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A CHAIN RULE FOR THE TRANSFORMATION
OF INTEGRALS IN MEASURE SPACE

ROBIN W. CHANEY

This paper deals with the composition of two transforma-
tions each of which is being used to effect a transformation
of an (abstract) integral by means of a change of variable.
The principal result is an abstract version of the "chain
rule" in a purely measure-theoretic setting. This principal
result is another in the line of extensions and variations of
the theorem which asserts that if / and g are absolutely
continuous real valued functions on suitable closed intervals
on the line then gofis absolutely continuous if and only if
(gf °f)ff is integrable over the domain of / ; and if gof is
absolutely continuous then (g°f) = (g'°f)f'. This theorem
has previously been generalized to functions on w-space. In
this paper certain results of a similar type are presented in
a general measure-theoretic setting.

We shall describe the principal result of this paper somewhat
more explicitly. Let T be a function from a nonvoid set S onto a
set X. Let {S, 2Jϊ, μ} and {X, 31, v} be measure spaces the latter
having completion {X, 9ΐ, v}. These entities are subjected to certain
standard hypotheses such as, e.g., T^SIcSΠΪ (see A0-A3 in 1).
Within this context a nonnegative, extended real valued function rW
with domain X x Wl is termed a weighting function for T if

'W(., T~ιA) = 0

a.e. v off A for each A in 21, if 'W(., M) = Σ'W(., Mt) a.e. v on X
whenever M in 3Jϊ is the union of a countable number of pairwise
disjoint sets ikf. in 2JΪ, and if each function fW{., M) is SR-measurable;
the number 'W(x, M) is intended to "count" or „ weigh" the number
of points in M mapped into x by T. Now assume that 'W is a
weighting function for T and let / be an gϊbfW. Thus 'W and /
bear the following relationship to each other. First, / is in Lt(μ)\
moreover, if H is any real valued, %-measurable function having
domain X and M is any set in SDt then the "transformation formula"

\ (Ho T)fdμ = \ H'W(., M)dv
JM JX

holds as soon as one of the integrals involved exists. Now suppose
also that Φ is a function from X onto Y and that {F, g, λ} is a
measure space having completion {F, ®, λ}; these entities are also
subjected to certain standard requirements. Assume that
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weighting function for Φ and that g is a glb/F so that 'V and g
satisfy a transformation formula like (1). We can then discuss the
possibility of obtaining a weighting function ' U for Φ o T such that
a formula like (1) holds where fU plays the role of 'W and f(goT)
plays the role of /. The principal theorem of this paper shows that
such a 'U can be obtained if and only if f(go T) is μ-integrable; and,
in case such a 'U does exist it is given by an explicit formula. Indeed
we have

(2 ) ' U(y, M) = lim* ΣkK2~*' V(y, E(k, n, M))

a.e. λ on Y for every M in 2ft, where

E(k, n, M) = {xe X: k2~n ^ 'W(x, M) <(k + 1)2—}

for positive integers k and n.
The theorem just described can be applied in more special settings

to obtain some similar results. These theorems are, in a sense, lineal
descendants of the theorem concerning the composition of absolutely
continuous functions on intervals which was mentioned at the outset
(see [1]). Helsel and Levine proved in [7] that if two transformations
T and Φ are absolutely continuous in the Banach sense (see [9]) on
suitable regions in the Euclidean plane then the composition Φ o T is
absolutely continuous in the Banach sense if and only if the product
(φΌT)T' is Lebesgue integrable over the domain of T; and, if ΦoT
is absolutely continuous then (φoT)r = (ΦΌT)T'. In [11] Reichelderfer
has generalized these results in two directions; the transformations in
[11] are defined on suitable regions in Euclidean π-space and the
concept of absolute continuity is broadened considerably. The concepts
of "essential absolute continuity" and "essential jacobian" play a
prominent part in [11], In [6] Frazier has dealt with questions
concerning the absolute continuity of the composition of transforma-
tions and the corresponding "chain rule" within the abstract setting
described in [10]. The present paper deals with similar matters in a
general measure-theoretic setting. In 3.6 we shall discuss briefly and
informally the relationships among the results of these papers.

Finally we shall list the contents of the paper. The main theorem
discussed above is presented early in § 1. The rest of § 1 is devoted
to a byway; we assume that 'U is a weighting function for Φ o T and
attempt to find weighting functions ' W for T and ' V for Φ such that
'U, 'W, and 'V are related to one another as in (2) above. The set-
tings in which the "transformation theories" are developed in [10] and
[4] are special instances of the setting of §1; in §2 we discuss the
way in which the results of 1 lead to corresponding theorems in these
two settings.
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In § 3 the results of § 1 are applied in yet another special situa-
tion in order to obtain the principal consequence of the main theorem
in § 1. The setting now is that of [10]. In this setting the "weight
function" is the analogue of the "weighting function." We assume
that W is a weight function for T and that V is a weight function
for Φ, and, furthermore, that these weight functions belong to the
special class discussed in §7 of [10]; this special class includes all of
the (nonnegative) admissible multiplicity functions of [9] and [11]
which are the forerunners and analogues of weight functions in these
earlier works. Now let / be a g.l.b. f.W and g be g.l.b. /. V. Thus
W and / satisfy a formula like (1) and V and g satisfy a formula
like (1). The theorem in 3.5 below asserts that there is a weight
function U' for φoT of the same special type such that f(g<> T) is a
g.l.b. /. U if and only if f(goT) is integrable; again, a specific formula
is given for Ur. It is this theorem which has the main connection
with past results.

We denote the set of integers by Z and the set of positive inte-
gers by Z+. As is customary, we put co . 0 = 0.

I wish to thank the referee for his many helpful observations; in
particular, he suggested a stronger version of the main theorem and
has graciously permitted me to use his proof of this stronger version.

1Φ The general "chain rule" theorem*

1. Much of the discussion in this section takes place in the set-
ting established by imposing the standard hypotheses A0-A3. These
hypotheses were first introduced in [4]. We list them for the reader's
convenience.

Al. {S, 2JΪ, μ) is a σ-fϊnite, complete, positive measure space.
A2. {X, 9i, v) is a σ-ίinite, complete, positive measure space.
A3. T is a function (transformation) from S onto X.
AO. 2t is a (J-ίield of subsets A of X having the following proper-

ties. 21 c ^ and T~ι%= {T~ιA: Ae2ί}c3Ji. For each set N in Sft there
is a set A in 21 such that NczA and VJV = vA. Also, © is a sub-
family of W, having the property that T© = {TG: Ge ©} c3l.

In most of what follows, the last sentence of AO is not required.
We denote by AO* the statement which is obtained from AO by delet-
ing the last sentence of AO. It is plain that if A0*-A3 (that is,
AO*, Al, A2? and A3) are satisfied then so are A0-A3 if we put
® = Γ^Sl.

The concept of weighting function was introduced in 4.2 of [4].
We now replace the name "weighting function" by the name
"©-weighting function." We give two definitions below and warn the
reader that what was formerly known as a weighting function is now
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to be called a ©-weighting function.

DEFINITION. Assume A0-A3. Let fW be a non negative, extended
real valued function having domain X x 2JΪ. ' W is said to be a
©-weighting function for T if the following conditions are satisfied:

( i) If G is in © then 'W(., G) = 0 a.e. v on CTG. (By definition
CTG is the complement X-TG of ΓG relative to X)

(ii) If a set M in 2JΪ is the union of a countable number of
pairwise disjoint sets M< in 9JI then 'TF(., Λf) = Σ'W(., Λf<) a.e. i; on X

(iii) For each M in 2Ji the function 'W(., M) is Sft-measurable
(on X).

