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ON UNICITY OF CAPACITY FUNCTIONS

AKk10 OsADA

Sario’s capacity function of a closed subset 7 of the ideal
boundary is known to be unique if 7 is of positive capacity.
The present paper will determine the number of capacity
functions of 7 in terms of the Heins harmonic dimension when
7 has zero capacity, under the assumption that y is isolated.
This includes the special case where 7 is the ideal boundary.

1. Capacity functions. Denote by £ the ideal boundary of an
open Riemann surface R in the sense of Kerékjarto-Stoillow. We
consider a fixed nonempty closed subset v < £ which is isolated from
0 = B — v. Throughout this paper D will denote a fixed parametric
disk about a fixed point { e R with a fixed local parameter z and the
uniqueness is always referred to this fixed triple ({, D, z). Here we
do not exclude the case where v = 8.

For a regular region 2> D we denote by 7, the part of 62 which
is ““homologous’” to v. The remainder 6, = 02 — v, consists of a
finite number of analytic Jordan curves d,;. For a regular exhaustion
{R.}3-, with R,D>D and nonempty 7, set v, =7z, and 0,; = 0z ;.
Then there exists a unique function p, € H(R, — {) satisfying

(a) p,,|D=1log|z—{]|+ h.2) with h, e H(D) and h,({) = 0,

(b) p, |7, =FE.) (const) and p, |0,; =d,; (const.) so that

*dpv = 0, which is called a capacity function of v, (Sario [6]).

It is known that k.(7) increases with # and the limit %(7) is independent
of the choice of {R,}7-,. We call ¢~* the capacity of v and denote
it by cap v. When cap v > 0, p, converges to a functions p,, which
is independent of the choice of the exhaustion (Sario [6]). Even
when cap v =0, we can also choose a subsequence of {p,} which
converges to a function p,. Such functions p, will be called capacity
functions of v (Sario [6]). As mentioned above there exists only one
capacity function when cap v > 0.

It is the purpose of this paper to determine the number of capacity
functions p, when cap v = 0.

2. The harmonic dimension of v. Let R, 5,7 and 6 be as in
1. Furthermore we suppose that v is of zero capacity. For a regular
region 2 > D we denote by V,; components of R — 2 whose derivations
are contained in v and by W,; the remaining components. Here an
ideal boundary component will be called a derivation of V,, when it
is contained in the closure of V,; in the compactification of R. Here-
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after we always choose 2 so large as to make the derivations of
Wy, = U; W,; contain in 6. Therefore W, is always a neighborhood
of all of 0.

We consider the normal operator L{® with respect to R — 2
associated with the partition P =~ + 3);0; of 8 where §; is a com-
ponent of d (Ahlfors-Sario [1]).

Let ¢ be a harmonic function in R — {. Then ¢ will be called
of L,-type at 6 when q = L{?q in W, for an admissible 2. It is easy
to see that this property depends only on 4, i.e., if ¢ = L®q in W,,
then ¢ = L{*’q in W, for every admissible 2'.

We denote by HP(V,) the family of functions # such that u is
a positive harmonic function in V, = |J; V,; with boundary values
zero at v, = 0V,. We may extend u# to be identically zero in W,.
Moreover we consider the following two families of functions. The

first family N, consists of e HPy(V,) such that S *du = 2w where

7

v, is positively oriented with respect to 2. The segond family is the
family F' of g e H(R — {) having the following properties:

(e¢) q|D=1log|z— |+ h(z) with he H(D) and h() = 0,

(d) gq is of L,-type at ¢,

(e) ¢ is bounded from below near 7.
In addition to the obvious fact that N, and F are convex, they are
related to each other as follows.

LEMMA. There exists a bijective map T of Ny onto F satisfying
(f) TOw+ A —=N) =2xTu + (1 —N)Tv for u,ve N, 0 <A<,
(g) Tu — u is bounded in V,.

For the proof let w e N, and denote by L the direct sum of L{?
and the Dirichlet operator with respect to D (Sario [5]). Take the
singularity funection s, on (R — 2)U (D — () defined by s, =% in
R—-Q2and s, =log|z—{]| in D —{. Since the total flux of s, is
zero, the equation p — s, = L(p — s,) has a unique solution p, on R,
up to an additive constant. Normalize p, so as to satisfy (c) and
set Tw = p,. Obviously Tue F. Since v is of zero capacity, T is
clearly injective. The property in (f) and (g) follows easily from the
definition of T.

To see the surjectivity let ¢ € F. We denote by Bg the bounded
harmonic function in V, with the boundary values ¢ |7, at v,. Set
#=q—Bqgin V,and 4 =0 in W,. Since ¢ is of L,-type at ¢ and
bounded from below near v,we N,. Therefore we have only to show
that ¢ — s, = L(g — s,) in (R — Q) U(D — (). By the definition of
%, — % =Bg in V, and L{*(q — u) = L{?q in V,. Furthermore
Bq — L{”q is bounded in V, and vanishes on v,. Hence Bgq = L{”q
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in V,. On the other hand, L{”(q — %) = L{”q in W,. Consequently
q — % = L(q — u) also in W,. Finally it is obvious that the same
equality holds in D — (.

