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GROUPS ADMITTING A FIXED-POINT-FREE
AUTOMORPHISM OF ORDER 2n

FLETCHER GROSS

Let G be a finite solvable group which admits a fixed-
point-free automorphism of order 2\ The main result of this
paper is that the nilpotent length of G is at most 2n — 2 for
n ^ 2. This is an improvement on earlier results in that no
assumptions are made regarding the Sylow subgroups of G.

Suppose G is a finite solvable group which admits a fixed-point-
free automorphism of order pn where p is a prime. Then it is known
that the nilpotent length of G is at most n provided that p Φ 2
([8], [10], [6]). This result also holds for p = 2 if the Sylow q-
subgroups of G are abelian for all Mersenne primes q ([8], [10]).
The purpose of the present paper is to obtain an upper bound on the
nilpotent length in the case p — 2 without imposing any restrictions
on the Sylow subgroups of G. Our result is

THEOREM 1.1. If G is a finite group admitting a fixed-point-
free automorphism of order 2n, then G is solvable and has nilpotent
length at most Max {2n — 2, n}.

Here it should be noted that if G admits a 2-group as a fixed-
point-free operator group then G must have odd order and thus must
be solvable from [2].

The usual methods employed to prove results about solvable groups
admitting a fixed-point-free automorphism of order pn are so similar
to the methods used by Hall and Higman [7] to find upper bounds on
the p-length that it seems natural to ask whether both types of results
might follow from some general theorem about linear groups. If
p = 2 this can be done and the theorem is the following:

THEOREM 1.2. Let G be a finite solvable linear group over a
field K such that the order of FX(G) is divisible by neither 2 nor
the characteristic of K. Assume that g is an element of order 2n

in G such that the minimal polynomial of g has degree < 2\ Then
g2n~ι must belong to F2(G).

Here F^G) is the greatest normal nilpotent subgroup of G and
F2(G) = FΣ(G mod Fλ(G)). In addition to implying Theorem 1.1, Theorem
1.2 also immediately implies Theorem B of [4] which in turn implies
that 12(G) ̂  Max{2<?2((?) - 2, e2(G)} for any solvable group G ([4], [5]).

269



270 FLETCHER GROSS

2* Preliminary results* For the rest of this paper we adopt
the convention that all groups referred to are assumed to be finite.
If G is a linear group operating on V and U is a G-invariant subspace,
then {G \ U} denotes the restriction of G to U. If g is an element of
a linear group such that the minimal polynomial of g has degree less
than the order of g, then g is said to be exceptional. The rest of
the notation used agrees with that of [2].

Before proceeding to the proof of Theorem 1.2, some preliminary
results are needed.

LEMMA 2.1. Let Q be an extra-special q-group which is operated
upon by an automorphism g of order pn where p is a prime distinct
from q. Assume that [Qr, g] = 1 and let K be an algebraically closed
field of characteristic different from q. Then, if M is any irreducible
K — Qζgy module which represents Q faithfully, it follows that M
is an irreducible K — Q module.

This follows from either [1, Th. 1.30] or [7, Lemma 2.2.3] depending
on whether the characteristic of K differs from or is equal to p,
respectively. Next we need a generalization of Theorem 2.5.4 of [7].

THEOREM 2.2. Suppose that
( i) Q is an extra-special q-group which admits an automorphism

g of order pn where p is a prime distinct from q.
(ii) [Q',flr] = l .
(iii) K is a field of characteristic different from q.
(iv) M is a faithful, irreducible K — Qζgy module.
(v) g is exceptional on M.

Then the following must hold:
(a) pn~l = qd.
(b) // QJQ' is a subgroup of Q/Q' that is transformed faithfully

and irreducibly by <(#>, then \ QJQ' | = q2d and [Q, g] g Qlm

(c) The minimal polynomial of g on M has degree pn — 1.

Proof. First we show that K may be taken to be algebraically
closed. Let L be an algebraically closed extension of K and let N be an
irreducible L — Qζg} submodule of M®KL. Now if c generates Q\
then, since ce Z(Q(gy), c has no nonzero fixed vectors in M. It
immediately follows from this that c is not the identity on N. Since
any nontrivial normal subgroup of Q<^> must contain c, this implies
that N is a faithful L - Q<#> module.

Thus in proving the theorem we may as well assume that K is
algebraically closed. The lemma now implies that M is an irreducible
K — Q module. If char (K) = p, then the theorem follows from
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Theorems 2.5.1. and 2.5.4 of [7]. Hence we now suppose that char
(K) Φ p.

QIQr is the direct product of groups transformed irreducibly by g.
Thus there is a subgroup QJQ' such that g transforms QJQ' irreducibly
according to some automorphism of order pn. Now if Qί were abelian,
then, since gpn~λ does not centralize Qx and M is a completely reducible
K — Qi module, it would follow easily that the minimal polynomial of
g would have degree pn. Hence Q1 is not abelian and so must be
extra-special. This implies that | <?i | = q2d+1 for some d.