DEFINITION. Assume A0*-A3. Let 'Whe a nonnegative, extended
real valued function having domain X x 3Jί. ' TF is said to be a
weighting function for Γ if it satisfies (ii) and (iii) above and if for
every A in 2ί it is true that fW{., T~ιA) = 0 a.e. v on CA.

DEFINITION 3. Assume A0-A3 and let 'If be a ©-weighting
function for T. Define a nonnegative, extended real valued function
W having domain SDΪ by putting WM = I 'W(., M)dv for every M in
9Jϊ. The extended real number WM is the weight attached to M by ' W.

DEFINITIONS 4. Assume A0-A3. Define Lt(μ) to be the set of
all nonnegative functions in the space L^μ) = ^({S, 2ft μ}) of all
extended real valued, μ-integrable functions on S. Define J(Ty μ, v) =
J(T) to be the set of all functions / in Lt(μ) which have this pro-
perty: If N is a y-null set in 5ίϊ then / = 0 a.e. μ on T~ιN. Finally
define J'(T, μ, @) = J r(Γ, @) to be the set of all ©-weighting functions
'W for T for which there exists a function / in J(T) such that

(i) ( fdμ - TOί = ί 'TΓ(., M)dι; for every M in 2ft;

(ii) the transformation formula holds for 'W and /; that is,
let M be any set in 2Ji and let H be any real valued, 9ί-measurable
function having domain X: then (Ho T)f is 5Dΐ-measurable (cf. 2.13 of
[10]) and H'W(., M) is 9ϊ-measurable; if (Ho T)f is μ-integrable over
M or if HfW(.,M) is in LL(v) then (H°T)f is /i-integrable over M,
H'W(.,M) is in L,(v), and

= \ (Ho T)fdμ .

Given fW in J'(Γ, ©), any function / in J(T) for which (i) and
(ii) hold is termed a greatest lower bound function for the weights
W induced by 'PF-briefly, a g.l.b. /. W.
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NOTE 5. A0*-A3. If we put © = T~ι% then AO is satisfied
and any weighting function for T is a ©-weighting function for T.
In case © = T~x% we denote J'(T, ©) by J'{T).

LEMMA 6. Assume A0-A3 and let 'Wλ be in J'(T, ©) and fW2

be in J'(T, ©). Assume that 'W^., M) ̂  'W2(., M) a.e. v on X for
every M in 2JΪ. If f ^s a gΛJb.f.WΊ and if f2 is a g.l.b. f.W2 then
f ^ /2 a.e. μ on £.

LEMMA 7. Assume A0-A3 cwwZ that 'WΊ and rW2 are in J'(T, ©).
Let f be a g.l.b. f.W, and f2 be a g.l.b. f.W2. If f ^ f2 a.e. μ on S
then 'Ϊ7χ(., M) ^ 'TF2(., M) a.e. v on X for every M in 3Ji.

Proof. Let M be in 2K. Let N be any set in SR and let Λ be
the characteristic function of N as a subset of X. Then, according
to the transformation formula, we have

'W,{.,M)dv= \ (h

^ ( (hoT)f2dμ = ( 'W2{., M)dv .

The desired conclusion follows at once.

REMARKS 8. Assume A0-A3. According to 4.6 of [4], it is true
that for every / i n J(T) there exists 'W in J'(T, ©) such that / is
a g.l.b. fW.

LEMMA 9. Assume A0*~A3. Suppose that rW is a weighting
function for T. Then 'ΐ^(., M) = 0 a.e. v on CTM for every M in
3Dΐ such that TM is in Sft.

Proof. Given M in SDΐ for which TM is in 5JΪ, select A in 2ί so
that TMdA and v(Λ Π CTM) = 0. Then 'ΐF(., T-'A) = 0 a.e. v on
CTM. But M c T - 1 ^ and so 'W(., M) ̂  'TF(., T~ιA) a.e.v on X
Hence 'W(., M) = 0 a.e. i; on CΓikf.

THEOREM 10. Assume A0-A3. Then J'(T) = J'(T, ©).

Proof. First suppose that 'W is in J'(T). It follows from .9
that fW(., G) = 0 a.e. j ; on CTG for every G in ©. Therefore 'IT is
a ©-weighting function for T and 'TF is in J'(T, ©).

Now assume that 'IF is in J'(T, ©). If we can prove that fW
is a weighting function for T then it will follow that ' ΐFis in J\T).
Thus, let A be a set in St. If / is a g.l.b. f.W. and if H is the
characteristic function of CA then
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( 'W{., T~lA)dv = ί H'W(., T~'A)dv = ( (Ho T)fdμ
JCA JX JT~ιA

= \ fdμ = O.
JT-1Af]T-1CA

As a result, 'W(., T"ιA) = 0 a.e. v on CA.

REMARK. Thus the set J\T, @) actually does not depend on ©
and, in fact, is identical to J'(T). In the sequel we shall always
consider J\T) rather than J'(Γ, ©).

LEMMA 11. Assume A0*~A3. Assume that rW is a weighting
function for T and suppose that there is a function f in Lf(μ) for which

\ fdμ= \ fW{.1M)dv
JM JX

for every M in 3Dt. Then f is in J(Γ), fW is in J\T), and f is a
g.l.b.f.W.

Proof. First we prove that / i s in J{T). Let N be a y-null set
in 5Ji. There is a y-null set A in 2ί such that NaA. Then

ί fdμ = \ fW(., T~ιA)dv + [ 'W(., T~ιA)dv = 0 + 0 .
JT~1A JA JCA

To complete the proof, we must show that 'W and / satisfy the
transformation formula (see 4). Let H be the characteristic function
of a set A in 21 and let M be in 3JL Then

H;W(., M)dv - \ H'W(.,MΓ\ T~LA)dv + \ H'W(.,Mf\ T
X J X J X

H'W{., MC\ T-ιA)dυ + [ H'W(.,Mf] T-ιCA)dv
J

= ( 'W(.,MC\ T-'A)dv = [ 'W(.,MΓ\ T^A)dv = { fdμ .
jA jx Jj/nr-i^i

Next let H be the characteristic function of a set N in 5ft and
let M be in 901. There is a set A in SI such that JVcA and
v(A Π CN) = 0. Denote by iJx the characteristic function of A.
Since / is in J(T) we have

(Ho T)fdμ = \ (H1oT)fdμ = \ H/W(., M)dv = \ H'W{.y M)dv .
3Σ J-Y JX JX

Now that the transformation formula is proved for characteristic
functions of sets in ?ί, we can complete the proof that the trans-
formation formula holds by using familiar theorems and arguments
from measure theory.
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LEMMA 12. Assume A0*-A3. Assume that 'W is a weighting
function for T and suppose that {Em} is a sequence of sets in 2Ji
for which Em c Em+1 for all m in Z+. Then

'W(.,\JEm) = \imm'W{.,Em)

a.e. v on X.

The proof is virtually the same as the familiar proof that, under
these conditions on {Em}, μ(\J Em) = UmmμEm.

LEMMA 13. Assume A0*-A3.

(a) Assume that {'Wn} is a sequence of weighting functions
for T such that 'Wn(., M) g 'Wn+ί(., M) a.e. v on X fo every M in
2Ji. Define a function rW on X x 3JΪ by putting

fW(x,M) = limΛ'Wn(x,M)

whenever this limit exists and setting rW(x, M) — 0 otherwise. Then
'W is a weighting function for T.

(b) Assume, in addition, that each rWn is in J\T) and for n
in Z+ let fn be a g.l.b. f.Wn. Then fn <Z fn+1 a.e. μ on S for each n.
Define a function f having domain S by putting f(s) = limn fn(s) if
\imnfn(s) exists and setting f(s) — 0 otherwise. Then 'W is in J'(T)
if and only if rW(., S) is in Lt(v), or, equivalently, if and only if
f is in Lt(μ). And if 'W is in J'(T) then f is a g.l.b. f.W.

