Id) and either (If) or (Ie).
To complete the proof that y(t) may be normalized as in equation

(2.2), we define

(f + y2)dτ
(2.7) B(a) = "

y2F{a2y2, τ)dτ

If a > 1, [F(a2y2, t)]/(a2y2Y > [F(y2, t)]/y25 by (Ic), and thus

\~(y2 + y2)dτ
(2.8) B(α) < -Jf- , a > 1.

V
If a < 1, [F(y2, t)]/y28 > [F(a2y2, t)]/(a2y2)\ and

f°° .
\ (ψ + y)dτ

(2.9) B(a) ^ - ^ - , α ^ 1.

Jo

Because of conditions (la), (Ic) and the fact B(a)—>0 as a—> oo by
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(2.8) and B(a) —•> oo as α—>0 by (2.9), the continuous function (of a)
B(a) assumes all values in (0, oo) as α varies in this same range. In
particular B(a) = 1 for some a in (0, oo) and (2.7) shows that v(t) =
ay(t) consequently satisfies

[°(v2 + v2)dτ = [°v2F(v2, τ)dτ .
Jo Jo

Finally, we see that

(2.10) \TG{y\ τ)dτ ^ \\fF{y\ τ)dτ for Te (0, oo)
Jo Jo

by definition of G(y2, τ) and thus, in view of (2.6) and (2.10), the exist-
(y2 + y2)dτ

o

exists.

3* Associated comparison functions* To show that our varia-
tional problem has a nontrivial solution we employ some of the
techniques of Nehari [5], where such functions F(η, t) satisfying
(la)—(Ic) were considered, and [4], where the differential equation (1.5)
with singularities at zero and infinity was studied.

By (Ic) and (2.3) we have

G(η, t) = [x*[x~Ψ(x, t)]dx < η~*F(η, t) [xδdx = ^L—F(η, t) .
Jo Jo 1 -\- ύ

Hence,

, t) - G{η, t) ^ δ(l + δy^Fiv, t) ,

and, if y(t) is an admissible function satisfying (2.2), this inequality
shows that

(3.1) J(y) ^ δ(l + δ)-1 (y* + y*)dτ.
Jo

Furthermore, if for all admissible y(t),

(3.2) λ - g.l.b. J(y) ,

there will exist a sequence of functions yι(t),y2{t), •••, which satisfy

the conditions of the minimum problem (2.1), (2.2), and for which

(3.3) lim % w ) = λ ^ 0 .
n—*oo

The fact that λ ^ 0 follows from (3.1).
It also follows from (3.1) that such a sequence {yn(t)} is uniformly

bounded and equicontinuous in every finite interval [0, T], Indeed,
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(3.4) \~(yl + yl)dτ ^ p2 < oo
Jo

for some positive constant p and, by (2.5), this shows that

(3.5) yl(t) ^ p2 for all t in [0, oo), n = 1, 2, . . . ,

Moreover, using (3.4), we have

- ίi)

for all 0 ^ tγ < ί2 < oo.
By Ascoli's Lemma, there exists a subsequence of {#»(£)} which

converges, uniformly on every finite interval [0, Γ], to a continuous
function ?/(£). We have thus proved the following result:

LEMMA (3.1). There exists a sequence {yn(t)} of functions, ad-
missible for the variational problem (2.1), (2.2), which converges
uniformly in every finite interval [0, T] to a continuous function
y(t). Moreover, lim J(yn) = λ = g.l.b. J(y) ^ 0.

What we now wish to show is that, for each yn(t) defined above
and an constant, the linear differential equation

(3.6) un -un + anVnF(yl ί) = 0

has a solution satisfying un(0) = 0, lim un(t) = 0. Moreover, this solu-

tion is also an admissible function (for suitable an) and

(3.7) J{un) ^ J(yn).

To do this, we consider the integral equation corresponding to
(3.6):

(3.8) un{t) = an \"g(t, τ)yn(τ)F(yl, τ)dτ
Jo

where g(t, τ) is the Green's function of the differential operator L(u) ~
u — u for the boundary conditions u(0) — 0, lim u(t) — 0, and is defined

by

ί ^ s i n h τ , 0<τ<t
(3.9) g(t,τ)= \_τ . / ~

(eτ smh t , t ^ τ .

Under the conditions imposed on F(η, t) and the admissibility condi-
tions imposed on yn(t), we shall prove that un(t) defined in (3.8) is
indeed the desired solution of (3.6).
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Using (3.9), we see that (temporarily setting an = 1)

un(t) = e * \ sinh τynF(yi, τ)dτ
(3.10) J°

Employing the definitions

(3.11) Q(t) = Ssinh τynF(yl τ)dτ
J

(3.12) R(t) = \eTynF(yl, τ)dτ ,

equation (3.10) takes the form (for an = 1)

(3.13) un(t) = e'Q(t) + R(t) sinh t.

