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GROUPS ADMITTING A FIXED-POINT-FREE
AUTOMORPHISM OF ORDER 2"

FLETCHER GROSS

Let G be a finite solvable group which admits a fixed-
point-free automorphism of order 2%, The main result of this
paper is that the nilpotent length of G is at most 2n — 2 for
n = 2. This is an improvement on earlier results in that no
assumptions are made regarding the Sylow subgroups of G.

Suppose G is a finite solvable group which admits a fixed-point-
free automorphism of order p™ where p is a prime. Then it is known
that the nilpotent length of G is at most n provided that p = 2
(8], [10],[6]). This result also holds for p =2 if the Sylow g¢-
subgroups of G are abelian for all Mersenne primes ¢ ([8],[10]).
The purpose of the present paper is to obtain an upper bound on the
nilpotent length in the case p = 2 without imposing any restrictions
on the Sylow subgroups of G. Our result is

THEOREM 1.1. If G is a fintte group admitting a fixed-point-
free automorphism of order 2", then G 1is solvable and has nilpotent
length at most Max {2n — 2, n}.

Here it should be noted that if G admits a 2-group as a fixed-
point-free operator group then G must have odd order and thus must
be solvable from [2].

The usual methods employed to prove results about solvable groups
admitting a fixed-point-free automorphism of order p™ are so similar
to the methods used by Hall and Higman [7] to find upper bounds on
the p-length that it seems natural to ask whether both types of results
might follow from some general theorem about linear groups. If
p = 2 this can be done and the theorem is the following:

THEOREM 1.2. Let G be a finite solvable limear group over a
field K such that the order of F.(G) is divisible by meither 2 nor
the characteristic of K. Assume that g is an element of order 2"
wm G such that the minimal polynomial of g has degree < 2". Then
""" must belong to Fy(G).

Here F(G) is the greatest normal nilpotent subgroup of G and
Fy(G@) = F,(Gmod F(G)). In addition toimplying Theorem 1.1, Theorem
1.2 also immediately implies Theorem B of [4] which in turn implies
that 1,(G) < Max {2¢,(G) — 2, e(G)} for any solvable group G ([4], [5]).
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2. Preliminary results. For the rest of this paper we adopt
the convention that all groups referred to are assumed to be finite.
If G is a linear group operating on ¥V and U is a G-invariant subspace,
then {G | U} denotes the restriction of G to U. If ¢ is an element of
a linear group such that the minimal polynomial of g has degree less
than the order of g, then g is said to be exceptional. The rest of
the notation used agrees with that of [2].

Before proceeding to the proof of Theorem 1.2, some preliminary
results are needed.

LEMMA 2.1. Let Q be an extra-special q-group which is operated
upon by an automorphism g of order p" where p is a prime distinct
Srom q. Assume that [Q', 9] = 1 and let K be an algebraically closed
field of characteristic different from q. Then, tf M is any irreducible
K — Q<g> module which represents Q faithfully, it follows that M
18 an irreducible K — Q module.

This follows from either [1, Th. 1.30] or [7, Lemma 2.2.3] depending
on whether the characteristic of K differs from or is equal to p,
respectively. Next we need a generalization of Theorem 2.5.4 of [7].

THEOREM 2.2. Suppose that

(1) @ is an extra-special q-group which admits an automorphism
g of order p" where p s a prime distinct from q.

(il) [Q, 9] = 1.

(iili) K 1is a field of characteristic different from q.

(iv) M is a faithful, irreducible K — Q{g> module.

(v) g is exceptional on M.
Then the following must hold:

(@) p"—1=q"

b) If Q/Q is a subgroup of Q/Q’ that is transformed faithfully
and irreducibly by {g>, then |Q,/Q' | = ¢* and [Q, 9] = Q..

(¢) The minimal polynomial of g on M has degree p™ — 1.

Proof. First we show that K may be taken to be algebraically
closed. Let L be an algebraically closed extension of K and let N be an
irreducible L — @Q<g> submodule of M &, L. Now if ¢ generates @,
then, since ce Z(Q<{g>), ¢ has no nonzero fixed vectors in M. It
immediately follows from this that ¢ is not the identity on N. Since
any nontrivial normal subgroup of Q<{¢g> must contain ¢, this implies
that N is a faithful L — Q<g> module.

Thus in proving the theorem we may as well assume that X is
algebraically closed. The lemma now implies that M is an irreducible
K — @ module. If char (K) = p, then the theorem follows from
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Theorems 2.5.1. and 2.5.4 of [7]. Hence we now suppose that char
(K) # p.

Q/Q is the direct product of groups transformed irreducibly by g.
Thus there is a subgroup Q,/Q’ such that g transforms @Q,/Q’ irreducibly
according to some automorphism of order p”. Now if @, were abelian,
then, since g”"~" does not centralize Q, and M is a completely reducible
K — @, module, it would follow easily that the minimal polynomial of
g would have degree p". Hence @, is not abelian and so must be
extra-special. This implies that | Q.| = ¢*** for some d.