The proof is routine and we omit it. For the proof of (b) one
can use .6 and .11.

REMARKS 14. The standard hypotheses A0*-A3 set forth above
are not sufficient for the present study because we are now concerned
with the composition Φ o T of two transformations T and Φ. Hence
we introduce two additional lists of statements denoted by B0*-B3
and C0*-C3. The statements B0*-B3 are obtained from the statements
A0*-A3 by replacing {S, 3Ji, μ) by {X, % v}, {X, % v] by {Γ, β, λ}, T
by Φ, and SI by g throughout the statements A0*-A3. The statements
C0*-C3 are obtained from the statements A0*-A3 by replacing {X, 5Ji, v}
by {Y, ®,X}, T hy φoT, and 21 by g throughout the statements
A0*-A3.

It is easy to check that all of the statements A0*-A3, B0*-B3,
and C0*-C3 are satisfied if one assumes merely A0*-A3, BO*, B2, B3,
and the inclusion (φo T)~1C$ c 23ΐ.

THEOREM 15. Assume A0*-A3, B0*-B3, and C0*-C3. Assume that
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'W is in J'(T) and that rV is in J'(Φ). Then, for each M in Wl
and for every pair k and n in Z+ define

E{k, n, M) = {x e X: k2~n ̂  'W(x, M)< (k + 1)2~%} .

For each M in 2JΪ there exists a X-null set K(M) in & such that
the sequence {Σ kk2~nf V(y, E(k, n, M)}n is nondecreasing for every y
in Y — K(M). Define a nonnegative, extended real valued function
' U having domain Y x 3ft by putting

'U(y, M) = \imnΣkk2-nΎ(y, E(k, n, M))

if y is in Y - K(M) and 'U(y, M) = 0 if y is in K(M). Then fU
is a weighting function for Φ o T.

Let f be a gΛ.b.f.W. and g be an g.l.b. f.V. Then 'U(., S) is
in Lf(λ) if and only if g'W(., S) is in L£(v), or equivalently, if and
only if f(goT) is in Lt{μ). If rU{.,S) is in Lί"(λ) then rU is in
J\φoT) and f(goT) is a g.l.b. /. U.

Proof. For every m in Z+ define Em = {xeX: fW{x, S) < 2m}.
The sets E(k, n, M) and E(k, n, M) Π Em are all in 9ί so that the
expressions 'V{y, E(k,n, M)) and 'V(y, E(k, n, M) f) Em) are always
defined. For each pair m and n in Z+ define a function gmn having
domain Y x 3Jϊ by putting

gmn(y, M) = Σκk^*k2r"Ύ{y, E(k, n, M) Π Em)

for every (y, M) in Y x 3Ji. Each gmn(.,M) is in Lt(λ) and we have

nn(., M)d\ = Σ^kύ

for every F in g. It is clear that E(k, n, M) is the union of the
disjoint sets E(2k, n + 1, M) and E(2k + 1, n + 1, M); hence

Ύ(y, E(k, n, M)) - Ύ(y, E(2k, n + 1, M)) + Ύ(y, E(2k + l,n + l, M))

a.e. λ on Y and

Ύ(y, E(k, n, M) Π Em) = Ύ(y, E(2k, n + 1, M) n Em)

+ Ύ(y, E(2k + l,n + 1, M) n ^ w )

a.e. λ on Y for every k, m, n and ilί. It follows from .12 that
limm Ύ(y, E(k, n, M)Π Em) = Ύ(y, E{ky n, M)) a.e. λ on Y for every
k, n, and M. Hence for every M in Wl there is a λ-null set K(M)
in ^ such that the relations
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'V(y, E(k, n Λf)) = Ύ(y, E(2k, n + 1, Λf))

+ 'V(y,E(2k + l,n + 1, Λf));

Ύ(y, E(k, n, Λf) n Em) = Ύ(y, E(2k, n + 1 , M) Π # w )

, rc, Λf) ΓΊ # J ^ '7(2/, E(k, n, Λf) Π

limm 'V(y, E(k, n, Λf) n £?«) - 'F(τ/, ^(fc, n, M))

all hold for every k, n, m in Z+ and t/ in Γ - K(M). It follows that
flrmn(l/, M) ^ gm+un(y, M) and 0^(2/, Λf) ^ g»,*+i(y, M) hold for every
m and n in Z^ and 7/ in F — K(M).

At this point we define functions gm having domains Y x 2DΪ by
putting 0W(2/, Λf) = limnsrwn(2/, Λf) for y in Γ - lΓ(Λf) and putting
flr»(2/, Λf) = 0 for y in iί(ikf). Each gm(., M) is ^-measurable and we
have gm ^ gm+1 for every m in Z+. Now define a function ΊJ having
domain Y x 3Qΐ by putting '[/(?/, Λf) = limm#m(τ/, Λί) for every (y, M)
in F x 501. For M in 3Ji and y in F - ϋΓ(Λf) we have

, Λf)

= limn \immgmn(y, M)
r(2/> E(h, n, Λf))

, E(k, n, Λf)) .

We shall denote the characteristic function of a set N in 9ΐ by
iί(., iV). For every pair ?% and n in Z+ define a function fcmπ having
domain X x 9Ji by setting

Λwn(α, Λf) = Σ0£k^nk2-nH(x, E(k, n, M) n ^ m )

for every (#, Λf) in X x 3Ji. Each hmn(., M) is 5Jί-measurable and we
always have hmn S hm+ltVl and hmn ^ ΛWfΛ+1. Note that for every m, n,
and Λf we have

( 2 ) ί ΛmH(., Λf)^v = Σ^k^n \ k2-»H(., EJgdv
JN JXΓιE(k,n,M)

for every N in 31. Because {xeX:'W{x, M) — co} is v-null it is
evident that for each m and Λf we have

limnΛmn(., Λf) - H(., EJ'W(., M)

a.e. v on X. Since if(., £r

m)'ΐ1^(M Λf) <̂  2m a.e. v on X and since (/ is
in L+(v), it follows that hmn(., M)g and ίf(., EJ'W(., M)g are all in
Lt{v) and

( 3 ) limw \ hmn{., M)gdv = \ H(., En)'W(., M)gdv
JN JN

for every N in 31, M in 2JΪ, and m in Z + .
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Now, (1), (2), (3), and the monotone convergence theorem imply

( 4 ) ( gm(., M)dX = \ H(., Em)'W(., M)gdv
JF J Φ-^F

for every F in g, M in 2JΪ, and m in Z+. We apply the transforma-
tion formula for rW and / to the right member of
(4 ) to obtain

( 5 ) \ gm{., M)dX =\ H(., T-ΉJig o T)fdμ
JF J(ΦoT)~1FC\M

for every F in %, M in 201, and m in Z+.
We are prepared to prove that 'U is a weighting function for (?oΓ,

In view of .13(a), it is sufficient to prove that each gm is a weighting
function for Φo T. Let m be in Z+. Let F b e any set in g. If we
replace JP by its complement CF and ikf by (Φ° T)~ιF in (5) we obtain

= 0;

therefore gm(., (Φo TyιF) = Oa.e. λ on CF. Next, suppose that the
set M in 3Ή is the union of a countable number of pairwise disjoint
sets Mi in 9DΪ. Then, for every JP7 in gf, we have, using (4),

ί srm(., M)dλ = ί H(., E»)'W(., M)gdv
JF JΦ~ιF

= \ H(., EJΣ'W(., MJgdv
JΦ~1F

= Σ\ H(., EU)'W(., M<)gdv
JΦ~ιF

= \ Σgm(., M{)dX .
JF

Consequently gw(., M) = Σgm(.y Mt) a.e. λ on Y, Thus gm is a weight-
ing function for Φ o T.