To study the behaviour of Q(t) near zero, we use (2.4), (3.4)
and the monotonicity of t*~{1'2) sinh t in (0, t) for ε ^ 0. Equation
(3.11) yields

(3.14) Q(t) ^ ρt*-[ll2) sinh t [τ^'Fifΐτ, τ)dτ , ε ^ 0.
Jo

On the other hand, we see from (3.12) that for 0 < t < 1

R(t) - 12(1) + ^e-τynF(yl τ)dτ

where 12(1) ^ ^ [ m a x . F{ρ\ t)].

Since τε~(1/2) < ίε~(1/2) for τ > ΐ, 0 ^ ε ^ 1/2, and since τε~(1/2)

for 0 < τ < 1, ε ^ 1/2, the last inequality becomes

\p\τ^F(p2τ,τ)dτ , ε ^ 1/2
(3.15) 12(ί) ^ #(1) + ' J ί

f 1

τi-*F((?τ9 τ)dτ , 0 ^ ε ^ 1/2 .

If we combine (3.13), (3.14) and (3.15) we see that un(t) —> 0 as
t —> 0 provided JP(>7, ί) satisfies (If). If (Ie) is fulfilled and we use
this condition in the equivalent form

r ^ i V r , τ)dτ < oo , ε ^ 1/2

then t~λun{t) approaches a finite limit as t-+0.
To study the behavior of Q(t) and 12(0 fc>r large t we use (2.5)
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and (3.4) in (3.12) to find that, for t > 0

(3.16) R(t) ^ pe-'lmo.x. F{ρ\ τ)].

Also, if 0 < t0 < t,

Q(t) = Q(Q + Γ smhτynF(yl τ)dτ
J

where Q(t0) is finite by (3.14).
In view of (2.5) and (3.4), we then have

(3.17) Q(t) ^ Q(t0) + £['

Thus, if (Id) is satisfied, Γ eτF(ρ2, τ)dτ = o(eϋ) as £->oo and (3.13),

(3.16) and (3.17) show that un(t)-+0 as ί-> oo.
We shall now examine the behavior of ύn(t). Using (3.10) to

compute h~ι[un(t + h) — ujt)] and letting h —> 0, we see that ύn(t)
exists and is given by

(3.18) ύn(t) = -e-'Q(t) + cosh tR(t) .

Equations (3.16) and (3.17) then show that ύn(t) —> 0 as t --> oo when-
ever F(η, t) satisfies (Id) and either (Ie) or (If). Similarly, (3.14) and
(3.15) show that | ύn(t) \ is bounded near t = 0 if F satisfies (Id) and (Ie).
If only (If) is satisfied, then it is seen ύn(t) = 0(£*-(1/2)) as t —> 0.

If we now compute h"\iίn(t + h) — ύn(t)] from (3.18), we find that
un(t) exists and that un(t) is a solution of (3.6) for an = 1. Moreover,
un(t) is nonnegative in (0, oo) since yn(t) was assumed to be. Finally,
we can show that

(3.19) lim ύn(t)un(t) = 0 ,
t-*0

if we combine (3.18) with the above comments concerning ύn(t). We
may summarize our results as follows:

LEMMA 3.2. If yn(t) is defined as in Lemma 2.1 and an is a con-
stant, then equation (3.6) has a solution un(t) satisfying un(0) — 0,
lim un(t) = 0 whenever F{η,t) satisfies (la)—(Id) and (If) or (Ie).
t-*oo

Moreover un(t) is such that lim ύn(t) = 0, lim un(t)ύn(t) = 0 and, if con-
t-*oo ί->0

dition (Ie) is fulfilled, lim t~ιun{t) exists.
ί-»0

4* Convergence of the comparison functions to a fundamental
solution. We now proceed to prove the existence of a fundamental
solution to (1.1). To do this we first show that, for suitable an, un(t)
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is an admissible function for our variational problem and satisfies (3.7).
Multiplying (3.6) by un(t), integrating from 0 to T, and using

(3.19), we obtain

(4.1) σ\{T) = \\ύl + ul)dτ = aΛ*unynF(yl τ)dτ + un(T)ύn(T).
Jo Jo

Using (2.5) to estimate un(t) and (3.5) to estimate yn(t) in the interval
[0,1], and employing the Schwarz inequality in [1, Γ], we find that

\TunynF(yl τ)dτ ^ i71(T) io(V-si7( io
2r, τ)dτ

Jo Jo

Π
T "I1/2ΓΓΓ —11/2

u\F(yl. τ)dτ \ y\F(y\, τ)dτ
1 J LJl J

Hence, in view of (2.2) (applied to yn(t)) and (3.4),

(4.2) \TunynF(y2

n, τ)dτ ^ pc.σ^T) + /oo'1(T)[max {F(ρ\

where cλ = I τι~*F((?τ, τ)dτ and max {F(p\ t)} exist by properties (Id),
Jθ l^ί<oo

and (If) or (Ie).
Combining (4.1) and (4.2), it follows that

σ\(T) ^ a&σ^T) + un(T)ύn(T),

where c2 is a constant independent of n. Completing the square in
the last inequality, we have

J ^ Sψ. + un{T)ύn{T) .