Now if N is an irreducible K — @, g> submodule of M, N must
faithfully represent @, since ¢ is represented by a scalar matrix.
Hence N is an irreducible K — @, module.

Since ¢ is exceptional, there is at least one p"-th root of unity
in K which is not an eigenvalue of g. The argument given in [10,
pp. 706-707] now implies that p — 1 = ¢¢ and exactly (p" — 1) p"-th
roots of unity occur as eigenvalues of g. Thus it only remains to
show that [Q, ¢g] < Q, to complete the proof of the theorem. If @, = @,
this is trivial. Therefore assume that @ # Q,. Then if Q, = Co(Q,)
we find that @, admits ¢ and @ is the central product of @, and Q..

We now use the construction given in [7, p. 21] to construct
linear groups H,, H, where H; = @<{g,> and ¢, is a p-element which
transforms @, in the same way as ¢g. In the Kronecker product of
H, and H,, the product of @, and @, becomes identified with Q. Since
M is an irreducible K — @ module, it follows that g, & g. differs from
g only by a scalar factor. Since g is of order p”, we find that

9 =0a(9: R 9.)

where a*” = 1. Now if [@,, g] # 1, then g, has at least two distinct
eigenvalues 5, v. But g, has p" — 1 distinet eigenvalues. Thus if A
is any p"th root of unity then at least one of \/afB and \/ay must
be an eigenvalue of g,. But this would imply that A would be an
eigenvalue of g. Since g is exceptional, we must have that [@Q,, g] = 1.

COROLLARY 2.3. Under the hypothesis of the theorem let V be
Q/Q" written additively and consider V as a GF(q) — {g> module.
Then the minimal polynomial of g on V 1is of degree at most 2d + 1.

Proof. This follows immediately from ().

THEOREM 2.4. Let G = PQ be a linear group over a field K
where Q is a g-group normal in G (¢ # 2) and P 1is cyclic of order
2" > 2 generated by an element g such that [Q, ¢°" '] = 1. Assume
that char (K) # q and that the minimal polynomial of g s of degree
at most 3. Then we must have ¢ = 3 and n = 2,
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Proof. Extending K affects neither hypothesis nor conclusion so
we may as well assume that K is algebraically closed. Now let S
be a subgroup of Q which is minimal with respect to being normalized
by ¢ but not centralized by h where h = ¢*"'. Then S is a special
g-group.

If V is the space on which G operates, then V=V, V. H:--
where the V, are the homogeneous K — S submodules of V. Without
loss of generality we may assume that [S, 2] is not the identity on
V,. But if ¢°" is the first power of g fixing V,, then the minimal
polynomial of ¢ has degree at least 2™ times the degree of the minimal
polynomial of {¢*"| V,}. This implies that g must fix V,

Now let U be an irreducible K — PS submodule of V,. [S, k] is
not the identity on U but Z{S| U} must be cyclic generated by a
scalar matrix. Thus we conclude that {S| U} is an extra special g-
group whose center is centralized by {¢g| U}. From Theorem 2.2 we
now obtain that 2* = ¢* + 1 and the minimal polynomial of {g | U} has
degree 2* — 1. This implies that # = 2 and ¢ = 3.

3. Proof of Theorem 1.2. Neither the hypothesis nor the con-
clusion of the theorem is affected by extending the field K. Thus we
may assume without loss of generality that K is algebraically closed.
Now if #» = 1, then, since ¢ is exceptional, ¢ would have to be a scalar
matrix which would imply that g € Z(G). Hence we assume that #» > 1
and let & = ¢*" ",

If @ is any normal nilpotent subgroup of G, then char (K)/|Q|
and so V, the space on which G operates, is a completely reducible
K — @ module. Therefore V =V, V. --- where the V,; are the
homogeneous K — @ submodules. G must permute the V; since Q <] G.
Now if 2* did not fix each V;, then it would follow that the minimal
polynomial of ¢ would be of degree 2" which is a contradiction. Let
H be the set of all elements in G which fix each minimal characteristic
K — @ submodule of V for each normal nilpotent subgroup @ in G.
Clearly H<]G. Hence F,(H) < Fi(G) for 1 =1,2. Also we have
shown that 2*e H.

It follows from {4, Lemmas 3.2 and 38.3] that [Q, H] =1 if Q is
any normal abelian subgroup of G and that F,(H) is of class 2. F,(H)=
Q. X @, X «-+ where @, is the Sylow g¢;-subgroup of F(H) and gq; is
an odd prime. Since Q; is of class at most 2, @, is a regular g;-group.
Then the elements of order at most ¢; form a subgroup R; in Q;. If
R =R, xR, x -+-, then Cy(R) < F(H) [9, Hilfssatz 1.5].