Since / is in J(T), / = Oa.e. μ on T~\X - U J&J. Hence (4),
(5), and the monotone convergence theorem lead to

( 6 ) [ fU(., M)dX = ί 'W{., M)gdv = ( /(go Γ)rfμ

for every F in g and M in 201. In particular we have

\ fU{., S)dx - ( 'W(., S)gdv = ί f(goT)dμ .
JY JX JS

We deduce that '£/(., S) is in Lf(λ) if and only if 'W(., S)g is in
Lΐ(v), or, equivalently, if and only if f(go T) is in Lt(μ). The final
statement of the conclusion of the theorem follows from .11 and (6).
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DEFINITION 16. Assume A0*-A3, B0*-B3, and C0*-C3. Assume
'W is in J'(T), Ύ is in J'(Φ), and 'U is in J'(Φ<> T). 'U is a chain
product of fW and ' F in case there exist functions / i n J(T) and g
in J(Φ) such that / is a gΛ.b.f.w g is a g.l.b./.F, and /(#o T) is a
g.l.b./.tΛ

REMARKS. Assume that 'W is in J'(Γ), ' F is in J'(0), and that
'U is a chain product of 'TF and ' F . Let / be a g.l.b. f.W. and #
be a g.l.b./.F. Suppose that 'Z70 is in J\Φ°T) and that Ao is a
g.l.b. /.I70. Then 'C/o is a chain product of 'W and 'V if and only if
'Uo{., M) = '[/(., Λf) a.e. λ on Γ for every M in 2Ji, or, equivalently,
if and only if h0 = f(g<> T) a. e. μ on S.

REMARKS 17. Throughout the rest of 1 we consider a "factoring
problem," that is, we assume A0*-A3, B0-*B3, and C0*-C3 and assume
that fU is in J'(φo T) and attempt to find conditions under which rU
can be expressed as a chain product of weighting functions 'W in
J'{T) and 'V in J'(Φ).

THEOREM 18. Assume A0-*A3, BQ*-B3, and C0*-C3. Suppose fU
is in J'(Φ° T) and let h be a g.l.b. f.U. Then there exist weighting
functions fW in J'{T) and 'V in J'(Φ) such that 'U is a chain
product of 'W and rV if and only if there exist functions f in J(T)
and g in J(φ) such that h = f(g<> T) a.e. μ on S.

Proof. First assume that fU is a chain product oί 'W in J'(T)
and 'V in J'(Φ). There exist / in J(T) and g in J(Φ) such that / i s
a g.l.b. f.W, g is a g.l.b./.F, and f(go T) is a g.l.b./.U. According
to .6, h — f(g° T) a. e. μ on S. The converse follows from .8 and .16.

REMARKS 19. Assume A0*-A3, B0*-B3, and C0*-C3. Assume that
'U is in J'(φo T). In this setting one may ask whether it is always
possible to "factor" '[/ as a chain product; that is, one may ask
whether it is always possible to obtain 'W in J'{T) and fV in J(Φ)
such that 'U is a chain product of 'W and ' F .

The following example reveals that the answer is no.

EXAMPLE 20. Let Rn denote real Euclidean ^-space and let λ̂
denote ^-dimensional Lebesgue measure. Define sets

St = {(u, v) e R2: u2 + (v - 4)2 < 1 and v ^ 4} ,

5 2 = {(u, v) 6 R2: - 1 < u < 1 and 4 ^ v ^ 5} ,

5 3 = {(w, v) e # 2 : u2 + (v - 5)2 < 1 and v ^ 5} , S - Sx U S2 U S3 ,

X = {(u, v)eR2:u2 + (v - I)2 < 1} , and
Y = ] - 1, 1[ = {̂  6 β 1 : - 1 < u < 1} .
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Let 2Ji and 5ft be the families of all λ2-measurable subsets of R2 which
are also subsets of S and X respectively. Let & be the family of all
λi-measurable subsets of R1 which are also subsets of Y. Let Si be
the family of all Borel sets in R2 which are subsets of X. Let g be
the family of all Borel sets in Rι which are subsets of Y. Set
μ = χ21 2ft, D = χ21 yi9 and X = Xλ | $. Define a function T from S onto
X by setting T(u, v) = (u, v - 3) if (u, v) is in Sly T(u, v) = (u, 1) if
(u, v) is in S2, and T(u, v) — (u, v — 4) if (u, v) is in S3. Define a
function Φ from X onto Y by setting φ(u, v) — u for every (u, v) in
X. T and Φ are continuous relative to the usual Euclidean topologies.
Standard theorems imply that A0*-A3, B0*-B3, and C0*-C3 hold with
these choices.

Define a function rU having domain Y x Wl as follows: If (y, M)
is in Y x yR then set

'U(y, M) = X,{v e R1: (y, v) e M} if {veR1: (y, v) e M}

is λx-measurable and put rU{y,M) = 0 otherwise. Evidently rU is a

weighting function for <po T and I rί7(., M)dX = μM" for every M in

2JI; an appeal to the Fubini Theorem is required in the justification
of these assertions. Let F be in % and M be in 3JΪ. If if denotes
the characteristic function of F as a subset of F, then

( 1)

( 'U(.,M)dX= \ X1{veRι:(y,v)eMf}(ΦoT)-ιF}dX(y)
JF JY

- μ[M Π (Φ o T)-1^] = ( £Γo (ri) o T)dμ .

Define a real valued function h having domain S by setting h(s) = 1
for every s in S. In view of 11 and (1), rU is in J'(φo T) and fe is a
g.l.b./.C7.

We use .18 to prove that 'U cannot be factored as a chain product.
Indeed if it were possible to express rU as a chain product of fW in
J'(!Γ) and ' F in J'(Φ) then by .18 there would be functions/ in J(T)
and g in J(Φ) such that h = f(g o T) a.e. μ on £.

Set A = {(u,v)eX:v = 1} .

Since / is in J(T), f = 0 a.e. μ on T-\A = S2. But then h = 0 a.e. μ
on S2; this is a contradiction.

This example illustrates the following theorem.

THEOREM 21. Assume A0*-A3, B0*-B3, and C0*-C3. Assume that
fJJ is in J\Φ° T) and that rU can be factored as a chain product of
weighting functions in Jf{T) and J'{Φ). If A is a v-null set in 2ΐ
then UT~ιA - 0.
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Proof. Let h be a g.l.b./.J7. By .18, h must be in J(T). The
desired conclusion follows at once.

REMARKS 22. Assume A0*-A3. A set Aτ in 21 is termed an
essential T-set if it is v-null and if for every v-null set N in Sft it is true
that T~\N Π CAT) is a μ-null set in 27ϊ. It is known [4, Lemma 3, p. 235]
that essential T-sets always exist. An essential T-set is, in effect, a
v-null set whose inverse image under T is maximal.

The theorem in .21 has a partial converse.

THEOREM 23. Assume A0*-A3, B0*-B3, and C0*-C3. Assume that
rU is in Jf{Φo T) and that UT~ιA = 0 whenever A is any v-null set in
21. Finally assume that there exists an essential Φ-set Fφ such that
v(X — Φ~ιFφ) < co. Then there exist weighting functions 'W in J'(T)
and !V in J'(Φ) such that 'U is a chain product of rW and 'V.