However, since un(T) and ύn(T) tend to zero as T—• ^ (Lemma 3.2),

this establishes the existence of the integral \ (ύ2

n + u2

n)dτ and, because

S oo Jo

vb\F(Vj\, τ)dτ. Therefore, as shown in
0

§2, we may choose the constant an in such a way that
(4.3) \~(ύl + ul)dτ = [°u*nF(u2

n, τ)dτ .
Jo Jo

and un(t) becomes an admissible function for the problem (2.1), (2.2).
If we use the convexity of G(η, t), the Schwarz and other ele-

mentary inequalities, it is easy to establish inequality (3.7), i.e.,

(4.4) J(un) ^ J(yn) .

Moreover, in view of the way in which these inequalities are used,
equality is possible only if un and yn coincide. If we note that the
existence of all integrals involved is insured by the facts that ύn(t) = 0
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(£ε~(1/2)) and yn{t) = 0 (t1/2) near zero, the proof proceeds like a com-
parable one in [5] and will be omitted. The proof also establishes the
useful inequality

(4.5) <\~y2nF(yl, t)dt ^ [°u2

nF(u*n, t)dt .
Jo Jo

Because of the definition of the number λ in (3.3), we must have
lim inf J{un) i> λ since un(t) is an admissible function. Formulas (4.4)
n~»oo

and (3.3) thus lead to the relations

(4.6) lim J{un) — lim J(yn) = λ ,
n—>oo n—»oo

Moreover, using the same inequalities which lead to the uniform
boundedness and equicontinuity of the sequence {yn(t)} in §2, we find
that {un(t)} converges uniformly in every finite interval [0, T] to a
continuous function uQ(t), i.e.,

(4.7) lim un(t) = uo(t).
n—>oo

This proves:

LEMMA 4.1. Under the conditions (la)—(Id), and (Ie) or (If), the
sequence un(t) defined in (3.6) converges uniformly in every finite
interval [0, T] to a continuous function uo(t). Moreover, lim J(un) — λ.

n—>oo

Now, uo(t) will be a solution to our variational problem if we can
show that

(4.8) lim J(un) = J(lim un) = J(u0) .

We proceed to establish this result by first proving the uniform
convergence of ύn(t). It is from this point on that we need (Ie)
rather than (If) for the existence proof. When F(η, t) satisfies (Ie),
then, as shown in §3, each of the ύn(t) approaches a finite limit as
t—>0. In this case, each ύn(t) is continuous in [0, oo). Furthermore,

(4.9) ύn(t) - ύm(t) = β-'[Qn(ί) - Qm(t)] + cosh t[Rn(t) - Rm(t)\

where Q^ί), i?4(ί), i = 1,2, •••, were defined in (3.11) and (3.12).
When conditions (la)—(Ie) are satisfied, we have shown that each

of the Qi(t), Ri(t) existed for all t > 0 as long as y^t) was a member
of {yn(t)}. Since the sequence {yn(t)} was shown to converge uniformly
in every finite interval [0, Γ], it is easy to see that the same is true
of the sequences {Qn(t)}, {Rn(t)}. Equation (4.9) then shows {ύn(t)}
converges uniformly.

In view of (4.7), therefore, we have
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(4.10) limύn(t) = ύo(t)

where the convergence is uniform in every finite interval [0, T],
We also need to show that αn, which is determined by (4.3), is

bounded for all n. By (4.5)

KF(ul, τ)dτ
(4.11) a\ ̂  J o

ylF(yl,τ)dτ

To see that this denominator in (4.11) has a lower bound, we set

σl = \°°(yl + Vl)dτ and employ (2.2), (2.4) and (2.5). Thus
Jo

\ Vl)dτ = \ylF(y>n, τ)dτ
(4.12) J o J

\ 2

nτ, τ)dτ + <j* m a x [F(σ2

n, t)]
l£t

for ε ̂  0. Since σ\ > 0 by our requirement that yn(t) ΐ θ , we can
divide both sides of the inequality by σ\ and obtain

(4.13) 1 ̂  f V - * F « τ , τ)dτ + max [F(σ2

n, t)\ .
Jθ l^ί<o=

If it were true that σ\ < 1 for some n, condition (Ic) would show
that

F{σ*nτ, τ) < < δF(τ, τ) ,

F(σl τ) < σ»F(l, τ) .

Substituting in (4.13) would then yield

^ σl8 [τ'-'Fiτ, τ)dτ + σf max [F(l, t)]

for ε ̂  0. This inequality shows that σ\ cannot approach zero as
w->co, i.e.,

(4.14) σl = [°ylF(yl, τ)dτ ̂  M > 0 , for all n ,
Jo

when conditions (la)—(Id), and (If) or (Ie) are satisfied.
In order to examine the numerator in (4.11), we apply (3.1) to

un(t) and use the normalization (4.3) to obtain

(4.15) [°°ulF(ul τ)dτ ̂  l±JLj(Un) .
J 3
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In view of (4.4) and the fact J(yn) ^ \ (y\ + yl)dτ ^ ρ\ the last in-

equality yields

l τ)dτ £

Combining this result with (4.11) and (4.14), we have

(4.16) ±^ 4F >8 M
f o r a11 n

Thus a% is bounded above.
To return now to the proof of (4.8), we write

(4.17)
(ύl + u2

0)dτ — I (ύ2

n + u2

n)dτ

ύl + u\)dτ - \ (ύ2

n + ύi)dτ ul)dτ

In view of (3.6) and Lemma (3.2), however,

ώ2

w + ul)dτ = aΛ~unynF(yl, τ)dτ + un(T)ύn(T) .