The proof now divides into two parts. First we will show that
h* induces the identity automorphism on any 2’-subgroup of F,(H)/F.(H).
In the second part we consider how h* operates on a 2-subgroup of
Fy(H)/F\(H).
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Part 1. Suppose that p is an odd prime which divides
| F(H)/F\(H)| .

It is easy to show that there is a Sylow p-subgroup P of F,(H) which
is normalized by g. We now proceed to prove that

[P, ¥] = F\(H) .

To do this we first note that, since P £ F(H), Cr(Os (F,(H))) =
PN F\(H). Now let N= PN F\,(H) and suppose that [P, h*] £ N.

Since Cp(Op. (F'(H))) = N, there is a q; # p such that [A?, P, R;] =
1. Now let U be a minimal characteristic K — R, submodule of V on
which [/, P, R;] is not the identity. Let ¢ =g¢;,, S ={P|U}, and
Q ={R;| U}. h* must fix U but cannot be a scalar matrix on U since
{[+*, P,R;]| U} = 1. Let ¢*" ™ be the first power of ¢ to fix U and
let g, be the restriction of ¢ ™ to U. But if g, were not exceptional
then g could not be exceptional. Hence g, is exceptional and so m
must be > 1. Now let &, = g™ .

Then [}, S, Q] # 1. Since U is the sum of isomorphic, irreducible
K — @ modules, Z(Q) must be cyclic generated by a scalar matrix.
Therefore [Z(Q), S{g,>] = 1 and, since @ is a homomorphic image of
a class 2 group of exponent ¢, @ must be an extra-special q-group.

Next let U, be an irreducible K — Q<{g,> submodule of U. Lemma
2.1 implies that U, is an irreducible K — @ module and so U is the
sum of K — @ modules isomorphic to U,. From Theorem 2.2 we obtain
that 2™ — 1 =¢? and [Q: Cy(9.)] = ¢**. Then ¢ must be a Mersenne
prime and d = 1.

Now let W be Q/Q written additively and consider W as a
GF(q) — S<g,> module. The minimal polynomial of g, on W has
degree at most 3 from Corollary 2.3. Since [A?, S] is not the identity
on W, Theorem 2.4 now implies that m = 2 and p = 3 which contradicts

p#FEqg=2"—1,
Thus we have shown that A* induces the identity automorphism on

any 2’-subgroup of F,(H)/F.(H).

Part 1I. The 2-subgroups of F,(H)/F\(H) have to be handled
differently and we apply the method of [4, pp. 1224-1228]. Accordingly,
let V=V,.@® V.- - where the V,; are the homogeneous K — R,
submodules of V. For each ¢ and j, let

Ci;={z|veH and {[R;«]| Vi;} = 1}.

Next let H, be the intersection of all the C;; which contain A2, If h?
belongs to no C;; then set H, equal to H. In any event H, <] H,
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h*e H,, and g normalizes H,. ,

Now choose P to be a Sylow 2-subgroup of F.(H,) such that
P{g> is a 2-group. If xec P, we now assert that [#*, 2] = [A, #]*. The
proof of this is identical with the proof of Lemma 3.4 in [4] and,
for this reason, is omitted.

Now from the above we see that [r*, P] < D(P). This combined
with our result proved in Part I implies that [i? F.H,)] < D(Fy\(H,)
mod F\(H,)). But this implies that h*e Fy(H,). Since Fy(H,) < F(H)
and Fy(H) < Fy(G), this completes the proof of the theorem.

4. Proof of Theorem 1.1. Let o denote the fixed-point-free
automorphism of order 2". If n < 2, then the result is a known one
[3]. Consequently, we assume that n = 3 and proceed by induction
on the order of G.

Now if G has two distinet minimal o-admissible normal subgroups
H, and H,, then by induction, (G/H,) x (G/H,) has nilpotent length at
most 2n — 2. Since G is isomorphic to a subgroup of (G/H,) x (G/H,),
the theorem would follow immediately.

Therefore we may assume that G has a unique minimal g-admissible
normal subgroup. This implies that F,(G) is a p-group for some
p. Then we may consider H = {o)G/F\(G) as a linear group operating
on V where V is F\(G)/D(F,(G)) written additively. Now p cannot
be 2 and (6 — 1) must be nonsingular on V. Thus ¢ must be ex-
ceptional and we obtain from Theorem 1.2 that ¢*" ' e F,(H).

This implies that ¢*"~ centralizes Fy(G)/F.(G) which in turn implies
that ¢*"! centralizes G/F,(G) [8, Lemma 4]. Thus, by induection, the
nilpotent length of G/F,(G) is at most Max {2n — 4, n — 1}. Since we
are assuming that » = 3, this implies that G has nilpotent length at
most 2n — 2.
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