Proof. Again we use .18. Let h be a g.l.b./.C7. Set / = h and
let g be the characteristic function of X — Φ~ιFφ as a subset of X.
Hence / is in Lΐ(μ); since UT~ιA = 0 whenever A is a v-null set in
21, it follows that f —h is in J(T). An elementary argument involv-
ing the properties of essential 0-sets shows that g is in J(Φ) and that
h = f(9° T) a.e. μ on S. An appeal to .18 completes the proof.

COROLLARY 24. Assume A0*-A3, B0*-B3, and C0*-C3. Assume
that 'U is in J'{φo T) and that UT~ιA = 0 whenever A is any v-null
set in 2ί. Finally assume that vX < oo. Then there exist weighting
functions rW in J'(T) and rV in J'(Φ) such that rU is a chain
product of rW and fV.

In .25 we present an example which shows that the condition
that v{X — Φ~ιFφ) be finite cannot be dropped entirely from .23 and
which suggests the difficulty involved when v(X — Φ^Fφ) is infinite.

EXAMPLE 25. Let S, X, and Feach be the open interval ]1, + °o[
and let 2Ji, 9ΐ, and $ each be the family of all λi-measurable subsets
of R1 which are also subsets of S = X — Y. Let 21 and g each be
the family of all Borel sets in R1 which are subsets of S. Set
μ = v = x = χλ I gjϊ. Define a function T from S onto X by T(s) = s
for each $ in S; set Φ = T. It is clear that the hypotheses A0*-A3,
B0*-B3, C0*-C3 hold for the above choices of S, X, etc. Now define
a real valued function h having domain S by putting h(s) = s~2 for
every s in S. Obviously h is in J(φo T) and so, in view of .8, there
exists 'U in J'(φo T) such that h is a g.l.b.f.U. Also, T~ιA is μ-null
whenever A is any v-null set in 2Ϊ. Hence the hypotheses of .23 are
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satisfied except for the assumption that v(X — Φ~ιFφ) be finite. Now
h cannot be written as a product fg of functions / in Lΐ(μ) and g in
Lt(μ) (cf. 13,28 b) of [8]). Hence, in view of .18, 'U cannot be
factored as a chain product of weighting functions 'W in Jr{T) and
'V in J'(Φ).

2* Chain products in other settings. Formulas for the trans-
formation of integrals in a measure-theoretic context have been
established in [10] and [4]. These results are developed in settings
which are special instances of the setting established by imposing
the hypotheses A0-A3. We can prove theorems in these other settings
which are analogous to those proved in §1. These results are, in a
sense, special cases of those in § 1; for they are derivable from the
results of § 1 together with key theorems which relate the weighting
functions of § 1 to the weight (and quasi-weight) functions of [10]
and the weighing functions of [4]

Now we recast the results of § 1 in the setting first described in
[10].

REMARKS 1. The transformation theory presented in [10] is
developed in a setting which is established by imposing certain
hypotheses. Among these are statements denoted by H1-H9, H9*,
H11-H13, and H*. See §1 and §7 of [10], § 1 of [3], § 5 of [4], and
§1 of [5] for complete statements of these hypotheses. Actually, one
can follow what ensues simply by reading H1-H9 in § 1 of [10], Hll-
H12 in §7 of [10], and §9 of [10]. Assume H1-H8. Then, according
to §5 of [4], the statements A0-A3 hold if we put X= S', 9ΐ = 2ft',
v = μ\ 21 = SB', and © = ©. Whenever H1-H8 are in effect we shall
always make these notational identifications.

DEFINITIONS 2. Assume H1-H8. T is ACW if there is a function

/ in Lt{μ) such that WD = ί W'(s', D)dμ'(sf) = \ fdμ for every D in

5); such a function / is termed a greatest lower bound function for
the weights on 3) induced by ^-briefly, a g.l.b.f.W. (If T is ACW
and / is a g.l.b./.TF. then, according to 4.10 of [10], a "transforma-
tion formula" holds for W and /.) Define J"(T, μ, μ', SB) - J"(T) to
be the set of all weight functions Wf for T for which T is ACW
(see §1 and 3.4 of [10]). Define J'*(T, μ, μ', ®) = J'*{T) to be the
set of all quasi-weight functions W for T for which T is ACW (see
5.1 of [4]). Connections between these sets and J'(T) appear in .3.

REMARKS 3. For the reader's convenience we list several results
from other papers. We assume that H1-H8 are satisfied.
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(i) J"(T)aJ'*(T).
(ii) Assume also H*. If W is in J'*(T) then there exists 0W

in J"(T) such that 0W(s', D) = W'(s', D) a.e. μ' on S' for every D in 3).
(iii) Assume H1-H8. If 'W is in J'(T) and if / is a g.l.b. f.W.

then ' Ϊ F | S ' x 3) is in J'*(T) and / is a g.l.b. /. W. \ | SX (We use
TF I 3) here because a quasi-weight function attaches weights only to
35, not to all of 2Jt.) If W is in J'*(Γ) and if / is a g.l.b. f.W. then
there exists 'W in J'(T) such that W = fW\ S' x Wl and / is a
g.l.b. f.W.

It was observed in 5.1 of [4] that (i) holds, (ii) is a consequence
of 1.3 of [5]. For (iii) we appeal to 5.5 and 5.6 of [4].

REMARKS 4. Assume H1-H8. As in §1, we shall be concerned
with the composition T" — TO T of two transformations. As before,
we shall need two additional lists of statements. Let H1T'-H9T',
H9*T', H11T'-H13T', and H*T' be the statements obtained respectively
from H1-H9, H9*, H11-H13, and H* by making these replacements:
Replace {S, 2R, μ) by {S', 1W, μ'}, {S', 2Jϊ', μ'} by {S", W, μ"}, T by T',
2) by ©',85' by S3", O' by O"(T'), Wf by V, @ by ©', by v, and
S)c by Φί. Full statements of H1T'-H9T' and H11T'-H13T' appear in
Chapter IV in [6], although there are some minor differences in
notation. Also let H1T''-H9T", H9*T", H11T"-H13T", and H*T" be
the statements obtained respectively from H1-H9, H9*, H11-H13, and
H* by making these replacements: Replace {S', W, μ'} by {S", W, μ"},
T by T" = TΌT, 95' by W, D' by D"(T"), W by U', and w by u.
Full statements of H1T"-H9T" and H11T"-H13T" appear in Chapter
V in [6].

Now assume that all of the statements H1-H8 and HlTr-H8T'
hold. Then all of the statements H1T"-H8T" are satisfied if one
assumes merely that H5T", H7T", and H8T" hold, that (T'O-^'cSTO,
and that T"2)c:2Ή" (cf. Chapter V in [6]). Note also that if Hll
holds so does HUT"; and, if H12 holds then so does H12T".

In 2.5-2-12 we shall assume that H1-H8, H1T'-H8T', and H1T"-H8T"
are in effect. The statements A0-A3, B0-B3, and CO-C3 all hold if
we put X=S',W =a»', v = μ',Φ=T'fyί = S5',Γ = S", & = 2Ji", λ -
μ"f g = 35", © = S), and § = ©'. Throughout 2.5-2.14 we shall always
make these notational identifications.

DEFINITION 5. Assume W' is in J'*(T), V is in J'*(Tf), and U'
is in J'*{T"). Uf is a chain product of W' and V if there exist
functions / in J(T) and g in J(T') such that / is a g.l.b. f.W, g is a
g.l.b./. F, and /(go T) is a g.l.b./.[/.

LEMMA 6. Assume Wr is in J*'(T) V is in J*'(Tr/), U' is in
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J*'(T"), and that Ur is a chain product of W and V. Let f be a
g.l.b./. W, g be a g.l.b./. V, and h be a g.l.b.f.U. Then there exist
fW in Jr{T), Ύ in J'(T'), and fU in J'{T") such that

W = 'W\S' x ©, V = Ύ\S" x ©', U' = fU\S" x © ,

f is a g.l.b. f.W, ^ is α g.l.b. F, fe is α g.l.b. /. F ami 'U is a chain
product of rW and 'V.