Moreover,

unynF(y2

n, τ)dτ ^ max. [F(ρ2, t)] unyndτ

^ max.

τst<°

where the final result follows from the fact that

3 o o

If we now combine the above inequality with its predecessor, and
substitute into (4.17), we find

ul)dτ - (ύl + K)dτ \\ύl + ul)dτ - \\ύl + K)dτ
Jo Jo

max. [F(p, t)] + \nκ{T)ύn{T) | .

But since
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(u\ + ύn)dτ converges to 1 (ύ2

Q + u2

Q)dτ (Lemma 4.1
o Jo

and the uniform convergence in (4.10)), our last inequality shows that

I JO
l + ul)dτ - lim ί"(ώi + ul)dτ

W-»oo J θ

g if max [F(p\ t)] + \ ύ0(T)u0(T) \ .

If we now use the results that ύo(T)uo(T)~->0 as Γ ^ ^ (equation
(4.10), Lemma 3.2, Lemma 4.1) and max [F(ρ2, t)] -* 0 as T-*co

(property (Id)), we finally obtain

(4.18) lim [°(ύl + u2

n)dτ = [°(ύ2

0 + u2)dτ .
w-»oo Jo Jo

Employing similar techniques, we can also show that

(4.19) lim \~G(u2

n, τ)dτ = [°G(u2

0, τ)dτ .
ίl-»oo JO JO

Hence, equations (4.18), (4.19) and (2.1) yield the result

(4.20) lim J(un) = J(uQ),
n-+oo

which proves (4.8) and verifies that uo(t) is indeed the solution of our
variational problem. Moreover, since (4.14) also holds for un(t), equa-
tion (4.15) shows that

Because of (4.6), we have thus proved

(4.21) lim J(un) = lim J(yn) = J(u0) = λ > 0 ,
n—>o° n—>°o

and uo(t) cannot be identically zero in [0, ©o)
We now proceed to show that uo(t) satisfies (1.1) and is con-

sequently a fundamental solution for the interval [0, oo).
As previously remarked, the sign of equality is possible in (4.4)

only if yn(t) and un(t) coincide in [0, oo). Equation (3.6) shows that,
in this case, yn(t) must be a solution of

(4.22) u - u + auF(u2, t) = 0 for some a > 0 ,

where u(0) = lim u(t) = 0. Hence, if we let yn(t) = uo(t), we find

(4.23) uQ -uQ + a0u0F(u2

Qy t) = 0

because of the minimum property of uo{t), i.e., in this case, J(un) =
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J(yn) and the previous comments apply. Furthermore, since uQ(t)ύ0(t)—>0
as t —>0 and uQ(t)ύ0(t) —> 0 as ί ^ ^ (equation 4.10 and Lemmas 3.2
and 4.1), it is also true that

(4.24) [°(ύ2

Q + ul)dτ = a0 [°uoF(u2

O1 τ)dτ .
Jo Jo

Comparing this result with the normalization condition (4.3), we
see that a0 = 1. Thus uo(t) is shown to be a solution of the differ-
ential equation (1.1). In view of the uniform convergence of {un(t)},
Lemma 3.2 shows that uQ(t) —> 0 as t —> oo and lim t~ιuQ(t) exists.

t-*0

5* The existence of solutions with zeros in (0, oo). Having
established the existence of a fundamental solution to (1.1) on [0, oo),
we can also prove that there exist similar positive solutions of (1.1)
on every subinterval of the positive ί-axis. These solutions will also
approach zero at the end-points of the interval.

Indeed, for the interval [α, oo), a ^ 0, we replace g(t, τ) in (3.9) by

(eae * sinh ( τ - α ) , 0 ^ α g τ < £

~ \eaeτ sinh (t - a) , t ^ τ

also for the interval [α, 6], 0 ^ a < b < oo, we define

sinh (b - t) sinh (τ - a) 0 < a<τ <t
sinh (b — a)

sinh (6_- τ) smh (ί - a)
sinh (6 — a)

t<τ<b.

