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ON UNICITY OF CAPACITY FUNCTIONS

AKIO OSADA

Sario's capacity function of a closed subset γ of the ideal
boundary is known to be unique if γ is of positive capacity.
The present paper will determine the number of capacity
functions of γ in terms of the Heins harmonic dimension when
γ has zero capacity, under the assumption that γ is isolated.
This includes the special case where γ is the ideal boundary.

1* Capacity functions* Denote by β the ideal boundary of an
open Riemann surface R in the sense of Kerekjartό-Stoϊlow. We
consider a fixed nonempty closed subset 7 c β which is isolated from
S — β — 7. Throughout this paper D will denote a fixed parametric
disk about a fixed point ζ e R with a fixed local parameter z and the
uniqueness is always referred to this fixed triple (ζ, D, z). Here we
do not exclude the case where 7 = β.

For a regular region Ω Z) D we denote by yΩ the part of dΩ which
is "homologous" to 7. The remainder δΩ = dΩ — yΩ consists of a
finite number of analytic Jordan curves δΩj. For a regular exhaustion
{RfΛn^o with Ro => D and nonempty τΛ o, set yn = ΎE% and δni = dRnJ.
Then there exists a unique function py% e H(Rn — ζ) satisfying

( a ) pΐn I D = log I z - ζ I + hn(z) with hn e H(D) and Λw(ζ) = 0,

( b ) pϊn I 7n = fcnCr) (const.) and pϊn \ δnj = d n i (const.) so that

\ %dpr% = 0, which is called a capacity function of j n (Sario [6]).

It is known that kn(y) increases with n and the limit k(y) is independent
of the choice of {i2J*=0. We call β~fc(r) the capacity of 7 and denote
it by cap 7. When cap 7 > 0, pTn converges to a functions pr, which
is independent of the choice of the exhaustion (Sario [6]). Even
when cap 7 = 0, we can also choose a subsequence of {pr } which
converges to a function pr. Such functions pr will be called capacity
functions of 7 (Sario [6]). As mentioned above there exists only one
capacity function when cap 7 > 0.

It is the purpose of this paper to determine the number of capacity
functions pr when cap 7 = 0.

2* The harmonic dimension of 7. Let R, β, 7 and δ be as in
1. Furthermore we suppose that 7 is of zero capacity. For a regular
region Ω z> D we denote by VΩi components of R — Ω whose derivations
are contained in 7 and by WΩj the remaining components. Here an
ideal boundary component will be called a derivation of VΩi when it
is contained in the closure of VΩi in the compactification of R. Here-
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after we always choose Ω so large as to make the derivations of
WQ = U i WΩί contain in δ. Therefore WΩ is always a neighborhood
of all of 8.

We consider the normal operator L[Ω) with respect to R — Ω
associated with the partition P = 7 + Σ i δj of /3 where δ, is a com-
ponent of <5 (Ahlfors-Sario [1]).

Let q be a harmonic function in R — ζ. Then g will be called
of Lrtype at δ when q — L[Ω)q in TFβ for an admissible Ω. It is easy
to see that this property depends only on δ, i.e., if q = Lί^g in PF ,̂
then g = L[Ω>)q in WΛ, for every admissible 42'.

We denote by HPQ(VΩ) the family of functions w such that % is
a positive harmonic function in VΩ — (J* ^ * with boundary values
zero at yΩ — dVΩ. We may extend u to be identically zero in WΩ.
Moreover we consider the following two families of functions. The

first family Na consists of u e HP0(VΩ) such that I *du = 2π where
hΩ

yΩ is positively oriented with respect to Ω. The second family is the
family F of qeH(R — ζ) having the following properties:

( c ) g | D = l o g | z - ζ | + h(z) with heHφ) and h(ζ) = 0,
(d) q is of Li-type at δ,
( e ) q is bounded from below near 7.

In addition to the obvious fact that NΩ and F are convex, they are
related to each other as follows.

LEMMA. There exists a bijective map T of NΩ onto F satisfying
( f) T(Xu 4- (1 -X)v) = XTu + (1 - X)Tv for u,veNΩ, 0 < λ < 1,
(g) Tu — u is bounded in VΩ.

For the proof let u e NΩ and denote by L the direct sum of L[Ω)

and the Dirichlet operator with respect to D (Sario [5]). Take the
singularity function su on (R — Ω) U (D — ζ) defined by sw = ^ in
R — Ω and sM = log | z — ζ | in D — ζ. Since the total flux of sM is
zero, the equation p — su = L(p — sw) has a unique solution pu on JB,
up to an additive constant. Normalize pu so as to satisfy (c) and
set Tu — pu. Obviously Tu e F. Since 7 is of zero capacity, T is
clearly injective. The property in (f) and (g) follows easily from the
definition of T.

To see the surjectivity let q e F. We denote by Bq the bounded
harmonic function in VΩ with the boundary values q\ΊΩ at 7$. Set
u — q — Bq in VΩ and M = 0 in WQ. Since g is of L Γ type at ό and
bounded from below near 7, u e i\Γβ. Therefore we have only to show
that q - su = L(q - su) in (12 - Ω) U (D - ζ). By the definition of
u,q — u — Bq in VΩ and Lίβ)(g — u) = L[Ω)q in VΩ. Furthermore
Bq — L[Ω)q is bounded in VΩ and vanishes on yΩ. Hence Bq = L[β)g



ON UNICITY OF CAPACITY FUNCTIONS 153

in VQ. On the other hand, L[Ω)(q — u) = L[Ω)q in WQ. Consequently
q — u = L(g — %) also in TF̂ . Finally it is obvious that the same
equality holds in D — ζ.