Now assume that fW is in J'(T), Ύ is in J'(T'), 'U is in J'(T"),
and that rU is a chain product of fW and 'V. Then Ur = fU\S" x ©
is a chain product of W = 'W\ Sf x © and V = fV\S" x ©'. If f
is a g.l.b.f.W,g is a g.l.b./.F, and h is a g.l.b.f.U, then f is a
g.l.b.f.W\^>,g is a g.l.b. f.V| ©', awd Λ ̂ s a g.l.b./.Ϊ71 ©.

Proof. This lemma follows from 1.16, .5 and .3(iii).

THEOREM 7. (i) Assume that W is in J'*(T) and that V is in
J'*(T'). Let f be a g.l.b. f.W. and g be a g.l.b. f.V. Then there
exists Ur in J'*(T") such that f(goT) is a g.l.b.f.U. if and only
if gW(., S) is in Lf(μ'), or, equivalently, if and only if f(go T) is
in Lt(μ).

(ii) Assume also H*T". Then (i) is true if J '* is replaced
throughout by Jn.

Proof, (i) follows from 1.15, .3(iii), and .6. .3(i), .3(ii), and (i)
imply (ii).

REMARKS 8. Just as before, we consider the "factoring problem;"
that is, we assume that Ur is in J'*{T") (respectively, J"{T")) and
we attempt to determine whether Uf can be expressed as a chain
product of quasi-weight functions (respectively, weight functions) for
for T and Tf.

THEOREM 9. (i) Assume that Ur is in J'*(T") and let h be a
g.l.b.f.U. Then there exist W in J'*(T) and V in Jr*(Tf) such
that U' is a chain product of W and V if and only if there exist
functions f in J(T) and g in J(Tf) such that h — f(go T) a.e. μ on S.

(ii) Assume also if* and H*T'. Then (i) is true if Jf* is
replaced throughout by J".

Proof. For (i) we appeal to 1.18, .3(iii), and .6. The proof of
(ii) depends on .3(i), (i), and .3(ii).

THEOREM 10. (i) Assume that Uf is in J'*(Γ' ;) and that Uf can
be factored as a chain product of functions W in Jr*(T) and Vr in
J'*(Tr). Let h be a g.l.b.f.U. If Bf is a //'-null set in S3' it is true



A CHAIN RULE FOR THE TRANSFORMATION 49

that h = 0 a.e. μ on T^B'; i.e., h is in J(T).
(ii) Statement (i) remains true if Jf* is replaced throughout

by J".

Proof. To prove (i), we appeal to 1.21 and .6. (ii) follows from
(i) and .3(i).

As before, the above theorem admits a partial converse.

THEOREM 11. (i) Assume that U' is in J'*{T") and let h be a
g.l.b. /.U. Assume that h is in J(T) and suppose that

μ'(S' - T'-W) < co

where E" is some essential T'-set. Then there exist functions W
in J'*(T) and V in J'*(T') such that Ur is a chain product of W
and Vf.

(ii) Assume also H* and H*Tr. Then (i) remains true if Jr*
is replaced throughout by J".

Proof. 1.23, .3(iii), and .6. imply (i). Again, (ii) is a consequence
of .3(i), .3(ii), and (i).

COROLLARY 12. (i) Assume that U' is in J'*(T") and let h be a
g.l.b. f.U. Assume that h is in J(T) and suppose that μ'S' < oo.
Then there exist functions W in J'*(T) and Vf in J'*(Tf) such
that U' is a chain product of Wf and V.

(ii) Assume also H* and H*Tr. Then (i) remains true if J '*
is replaced throughout by J".

EXAMPLE 13. We present a modified version of the example of
1.20. Maintaining the notation of 1.20 we put S' = X, W = %
μ> = v, 39' = 21, S" = Γ, W = Λ, μ" = X,T' = Φ, S3" = g, and T" =
Tf o T. Let ® and ®' consist of the connected open subsets of S and
S' respectively. Let £)', O"(Γ'), and O"(Γ") consist respectively of
those subsets of S', 5"', and S" which are respectively open relative
to R\ R1 and R1. With these choices it follows from 9.1-9.8 of [10]
that all of the standard hypothese H1-H8, H1T'-H8T', and H1T"-H8T"
are satisfied. Let ®c and 3)£ be respectively the families of all bounded
sets in 3) and 2)' which are the interiors of polygons having rational
vertices. Then H*, H*T', and H*T" are satisfied. Now set

W = rU\S" x S>,

where 'U is defined as in 1.20. As in 6.1 of [2], U' is in J"{T").
In view of 1.7, .6, and 1.20, Uf cannot be factored as a chain product
of functions in J'*(T) and J'*{T').
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EXAMPLE 14. We shall consider the example of 1.25 in the present
setting. Retaining the notation of 1.25 we put S' = X, W = Sft,
μ' = v, 33' = 31, S" = Γ, 3ft" = Λ, μ" = λ, Γ' = 0, 35" = g, and T" =
Tf o T. Let ® and ®' each consist of all open subintervals of ]1, + ©o[.
Let £)', £)"(T'), and D'(T") each consist of all open subsets of ]1, + oo[.
With these choices it follows again from 9.1 — 9.8 of [10] that all of
the standard hypotheses H1-H8, H1T'-H8T', and H1T"-H8T" are
satisfied. Let ®c and ®ό each consist of all bounded subintervals of
]1, +oo[ having rational endpoints. Then H*, H*T', and H*T" are
satisfied. Define h as in 1.25. By 2.5 of [5] there exists Ur in J"(T")
such that h is a g.l.b./. U. The hypotheses of .11 are fulfilled except
for the requirement that μ'(S" — Tf~ιE") be finite. However, just
as in 1.25, Uf cannot be factored as a chain product of W in Jf*(T)
and V in J'*(T').

Now we can also recast the results of § 1 in the setting of [4].
We can obtain a list of theorems and examples which are analogous
in virtually every way to those just presented in .1-.14; of course,
the concept of "(quasi-) weight function" is replaced throughout by
that of "weighing function." This list is omitted because its contents
are obvious to anyone who is familiar with [4] and quite meaningless
to anyone who is not familiar with [4].

3* Chain products for a special type of weight functions*
Now we discuss the main application of the theorem in 1.15.

Reichelderfer introduced and discussed a special class of weight
functions in § 7 of [10]. This special class includes all of the (non-
negative) admissible multiplicity functions—the forerunners of weight
functions—which play a key role in [9]. In this section we ask
whether chain products of weight functions of this special class are
also of this special type. Then we describe briefly the relationship
between the resulting theorem and earlier theorems dealing with
similar situations.

REMARKS 1. Assume H1-H8 and H11-H12. Within this context
we can define the special class Ω(T) of weight functions for T which
was referred to above. First, as in 7.1 of [10], we define @ to be
the family of all subsets S of S for each of which there is a point
s in S such that S = Π {De S : s e D}. According to 7.2 of [10], @
partitions S. And, H12 asserts that for each S in @ the set
TS = {T(s): se S} contains but one element. Now define @ to be the
family of all subsets E of S each of which is the union of sets in @.
It was observed in 7.6 of [10] that @ is a σ-field which includes 3).
If W is a weight function for T and if w is a non negative, extended
real valued function having domain @, then we say that W is gen-
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erated by w or that w generates W if

W'(s', D) - Σ{w(S) :Se&,TS = s',SaD}

for all (s', D) in S' x 35. β(Γ) is defined to be the set of all weight
functions W for T for each of which there exists a non negative,
extended real valued function w having domain @ such that W is
generated by w. The functions of Ω(T) are discussed at length in
§ 7 of [10].