The corresponding variational problem for the interval [α, b] (or [α, oo)]
will then have a solution which also solves the boundary value problem

/ κ n .. , rr/ , ^ Λ ίl/(α) = 1/(6) = 0, 0 ^ α < 6 < o o
5.1) y -y + yF(y\ ί) = 0 , ] Λ ^

(?/(α) = hm y(t) = 0 , 0 ^ α < oo ,
ί->oo

The proof of these statements is the same as before, except that
the special treatment of the singularities at t = 0, t = oo, or at both
of these points, now becomes unnecessary. Our final result may then
be stated

THEOREM 5.1. Let Γ denote the class of functions y(t) which
are continuous and piecewise differentiable in [α, δ], 0 ^ a ^ δ ^ oo,
satisfy y(a) — y(b) = 0, y{t) Ξ£ 0 in [α, δ], and are nonnegative in
(α, δ). Let us require, moreover, that

(5.2) ( V + f)dt - ί V W , ί)dί,
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where F satisfies conditions (la)—(Ie).
Then if we define

(5.3) J(y)= \\y2 + y2-G(y\t)]dt.

where y(t) e Γ and G(r], t) is given by (2.3), the minimum problem

(5.4) J(y) = min. = λ(α, b)

is solved by a solution of the differential equation (1.1). Moreover,
y(t) > 0 in (a, b), λ(α, b) > 0, and if a = 0, Umt^yit) = 0.

£-•0

We shall outline the completion of the proof of Theorem I and establish
the existence of a discrete infinity of solutions yx{t), y2(t), , yn(t), ,
in [0, co) such that yn(0) = 0, lim t~ιyn(t) exists and \\my(t) = 0.

t-*0 ί->oo

Furthermore, the nth solution will be shown to possess n — 1 distinct
zeros in (0, oo). We may follow a procedure due to Nehari [6] but
must also take into account the nature of the singularities at zero
and infinity. The procedure depends on the following result.

Letting λ(α, b) denote the minimum of J(y) in (5.3) for the inter-
val [α, 6], we first prove

LEMMA 5.1. (a) If a^a' ^b' <b, then λ(α, b) ^ λ(α', V).
(b) λ(α, 6) —* oo as b — a —> 0 (as a —* c>o if b = oo, as 6 —• 0 if

a = 0).
(c) λ(a, 6) is a continuous function of a and b (of b only if

a = 0, of a only if b — oo.).

Since F(η, t) has the properties (la)—(Ic) and since condition (Id)
and either (Ie) or (If) insure the existence of all integrals involved,
the verification of Lemma 5.1 proceeds exactly as the proof of the
corresponding lemma in [6]. It is necessary, however, to divide the
proof into three stages for the intervals [0, a][a, &1, [6, °°1, 0 < α <
b < oo and use the inequalities and arguments of the previous exist-
ence theory.

Now if 0 = t0 < tί < t2 < < tn = oo 9 where tu , tn_λ are n — 1
distinct points in (0, oo), we consider functions uu(t) in the interval
[ίi;-i> *p] (or [tn_u oo)) which are piecewise continuously differentiate,
vanish at tv^ and tv, but not identically in (tu_u tu), and are normalized
by

(5.5) Γ " (ul + u l ) d t = \tv u 2

u F ( u l t)dt v = 1,2, . . . , n .

If we define u(t) in [0, oo) by setting u/(t) = uu(t) in [tv_l9 tμ], v =
1,2, « , π , then the nth "characteristic value" is defined by
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(5.6) K = min Γ[ύ 2 + u2 - G(u2, t)]dt
Jo

where u(t) ranges over the class of all functions with the properties
indicated above. By Theorem 5.1, it is sufficient to consider functions
u(t) which coincide with solutions of (5.1) and are such that u(tv^ ~
u(tv) = 0.

Let us define

(5.7) J" = Σ M*χ-i, W , (to = 0, tn = oo) .

By property (c) of Lemma 5.1, μ is continuous function of tu t2, , tn_l9

and, by property (b), the values tv must be bounded away from each
other and from infinity in any sequence of sets for which μ tends to
its greatest lower bound. It is thus sufficient to confine the values
tu •• ,*n-i to a sufficiently large finite interval [0, T] and, therefore,
the minimum of μ is actually attained for some set of n — 1 finite
distinct values tv, v = 1, , n — 1, with 0 < tv_λ < £„.

Since the minimum of μ in (5.7) is the same as the minimum of

( oo

[ΰ2 + u2 — G(u2, t)]dt under the normalizations

(ύ2+ u2)dt =[" u2F(u2,t)dt, v = 1,2, - ,n

and other specified conditions on u(t), our minimum problem (5.5), (5.6)
has a solution yn(t) which coincides in each interval [tv_l9 tu] with a
solution y(t) of (5.1). Morever, yn{t^ = yn(tu) = 0 and yn(t) > 0 in
(tv-i, tu) because of Theorem 5.1. Accordingly, our "nih eigensolution"
has n — 1 distinct zeros in (0, ^) and thus we obtain a different solu-
tion yn(t) for different values of n.

Our task is now to show that this function yn(t) is a solution of
(5.1) throughout the interval [0, oo) i.e., we wish to show that

(5.8) lim y'n(t) = lim y'n(t) , v = 1, 2, . . . , n - 1 ,

after first requiring that yn(t) be positive in (0, tλ) and change sign
thereafter at each point tv. This alternation of sign is possible since
— y(t) satisfied (5.1) whenever y(t) does, and the change of sign does
not affect the admissibility conditions or the value of J(y).