3* We denote by jjffl the set of all minimal function in HP0(VΩ)

normalized as I *du = 2π. Lemma 2 guarantees that the cardinal

number of MΩ is independent of the choice Ω. Extending Heins'
definition (Heins [3]), we call it the harmonic dimension of 7, which
we shall denote by dr.

4* The number of capacity functions* We are now able to
state our main result:

THEOREM. Suppose that 7 is an isolated closed subset of zero
capacity in the ideal boundary of R. If the harmonic dimension of
7 is 1, then the capacity function of 7 is unique. If the harmonic
dimension of 7 is greater than 1, there are a continuum of capacity
functions of 7.

Denote by Cγ the family of all capacity functions of 7, by cr the
cardinal number of Cr and also by ψ the cardinal number of the
continuum. Then the statement of our theorem can also be summarized
in a single formula as follows:

5* Before entering the proof we need two lemmas, which will
be used to show that Cr = F. Let Rn, yn and δnj be as in 1. Set
Vni - VRni and Wnj - WB%i (see 2). Moreover put ΩOn - R - VQ - Wn

with Vo = \JiVoi and Wn - \JJ Wni.

LEMMA. Let peF. Then there exists a sequence {pn}n=0 with
pn e H(ΩOn — ζ) satisfying

( h) pn I D = log \z - ζ I + hn(z) with hn e H(D) and hn(Q = 0,
( i ) Vn I % = P + kn (const.) and pn \ dnj — dni (const.) with

\ *dpn = 0,

( j) {Pn} converges uniformly to p on any compact K with

For the proof construct pn with (h) and (i) by the linear operator
method of Sario [5]. Denote by Dε a parametric disk about ζ with
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radius ε and by aε its circumference. We orient aε and τ0 negatively
with respect to ΩQn — De and write according to Ahlfors-Sarίo [1]:

and

= I P*dp , Bn(p) = \ p*dp , Ae(p, q) = 1 p*dq

Bn(p, q) = \ p*dq .

For m > n we denote by Dn>ε{pm —jpn) and D%(pw — pn) Dirichlet
integrals of pm — #>„ taken over ΩOn — J5ε and i20% respectively. Since
Bn(pn) = 0, Bn(pn, pj = 0,

OW,£(PW - Pn) = BniVm) + 2Aε(pnj pj ~ Aε(pn) - Aε(pm) .

Observing that Bn{pm) < 0 and letting ε —> 0,

( 2 ) Dn{pm - pn) <Lam - an where aά = 1 p*dpj + 27Γ^ (i = n,m) .

Moreover we construct another sequence qn e H(ΩOn — ζ) satisfying
(h') q n\ D - log ] z - ζ I + h'n(z) with K e ίf(S) and K(ζ) = 0 ,
(ί') »̂ I 70 = ί> + fc» (const.) and the normal derivative of qn

vanishes on δn. By the same way as above we obtain

( 3 ) Dn(qm - q n ) ^ K - h m where 6y - ( p*dqs + 2πkfj (j = n, m)
JΪQ

and

( 4 ) Dn(pn - qn) = bn- an .

From (2), (3) and (4) we see an is increasing and bn is decreeing as
n increases and that an <£ bn. Therefore limw an and limw bn exist and
are finite. In particular it follows from (2) that pn converges uni-
formly to p on any compact K with KaΩ0.

6. The following lemma is easy to see and plays an important
role in the proof of our theorem.

LEMMA. Let peF. Then there exist an exhaustion {Rn}Z^ and
a sequence {pn}n=0 with pn e H(Rn — ζ) having the properties (h) of
Lemma 5 and

( k ) pn I yn = p + kn (const.) and pn \ δnj = dnj (const.) with

(1) {Pn} converges uniformly to p on any compact K in R — ζ.
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Since 7 has zero capacity we can see that there exists an Evans
potential e0 for 7, i.e., a function eoeH(R — ζ) satisfying the follow-
ing conditions (Nakai [4]):

(m) e01 D = log | z — ζ | + w(z) with w e H(D) and w(ζ) = 0,
(n) e0 is of LΓtype at δ,

( o ) l im z _ r e 0 (2) = + 00.

Needless to say eoeF.

7. Proof of theorem* Consider pλ = λe0 + (1 — X)q with a fixed
g e F and 0 < λ < 1. It is clear that l im^ pλ(z) = + 00 and pλeF.
Therefore by Lemma 6 we obtain

( 5 ) \Pχ}o<x<ι c Cγ .

On the other hand, obviously

(6) CrczF.

Moreover observe that λ —> pλ is injective if e0 Φ q .
By the approximation theorem of Heins [2], we can see at once

that if dγ = 1, so is the cardinal number of F. It is trivial that the
converse is valid. Hence cr = 1 if and only if dr = 1.

Suppose that dr ^ 2. Then there exists a qeF with q Φ e0. By
the injectivity of λ—*p;>, -f ^ cr. Conversely it follows from (6) that
cγ ^ the cardinal number of F which is not greater than ψ. Thus
cγ = ψ. In either case, since dr ^ ψ, we have c}. = 1 + (ώr —
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