REMARKS 2. Assume H1-H8 and H11-H12. Define

Ω\T) = β(T) n J"(T) .

Thus β'(T) is the set of all weight functions W in Ω(T) for which
T is ACW.

Now suppose that W is in Ω'(T) and assume that W is generated
by w. Define a function IF* having domain S' x SJί n © &s follows:
For every (s', £7) in <S' x 3K Π @ put

TF*(β;, E) - JS{

Thus W* is an extension of W.

It was noted in 7.8 of [10] that W* has these properties:
( i ) If E is in %Jl f] ® and if s' is in S'-TE then Wr*(s', JK) - 0.
(ii) For each s' in S' the function W*(s',.) is a measure on

Frazier has proved [6, Chapter III] that W* has these additional
properties:

(iii) For each E in 2ft n © the function TΓ*( , E1) is in Lt(μ).

(iv) If / is a gΛ.b.f.W. then ί TΓ*(., J ? ) ^ ' = [ fdμ for every

£7 in 2Ji Π ©.
(v) Let / be a g.l.b. /.TΓ. Then, the transformation formula

holds for W* and /. More precisely, the following is true.
Let E be in 3Ji n @ Suppose that if' is a real valued 2ft'-meas-

urable function having domain S'. Then the function (JΪΌ T)f is
SJi-measurable and £Γ'W*(., £?) is 3ft'-measurable. Suppose also that
(H' o Γ)/ is μ~integrable over JS7 or that HfW*{., E) is in L^μ'). Then

is ^-integrable over E, H'W*(.y E) is in L^μ'), and

H'W*(., E)dμf = \ (HΌT)fdμ .
' JE

Note. The function W* defined above is termed a '̂ -extension of
W Since W may have several generators, it may conceivably have
several ^-extensions. However, one can prove, using (v), that two
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^-extensions agree except on //-null sets.

THEOREM 3. Assume H1-H8 and H11-H12. Assume that W is
in Ωf(T) and let f be a g.l.b. f.W. Let w be any generator of W
and let W* be the *-extension of Wr determined by w as in .2.
Then there exists rW in J\T) such that W* = 'W\ S' x Wl Π @;
moreover f is a g.l.b. f.W.

0Proof. By 2.6 of [10], / is in J(T). By 1.8 there exists 'W{

in J\T) such that / is a g.l.b. f.W,. If E is in 3K Π © and if H' is
the characteristic function of a set Mr in W! then .2(v) implies

'Wo(., E)dμ' =\ (HΌ T)fdμ - ( W%, E)dμf .
t J E J Mt

Hence 'Wo(., E) = W%, E) a.e. μf on S' for every £7 in 2K Π ®. We
now obtain the desired ' PΓ from ' Wo by altering the latter on certain
//'-null sets.

4. In order to be able to discuss chain products of functions W
in Ω\T) and V in β'(Γ'), we shall assume that all of the standard
hypotheses H1-H8, H11-H12, HlT'-HδT', H11T;-H12T', H1T"-H8T;', and
H11T"-H12T" are in effect.

To discuss HUT' and H12T' we must define the set ©'. Θ' is,
of course, analogous to @; that is, @' is the family of all subsets Sr

of S' for each of which there is a point s' in >S' such that

S' = Π { ΰ ' e S ' : s ' e ΰ ' } .

Now define ©' in terms of @' just as (ϊ was defined in terms of @.

THEOREM 5. Assume H1-H8, H11-H12, HlT'-HδT', H11T/-H12T/,
H1T"-H8T", and H11T"-H12T". Assume that W is in Ω\T) and
that V is in Ωr{Tf). Let f be a g.l.b. f.W. and g be a g.l.b./.F.

Now let w be an nonnegative, extended real valued function
having domain @ which generates W' and let v be a nonnegativef

extended real valued function having domain @' which generates V.
Let c be any function having domain @' with the property that c(S')
is a point in S' for each S' in ©'. (Thus c is a choice function.)
Define a nonnegative, extended real valued function p having domain
Sf as follows: If s' is in c(@') define p(s') to be v(S') where S' is
the unique member of Θ' such that c(S') = sr; otherwise, if s' is not
in c(@'), put p(s') — 0. Next, define a nonnegative, extended real
valued function u having domain © by setting u(S) = w(S)p(TS) for
every S in @ (where oo. 0 = 0).

Then u generates a function Uf in Ω(T"). U'(., S) is in Lt(μ")
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if and only if gW'(., S) is in Lt(μf), or, equivalently , if and only
if f(go T) is in Li(μ). If U'(., S) is in Lΐ{μ") then Uf is in Ω\T")
and Uf is a chain product of W and V.

Proof. As in .2 we introduce the *-extension TF* of W deter-
mined by w and the *-extension V* of V determined by v. Define
a non negative, extended real valued function U* having domain
S" x 2K Π @ by setting

U*(s", E) = Σ{u(S): S e @, S c E, T" S = s"}

for every (s", E) in S" x Wl Π ©. A routine argument involving the
definitions of the terms at hand proves

(1) C/*(s", E) = Σ{p(s')W*(s', E):s'e 8', T V - s"}

for every (s", E) in S" x W Π @; we omit the details. According to
.3 there is a weighting function Ύ/o in /'(T) such that

w* = 'W0\s' x 9Kn@

and such that / is a g.l.b. /.Wo. Similarly there is a weighting func-
tion ; F in J'(T') such that F* = ' F | S" x W Π ©r and such that ^ is
a g.l.b./.F. By 7.6 of [10], ®'c@'; hence I ' π β ' is a σ-field con-
taining ®'. A simple argument using H4T' and 7.6 of [10] (cf. 2.8
of [3]) shows that there is a function 'W in J'(T) such that

( i ) 'W(., M) = 'Wo(., M) a.e. μf on Sr for every M in Wl;
(ii) / i s a g.l.b.f.W;
(iii) for each M in S3Ϊ the function 'W(., M) is S3ί/ Π ©'-measurable.
For each pair of positive integers k and n and for every M in SJΪ

define subsets £?'(&, w, M) and J5'(fc, ^, M) of S' by putting

£"(fe, n, M) - K G Sf: A:2-w ^ 'TΓ0(s
r, M)< (k + l)2~w}

and

β'(fc, w, M) = {s' e S ; : k2~n ^ 'TΓ(s', M ) < (k + 1)2~Λ} .

Each set E'(k, n, M) is in W and, in view of (iii) above, each set
B'(k,n,M) is in SK'Π®'!

Now we introduce the particular chain product 'U oί fW and 'V
which is given by 1.15. Thus for each set M in Tl there is a μ
set K"(M) in 9K" such that the sequence

is nondecreasing and such that

( 2 ) rU{s", M) = lim*
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for all s" in S" - K"(M); moreover 'J7(s", M) = 0 if s" is in K"(M).
The set B'(k, n, M) is in W n ©' for every ft, n and Λf and so
'F(s", 5'(ft, w, If)) = V*(s", £'(ft, w, Λf)) for every s" in 5", ft, w, and Λf.

Now define

S'+ = Ό{S'e&':v(S') > 0}

and

SI = {s' G S': TF'(s', 5) = + oo} .