Since tu t2, , tn_x are all in (0, oo), we are examining the slopes
of yn(t) at points where F(τj, t) is continuous. The proof of (5.8)

S ty

[y2 — G(y2, t)]dt is replaced

[y2 + y2 — G(y2, t)]dt. It is easy to see, however, that the extra

term \ y2dt presents no additional difficulties.
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To summarize our results, we have the following theorem.

THEOREM 5.2. Let Γn denote the class of functions y(t) with the
properties: y(t) is continuous and piecewise differentiable in [0, c>o);
y(tu) = 0 and y(t) ^ 0 in (£„_!, tv) (v — 1, 2, , n), where the tv are
numbers such that 0 = t0 < tλ < t2 < < ίίι_1 < tn — oo moreover,

(5.9) Γ" (tf + y*)dt = Γ" y2F(y\ t)dt, i; = 1, 2, . . . , n ,

where F{η, t) is subject to conditions (la)—(If).
If G(η, t) is the function defined in (2.3), then the extremal problem

(5.10) ( V + y2 - G(y\ t)]dt - min = Xn
Jo

has a solution yn(t) whose derivative is continuous throughout [0, oo).
The function yn(t) has exactly n — 1 zeros in (0, oo), and is a non-
trivial solution of the differential system

ϋ-y + vF(y*, ί) = 0 , 2/(0) = lim y(t) = 0 ,
t—>oo

for which lim t-λy{t) exists.
This result proves Theorem I.

6. The case F(y2, t) = p(t)y2a. In the existence theory of the
previous sections, all of our results through Lemma 4.1 were valid
when conditions (la)—(Id) and (If) were satisfied. In fact, we used
the stronger condition (Ie) (rather than (If)) only to insure that the
sequence {ύn(t)} converged uniformly in every finite interval [0, T], and
thus to prove that

lim J(un) = /(lim un).

We can, however, circumvent this requirement of continuity of
each ύn(t) at t — 0 when we consider F(η, t) in the special form

(6.1) F{y\ t) = p{t)y2a .

The proof of the convergence of the comparison functions un(t) to a
fundamental solution is similar to one in [4] and the adaptations
necessary in our case are repetitive of the arguments used in the
proof of Theorem I. The following result is valid.

THEOREM 6.1. // F(y2, t) — p(t)y2a and conditions (la)—(Ie) are
replaced by (la')—(Ie'), Theorem 5.2 remains valid with the exception
that lim t~ιy(t) may no longer exist. Moreover the characteristic
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values assume the simpler form

K = —^-r-(Vn + yl)dt.
a + 1 Jo

7* Asymptotic estimates for certain eigenvalues* We shall now
consider the special equation

(7.1) y - y + -£- - 0 ,

for which it is possible to obtain information concerning the behavior
of the associated eigenvalues Xn for large values of n. We remark
that (1.1) reduces to (7.1) for F(y\ t) = y2/t2 and F obviously satisfies
conditions (la)—(le).

For the above equation (2.1) becomes

(7.2) J(y)=

and, in view of the normalization

(7.3) [" (y* + y*)dt = [" ^-dt , v = l,2, , n ,

equation (7.2) reduces to

(7.4)

To recapitulate in terms of Theorem 5.2, equation (7.1) has a
solution which is continuous in [0, oo), vanishes for t = 0, t = oo and
n — 1 points in [0, oo). The function y(t) is characterized by the
variational problem:

If tl9 t2, , ί*-i are any n — 1 values in (0, co), satisfying tv-.λ < tv,
v = 2, , n — 1, we consider functions u(ί) which vanish at zero, at
infinity and these n — 1 values tp. Furthermore,, we require u(t) to
be of class Df', normalized by (7.3), nonnegative and not identically
zero in (0, oo). The function for which

(7.5) λw - min = - M V + y2)dt ,
2 Jo

for all choices of tv, v = 1, , w — 1, is a solution of (7.1) with the
properties indicated in Theorem 5.2. The value of the minimum, λn,
in (7.5) we refer to as the "nih characteristic value" or "nth eigenvalue"
of equation (7.1).

As n increases, it is easy to see that Xn does also. Indeed, if we
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let u(t) = y(t) for 0 ^ t S ίΛ-i, and u(t) = 0 for tn^ ^ t < oo, where
τ/(£) is the solution of our problem for λΛ, then u(ί) is an admissible
functien for the (n — l) t h problem. Hence,

\ t)]dt

= K - Γ W Λ-f - G(y\ t)]dt
J*n-1

= λ w - ^ 1 ( ^ - 1 , c o ) .

Thus,

since λ1(ί%_1, oo) is positive.
We shall now find more exact information concerning the λ%'s

associated with equation (7.1).
If u(t) is a competing function for the above minimum problem

and 1 (ύ2 + u2)dt exists, then, as shown in §2, u(t) may be normalized
Jo

by multiplying u(t) by a constant au in (tv_utv), y = 1,2, •••,%.