Now if N is an irreducible K — Q^gy submodule of M, N must
faithfully represent Qλ since c is represented by a scalar matrix.
Hence N is an irreducible K — Qx module.

Since g is exceptional, there is at least one pn-th. root of unity
in K which is not an eigenvalue of g. The argument given in [10,
pp. 706-707] now implies that pn — 1 = qd and exactly (pn — 1) pn-th
roots of unity occur as eigenvalues of g. Thus it only remains to
show that [Q, g] ^ Qx to complete the proof of the theorem. If Qx — Q,
this is trivial. Therefore assume that Q Φ QX. Then if Q2 = Ce(Qi)
we find that Q2 admits g and Q is the central product of Q1 and Q2.

We now use the construction given in [7, p. 21] to construct
linear groups Hlf H2 where H{ = Q^g^y and g{ is a ^-element which
transforms Qt in the same way as g. In the Kronecker product of
H1 and H2, the product of Qx and Q2 becomes identified with Q. Since
M is an irreducible K — Q module, it follows that gλ 0 g2 differs from
g only by a scalar factor. Since g is of order pn, we find that

9 = a(9i ® Q2)

where ap7t = 1. Now if [Q2, g] Φ 1, then g2 has at least two distinct
eigenvalues β, 7. But gt has pn — 1 distinct eigenvalues. Thus if λ
is any pn-ih root of unity then at least one of X/aβ and λ/αγ must
be an eigenvalue of glm But this would imply that λ would be an
eigenvalue of g. Since g is exceptional, we must have that [Q2, g] = 1.

COROLLARY 2.3. Under the hypothesis of the theorem let V be
QIQ' written addίtively and consider V as a GF(q) — <^> module.
Then the minimal polynomial of g on V is of degree at most 2d + 1.

Proof. This follows immediately from (6).

THEOREM 2.4. Let G = PQ be a linear group over a field K
where Q is a q-group normal in G (q Φ 2) and P is cyclic of order
2n > 2 generated by an element g such that [Q, g2n~ι] Φ 1. Assume
that char (K) Φ q and that the minimal polynomial of g is of degree
at most 3. Then we must have q = 3 and n — 2.
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Proof. Extending K affects neither hypothesis nor conclusion so
we may as well assume that K is algebraically closed. Now let S
be a subgroup of Q which is minimal with respect to being normalized
by g but not centralized by h where h = gzn~\ Then S is a special
g-group.

If V is the space on which G operates, then V = V1 φ V2 φ
where the V{ are the homogeneous K — S submodules of V. Without
loss of generality we may assume that [S, h] is not the identity on
Vlm But if g2m is the first power of g fixing Vu then the minimal
polynomial of g has degree at least 2m times the degree of the minimal
polynomial of {g2m \ Vλ}. This implies that g must fix Fi

Now let U be an irreducible K — PS submodule of V19 [S, h] is
not the identity on U but Z{S \ U) must be cyclic generated by a
scalar matrix. Thus we conclude that {S \ U} is an extra special q-
group whose center is centralized by {g \ U}. From Theorem 2.2 we
now obtain that 2n = qd + 1 and the minimal polynomial of {g | U} has
degree 2n — 1. This implies that n = 2 and g = 3.

3* Proof of Theorem 1.2. Neither the hypothesis nor the con-
clusion of the theorem is affected by extending the field K. Thus we
may assume without loss of generality that K is algebraically closed.
Now if n — 1, then, since g is exceptional, g would have to be a scalar
matrix which would imply that g e Z(G). Hence we assume that n > 1
and let h = g2n~\

If Q is any normal nilpotent subgroup of G, then char (K) Jf\Q\
and so V, the space on which G operates, is a completely reducible
K - Q module. Therefore V = Fx φ F2 φ where the F< are the
homogeneous K — Q submodules. G must permute the F< since Q <\G.
Now if fe2 did not fix each Vi9 then it would follow that the minimal
polynomial of g would be of degree 2n which is a contradiction. Let
H be the set of all elements in G which fix each minimal characteristic
K — Q submodule of V for each normal nilpotent subgroup Q in G.
Clearly H<\G. Hence F^H) S F{(G) for ί = 1, 2. Also we have
shown that h2 e H.

It follows from [4, Lemmas 3.2 and 3.3] that [Q, H] = 1 if Q is
any normal abelian subgroup of G and that F^H) is of class 2. F^H) =
Qi x Q2 x where ζh is the Sylow grsubgroup of FX{H) and g{ is
an odd prime. Since Q{ is of class at most 2, Qi is a regular grgroup.
Then the elements of order at most q{ form a subgroup Ri in Qi. If
# = R,x R,x , then Cfl(fi) ^ FXEΓ) [9, Hilfssatz 1.5].