Since W'(., S) is in Lt(μ') it is clear that SI is //-null. At this
point, we assert

( 3 ) 'J7(s", E) - Z7*(s", JS?) a.e. /J" on S",

For every k, n, and i? in Wl Γ) © the symmetric difference

E'{k, n, E)ΔB'(k, n, E)

is //-null. For each E in 2K Π @ define

T'{S: n [SI U U,,.(^'(ft, ^, ̂ )J5'(ft, n, E))]}

according to 7.24 of [10], the set X"(E) is /i"-null. We shall prove
(3) by showing that 'U(s"y E) = U*(s", E) whenever E is in m Π ©
and sr/ is in S" - (K"{E) U X"{E)).

Thus let £ b e a fixed set in 2ft Π @ and let s" be a fixed point in
S / ; - (K"(E) U X"{E)). First we establish

(4) U*(s",E) ^ 'U(s",E) .

We may as well assume £7*(s", £?) > 0. Let ί be a positive number
such that t < U*(s", E). In view of (1) there exist distinct points

xs', •••, ms' in S' such that T\s' = s" for i = 1, , m and such that
£ < ^i^pGsOflP^Gs'j .E). We may assume that each of the extended
real numbers p(iS')W*(iSf, E) is positive. Several cases must be con-
sidered. First if W*ds', E) = + oo for some i then ^ ' is in S+ Π SL
and so s" is in X"(E); this is contradictory to our assumption. Thus
we may assume that all of the numbers W*ds\ E) are finite and
positive. There is a positive integer N such that 2~N < W*ds',E)
for i = 1, , m. Hence for every positive integer n ^ N there are
positive integers ft%1, •• ,ftίiW such that ŝ' is in E'(knίJn,E) for
ΐ = 1, , m. Now either £>Gs') = + °° for some i or else the numbers
pds'), i = 1, •••, m, are all finite and positive. First assume pds') =
+ oo for some i. Since s" is not in X"(E) it is clear that &' is in
B'(kNi, Nj E). If iS' is the unique member of ©' which contains ^ '
then iS'^B'(kNi,N,E) (because B'{kNi, N, E) is in @;) Therefore
+ σo = ^ . 2 - ^ ( ^ 0 ^ ft^-^V*^7, B'(kNi, N, E)) ̂  '[7(s;/, E), inasmuch
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as s" is not in K"(E). Thus t < + °o = 'U(s", E) in this case. Finally
assume that each of the numbers pds') is finite. Pick a positive
integer n sufficiently large that n Ξ> N and

t + 2-*Σ1mmp(i8') < Σπ^pdsW^iS', E) .

We have

( 5 ) Σ^^pUs'W*^', E) ^ Σlzi*mpUs')2-nlcni + 2r*Σ^

Let iS\ •• , m S ' be respectively the sets in @' which contain the
points iS', , ws'. Since each p^s') is positive, the sets iS', , mS'
must be distinct. As before, it follows that Sf aB'{kni1n, E) for
i = 1, , m. Consequently, in view of (2),

^ JSifc&2-nVr*(s'/, B'ίΛ, n, E)) ̂  '

It follows from (5) that t < 'U(s", E) in this case also. Thus we have
proved that t < fU(s", E) in each of the two cases which can arise.
Hence (4) follows. Next we shall prove

(6) rU(s",E) ^ U*(s",E)

where the point (s", E) is still fixed as above. To prove (6), we may
assume 'J7(s", E) > 0. Let ί be a positive number for which
t < fU(s", E). By (2) there is a positive integer n such that

t < Σkk2-n'V(s", B'(k, n, E)) .

Thus there are positive integers ku •• ,fc3> such that

t < Σ^k^-Ύis", B\kq, n, E))

and

kq2-"'V(s",B'(kq,n,E))>0

for q = 1, , p. Recall that 'F(s", B'(kq, n, E)) = V*(s", B'(kq, n, E))
for q = 1, , p. Thus for <? = 1, , p there exist distinct sets

qlS', - ,qnqS' in ©r such that qjS'a B'(kq, n, E), v(qjS') > 0, and
Tr

qjS
f = s" for each g and i and such that

t < Σ^kfi-^Σ^^v^S')} .

For q = 1, , p and j = 1, , 7̂ g put g i s
r = c(gjS'). Since s" is not

in X"(E) it follows t h a t ffis' is in E'(kq,n,E) for g = 1, -- , p and
i - 1, , nq. Hence Λβ2-» ^ 'W 0( g is', £?) = TΓ*(ffis', E) for every ?

and j . As a result we must have

t < ΣXMv$^^r>{qis')W*{qi8', E) .
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The sets qjS', q = 1, , p and j = 1, , nq, are distinct; hence the
points gjs', q = 1, , p and j = 1, , nq, are distinct. It follows from
(1) that t < Z7*(s", E). The proof of (6) is complete. With (4) and
(6) established, it is clear that (3) holds.

First of all, it follows from (3) and from H2T" that the function
U*(., E) must be 2ft"-measurable for every E in 3K Π @. Define
U' = ί 7 * | S " x ®. Then, according to 7.9 of [10], U' is in β(T");
of course U' is generated by u. The remaining conclusions of the
theorem follow from (3) and 1.15.

REMARKS 6. Let T and T" be functions (transformations) from
suitable regions in Rn into Rn which are absolutely continuous in
the Banach sense. In V. 4 of [11] Reichelderfer has given necessary
and sufficient conditions in order that the function T" ° T be absolutely
continuous in the Banach sense. These conditions are direct gener-
alizations of those given in the one—and two—dimensional situations
mentioned in the introduction, there is a corresponding "chain rule"
as well. Frazier has proved in Chapter X of [6] that Theorem V.4
of [11] is a consequence of the following assertion (see IX.8 of [6]):

Assume that the hypotheses of 3.5 above all hold. Now suppose in
addition that for each D in ® the set {W'(s', D): sr e S'} is countable
and that ©' consists precisely of the "singleton" subsets {s'} of S\
i.e., ©' = {{s'}: s' e S'}. Define a nonnegative, extended real valued
function u having domain @ by setting u(S) = w{S)v{{TS}) for every
S in Θ. Then u generates a function Uf in β(T"). U'{., S) is in
Lt(μ") if and only if gW'(., S) is in L?(μ'), or, equivalently, if and
only if f(g<>T) is in Li(μ). If U\.,S) is in Li{μ") then U' is in
Ω'(T") and V is a chain product of W and V\

Obviously this assertion is a special case of 3.5 (even though the
proofs are markedly different).

Frazier has given other specific formulas for chain products U'
of weight functions W in J"(T) and V in J"(T). These formulas
apply when the weight functions involved are of certain special types;
they appear in VI.7, VII.7, and VIII.9 of [6]. Given W in J"{T)
and V in J"(T') of any of these appropriate types, one can extend
them to weighting functions 'W and Ύ a s in 2.3(iii) and then define
'U as in 1.15. After some computation it becomes evident that the
formula for Ί7(s", D) given in 1.15 reduces effectively in each case
to Frazier's formula in the sense that the formulas differ only for
certain sets of measure zero.

The principal results in [11] are Theorems IV.5.1 and IV.5.2.
One might expect that these results can be viewed as special instances
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of 3.5 (or possibly of 1.15 or 2.7). Such is not the case however
because the admissible multiplicity functions and essential jacobians
of IV.5.1 and IV.5.2—these are the functions which correspond to W
and / respectively—are extended real valued but not necessarily non-
negative. Let us suppose that the main results of [10], [4], and the
present paper would remain true if the functions W, V','W,f, etc.
were allowed to assume negative values as well as nonnegative
values; it is likely that IV.5.1 and IV.5.2 of [11] would then be
special cases of such an extended version of 3.5. J. Brooks and
P. Reichelderfer have recently proved Jordan decomposition theorems
for "signed weight functions." These theorems should make it possi-
ble to extend many of the principal results of [10], [4], and the present
paper to the cases in which the functions W, V, f, etc. are allowed
to assume negative values.
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