Then

(7.6) Γ v (^2 + ^ 2 )dί = α^Γ" — d ί ,
Jίy-l Jίv-1 ί2

and v(ί) = auu(t) satisfies (7.3) in (tv_l9 tv). Moreover, (7.5) shows that

2 "-1 » ' ^ _ d ί

K^^rt\ (v + v)dt £

or, in view of (7.6),

(7.7)

We therefore can find an estimate from above for λΛ by substituting
into (7.7) any function u(t) satisfying %(0) = u(^) = u(tv) — 0, u(t) ί 0
in (ί,^, tu), u(t) e f l ' l t i , ^ ] , for any set of numbers ^, , ̂ _x in (0, co),

Moreover, if z(t) is the solution to our n-ih minimum problem in
[0, 6], then the function

(z(t) , 0 < t < b
u(t) = ~ "

(0 , b < t ^ oo

is a competing function for the n-th problem in [0, oo). Hence

(7.8) λn(0, oo) ^ λΛ(0, b) , 0 < b < oo .
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The estimate (7.7) shall then be applied to the interval [0,6], i.e.,
take 0 = t0 < tx < < £n_x < tn = b, where b < <χ>.

For a competing function u(t), we take a solution to the differ-
ential equation

(7.9) u + v? = 0

for which u(tv^) = u{tu) = 0, n(t) > 0 in each interval [t,_u ίy]. The
existence of such solutions is proved in [5].

We note that

(7.10) u\t) = [T ύ(t)dtt g (ί - ίp-1) Γv ώ2dί ,

for ίv_α <Ξ ί ̂  ίv, and thus

-i 2

Furthermore, since

\ v ^ dt >> i v ^dt v = 1 2

the inequalities (7.7) and (7.8) show that

(7.11) λ.(0,oo)^_g

where 0 < ί0 < *i < < tn = b are any set of points in (0, «>). Using
the fact that

(7.12) f'v ύ2dt = Γ v u4dt,

for every solution of (7.9) which vanishes at tv_x and tv, and the
property

tfdt =
(tv - t

where

A = 2 ΓΓ dt T
3LJo(l - tψι\

(this result is proved in [6]), we find that (7.11) reduces to the form

(7.13) λ,(0, oo) < A v Γ ιl + *ί + *'(*> ~ *>-
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where tn = b, t0 = 0, and tu t2, , tn_x are any n — 1 distinct points
in (0, oo).

To find a similar expression estimating Xn from below we proceed
as follows.

From (7.3) and (7.10), it is found that

S ty Cty ηΛ Γty Γty ηj2

(y2 + y2)dt = JL-dt ^ (tv - t^) fdt jL-dt
<v-i J<v-i t Jίv-i J<v-i t

where y(t) is the solution of our minimum problem (7.5), and tx, t2,
• , ίw_i are the corresponding zeros of y(t). Thus,

(7.14) Γv (f + y2)dt^ ^ - ^ ~ i

v = 2, , n — 1.
Furthermore, we define the function v(t) = ccυy(t) in each interval

[ίp-i, **]» where α:y is to be determined by

(7.15) Γ" fdt = a2Sv y'dt.

In this way, v(ί) becomes a competing function for the variational
problem:

(7.16) J(v) = Γ" ('y2 - -ζ-)dt = min = ^(ί,^, tu)

under the normalization

(7.17) Γ" v2dt =

The functions v(t) are required to satisfy the same admissibility con-
ditions as we required in (2.1), (2,2). It is shown in [5] that the
minimum μ(tv_u tu) is attained when v(t) is a solution u(t) of (7.9),
which takes the value zero at ίv-1, tv and is positive in (ί v - 1, tv).

Because of (7.17) and the comments following (7.12), equation
(7.16) shows that

(7.18) μ(tu 19 tu) - — Γ" ύ2dt = < — [v v2dt

for every admissible function v(t) satisfying (7.17). In particular using
v(t) = a>y(t) and noting (7.15), equation (7.18) yields the result

f M = ^ ί- fdt = i
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Since

we may write this last expression in the form

(7.19)
ίv

(V
tv—l

Let us now rewrite (7.14) in the following way

y2dt

(7.20) , *»-? £ 4 f ^

Then if we add (7.19) and (7.20) and cancel out the common factor

S ty

{if2 + V2)dt in the right hand side, we obtain

(7.21) A*"- 1 + — J ^ i _ ^ \ 7/2^ , i; = 2,

Finally, using the fact that

l/2dί ^ \ ' (y2

equation (7.14) also yields

(7.22) — ! ^ = i — ^ y2ίίί, υ = 2, , w - 1 .
vv tυ—1 J * ! ^ — 1

Adding the last two equations and noting (7.5), we have, for
n i> 3, the result

where the tl9t2, , ίw_! are the n — 1 internal zeros of the "wth eigen-
function" y(t).

In view of this inequality and the fact that we may take any
values tlrt2, * ,tn in (7.13), we have proved the following result.

LEMMA 7.1. // Xn is the nth characteristic valve associated with
the differential equation (7.1), for the boundary conditions y(0) =
y(oo) = 0, then, if n ^ 3,
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n-lΓ Λ

lim inf Σ —
£ 1 2

4.2

+
4.2

< λ.