The proof now divides into two parts. First we will show that
h2 induces the identity automorphism on any 2'-subgτoup of F2(H)/Fι(H).
In the second part we consider how h2 operates on a 2-subgroup of
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Part I. Suppose that p is an odd prime which divides

\F2{H)IFι{H)\.

It is easy to show that there is a Sylow p-subgroup P of F2(H) which
is normalized by g. We now proceed to prove that

[P, h2] rg F^H) .

To do this we first note that, since P £ Fλ(H), CP{OP, (F^H))) =
P n F^H). Now let N = P Π F,(H) and suppose that [P, h2] ^ N.

Since CP(OP, (FX(H))) = N, there is a g, ^ p such that [h\ P, j?*] ^
1. Now let U be a minimal characteristic K — Ri submodule of V on
which [λ2, P, _ffJ is not the identity. Let g = &, S = {P \ U}, and
Q = {Rj \ U}. h2 must fix U but cannot be a scalar matrix on U since
{[h2, P, Rt] \U}^1. Let ^2""m be the first power of g to fix U and
let gγ be the restriction of g27l'm to £7. But if g1 were not exceptional
then g could not be exceptional. Hence g1 is exceptional and so m
must be > 1. Now let h, = gT~\

Then [hi, S, Q] Φ 1. Since £7 is the sum of isomorphic, irreducible
K — Q modules, Z(Q) must be cyclic generated by a scalar matrix.
Therefore [Z(Q), Sζg^] = 1 and, since Q is a homomorphic image of
a class 2 group of exponent q, Q must be an extra-special q-group.

Next let Uι be an irreducible K — Qζgϊ) submodule of U. Lemma
2.1 implies that Ux is an irreducible K — Q module and so U is the
sum of K — Q modules isomorphic to C7Ί. From Theorem 2.2 we obtain
that 2m - 1 = qd and [Q: CQ(gL)] = Q2d Then q must be a Mersenne
prime and d = 1.

Now let W be Q/Q' written additively and consider If as a
GF(q) — S(g,y module. The minimal polynomial of gι on W has
degree at most 3 from Corollary 2.3. Since [h\, S] is not the identity
on TV, Theorem 2.4 now implies that m = 2 and p = S which contradicts

p Φ q = 2W - 1 .

Thus we have shown that h2 induces the identity automorphism on
any 2'-subgroup of F2{H)IFX(H).

Part II. The 2-subgroups of F^/F^H) have to be handled
differently and we apply the method of [4, pp. 1224-1228]. Accordingly,
let V = Vu φ Vi2 φ where the Vi3 are the homogeneous K - R{

submodules of V. For each i and j , let

CiS - {x I x e H and {[#< α?] | ViS} - 1} .

Next let Ht be the intersection of all the Ci3- which contain h2. If h
belongs to no Ci3 then set H1 equal to H. In any event Hλ <J ί?,
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h2 eHlf and g normalizes Hx.
Now choose P to be a Sylow 2-subgroup of F2(H1) such that

Pζgy is a 2-group. If x e P, we now assert that [h2, x] = [/̂ , a;]2. The
proof of this is identical with the proof of Lemma 3.4 in [4] and,
for this reason, is omitted.

Now from the above we see that [h2, P] ^ D(P). This combined
with our result proved in Part I implies that [h2, F2(H1)] ^ DiF^H^
mod F^H,)). But this implies that h2 e F2{HX). Since F2{H,) ^ F2(H)
and F2(H) ^ F2(G), this completes the proof of the theorem.

4* Proof of Theorem 1*1* Let σ denote the fixed-point-free
automorphism of order 2*. If n ^ 2, then the result is a known one
[3]. Consequently, we assume that n ^ 3 and proceed by induction
on the order of G.

Now if G has two distinct minimal tf-admissible normal subgroups
Hx and H2, then by induction, (G/H^ x (G/H2) has nilpotent length at
most 2n - 2. Since G is isomorphic to a subgroup of (G/H,) x (GJH2),
the theorem would follow immediately.

Therefore we may assume that G has a unique minimal cr-admissible
normal subgroup. This implies that FX{G) is a p-group for some
p. Then we may consider H = ζσyG/F^G) as a linear group operating
on V where V is F1(G)/D(F1(G)) written additively. Now p cannot
be 2 and (σ — 1) must be nonsingular on V. Thus σ must be ex-
ceptional and we obtain from Theorem 1.2 that σ2n~λ e F2(H).

This implies that σ2n~τ centralizes Fd(G)/F2(G) which in turn implies
that σ271-1 centralizes G/F2(G) [8, Lemma 4]. Thus, by induction, the
nilpotent length of G/F2(G) is at most Max {2n — 4, n — 1}. Since we
are assuming that n ^ 3, this implies that G has nilpotent length at
most 2% — 2.
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