< lim inf — Y, Γ ^
- *<tv<? 2 i=iL(t v - tu_r)

where

Λ - 2 Γf1 dt Ύ
3 LJO (1 - tΎl2Λ '( l - py

A comparison of the upper and lower bounds in the above in-
equality suggests that they might be nearly equivalent asymptotically,
but finding the exact minimum for either expression seems difficult.

We can, however, get an upper bound for λn by first substituting
the arithmetic means tv = vtjn in the right hand side. Minimizing
with respect to ίΛ, we then obtain

. ^ 2A/Ύ n(2n + l)(n + l)

or

(7.23) K. ^ A<

d t

To find a lower bound for Xn in terms of n, we must replace our
previous result (Lemma 7.1) with an expression that can be easily
minimized. To do this, we see from the Rayleigh minimum principle
that

log2
S t 2 (* f

dt

for all functions y(t) for which the integrals exist and which are
piecewise differentiable in [tu^u tj\ and vanish at the end points.
Equality is achieved for the function

y = i/ t sin

π log t Ί

log

If we use the above inequality when y(t) is the nih solution of our
variational problem and tl9 ί2, , ίn-i a r e its internal zeros, and apply
the techniques used above, we can obtain the estimate
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(7.24) n ~ 2 +

where eλ is a finite constant and n >̂ 3.

We summarize the results in (7.23) and 7.24 as follows.

THEOREM 7.1. Let Xn be the nth characteristic value associated
with equation (7.1) and the variational problem (7.3), (7.4), (7.5). For
n ^ 3, λw satisfies the following inequalities.

36log2n L Wogn/Λ L \n

where

λϊ\ -
n/Λ

8* Some numerical results* In this section we shall obtain
further information regarding the behavior of solutions to the equation

(8.1) y - y + ^ = oy for ft = 2, 3 .
tlc

Synge [8] studied this equation for k — 2 with a view to obtaining
numerical values for the fundamental solution. It is our aim to verify
his results and compute the fundamental solution also for k = 3.

To do this, we note that when F(y\ t) = (\y \k~ι)ltk-1 (3.10) becomes

un(t) = e-^Γsinhτ-^Lcϊτ + sinh t
J τk~ι

(\yn\ = yn since we consider only nonnegative functions). It was
shown that J(un) ^ J(yn) where equality holds only if un(t) coincides
with the solution of the variational problem

•%) = \;(v *; I ' » Γ > ' = •"•";

=
Jo

We may convert our existence proof into a procedure for the

numerical computation of the fundamental solution y(t) by starting

with a function vQ(t), nonnegative in (0, oo), for which vQ(0) = i^ί0 0) = 0,

vo(t) Ξ£ 0, I (vl + vl)dt exists and
Jo

o t
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It we then define v^t), v2(t), •••, by

(8.2)
f

+ smhίl e~τ

)
where an+1 is determined by

we shall have J(vn+1) ^ J(vn). If there is a unique nonnegative solu-
tion to (8.1) for 1 < k < 5, the above procedure must converge to it.

In order to test the rapidity of convergence in the above itera-
tion, the problem was programmed for k = 2 on a Bendix G-20
computer, using a Simpson's Rule evaluation of the integrals in (8.2).
The second integral was restricted to the interval [0,10] and v(t) =
terx was used as an initial approximation.

After 23 iterations it was found that

I vn(t) - vn+1(t) I ̂  .00001 , n = 23 , 0 ^ t S 10 .

where vn(t) was evaluated at multiples of At = .05.
Setting y(t) = v23{t), x(t) ~ t~γy{t), the following results were

obtained.

x(0) = y(0) = 4.19172 - f V r ϋ ! ί l ί - d r ,
Jo T

(8.4) x(4.5) = .03926 ,

A = 16.0687 = ("sinh τ^^dτ ,
Jo τ

where y(t) ~ Ae~* for large t and #(ί) ~ y(0) sinh ί for small values
of t [4]. We recall that x(t) is the corresponding solution of (1.3).
The values found by Synge were

x(0) - #(0) = 4.19169

(8.5) x(4.5) = .03926

i4 = 16.0723 .

A comparison of (8.4) and (8.5) shows that the correspondence is
good, especially for x(0) and #(4.5), whereas for A the correspondence
occurs for one less significant digit. We thus apply the same iterative
procedure outlined in (8.2) and (8.3) for the case k = 3 and find that
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λ l = M~(y2 + y*)dt = 3.00787
2 Jo

a (O) = y(0) = 4.33738

A = 2.71386 = (°V2 sinh ty\t)dt ,
Jo

where, as previously noted, y(t) ~ Ae~ι for large t and y(t) ~ y(0) sinh £
for small values of t.

It is also shown in [4] that when the values 2/(0) and A are given,
there are simpler iteration procedures, for calculating y(t), which are
valid at the ends of the interval.

The author wishes to express his gratitude to Professor Zeev
Nehari for his invaluable advice and guidance furnished during the
course of this research work.
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