3. We denote by M, the set of all minimal function in HP(V,)
normalized as S *du = 27, Lemma 2 guarantees that the cardinal

.
number of M, gis independent of the choice 2. Extending Heins’
definition (Heins [3]), we call it the harmonic dimension of v, which
we shall denote by d,.

4. The number of capacity functions. We are now able to
state our main result:

THEOREM. Suppose that v is an isolated closed subset of zero
capacity in the ideal boundary of R. If the harmonic dimension of
v is 1, then the capacity function of v is unique. If the harmonic
dimenston of Y is greater than 1, there are a continuum of capacity
functions of 7.

Denote by C, the family of all capacity functions of v, by ¢, the
cardinal number of C, and also by + the cardinal number of the
continuum. Then the statement of our theorem can also be summarized
in a single formula as follows:

(1) =1+ —1y.

5. Before entering the proof we need two lemmas, which will
be used to show that C, = F. Let R,, v, and §,; be as in 1. Set
Vai= Vgiand W,; = Wy ; (see 2). Moreover put 2,, =R — V,— W,
with V, = U:V, and W, = U, W,;.

LEMMA. Let pe F. Then there exists a sequence {p,}r—, with
P € H(Q,,, — C) satisfying
(h) p,|D =loglz —{| + h.(2) with h,e HD) and h,() =0,
(i) ».l7v% =p+k, (const.) and p,|d,; = d,.; (const.) with

[, sap. =0,
LY

7

(i) {p.} converges uniformly to p on any compact K with

K~C~QO:R~VO—C0

For the proof construct p, with (h) and (i) by the linear operator
method of Sario [5]. Denote by D, a parametric disk about { with
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radius ¢ and by «, its circumference. We orient «. and v, negatively
with respect to 2,, — D, and write according to Ahlfors-Sario [1]:

p*dp, B.(p) = S p*dp , A(p,q) = S ,.prde

Gy Qe

A(p) = S

AeTTg

and

B.(p,q) = Sa p*dq .

n

For m > n we denote by D, .(p, — p.) and D, (p, — p,) Dirichlet
integrals of p, — p, taken over Q,, — D, and Q,, respectively. Since

B.(p.) = 0, Bu(Pa, p) = 0,
Observing that B,(p,) < 0 and letting ¢ — 0,

(2)  Du(pn — ) < @ — a, where a; = g p*dp; + 27k, (j=m,m).
To

Moreover we construct another sequence q, € H(2,, — {) satisfying

@) q.|D =1log|z — |+ hi(z) with h, e H(D) and h,(2) =0,

(i) q.|7 =12+ k, (const.) and the normal derivative of ¢,
vanishes on 6,. By the same way as above we obtain

(3) Du@u— ) b, — b, where b, = | p*dg, + 28K, (G =n,m)
and

From (2), (3) and (4) we see a, is increasing and b, is decresing as
# increases and that a, < b,. Therefore lim, a, and lim, b, exist and
are finite. In particular it follows from (2) that p, converges uni-
formly to p on any compact K with K < 2,.

6. The following lemma is easy to see and plays an important
role in the proof of our theorem.

LEMMA. Let pe F. Then there exist an exhaustion {R,}7-, and
a sequence {p,}o-, with p,c HR, — {) having the properties (h) of
Lemma 5 and

(k) 2.|v.=»+ k, (const.) and p,|0d,; = d,; (const.) with

g “dp, = 0,
B’IL'

J

(1) {p.} converges uniformly to p on any compact K in R — (.



ON UNICITY OF CAPACITY FUNCTIONS 155

Since v has zero capacity we can see that there exists an Evans
potential ¢, for v, i.e., a function ¢,€ H(R — () satisfying the follow-
ing conditions (Nakai [4]):

(m) e|D =1log|z— |+ w) with we H(D) and w(l) = 0,

(n) e, is of L,-type at 9,

(0) lim,; e(2) = + oo.

Needless to say e, € F'.

7. Proof of theorem. Consider p; = e, + (1 — \)g with a fixed
geF and 0 <A< 1., It is clear that lim,,, p;(3) = + o and p,€ F.
Therefore by Lemma 6 we obtain

(5) {Pitocici C C; .
On the other hand, obviously
(6) C,CcF.

Moreover observe that n — p, is injective if ¢, = ¢q .

By the approximation theorem of Heins [2], we can see at once
that if d, = 1, so is the cardinal number of F'. It is trivial that the
converse is valid. Hence ¢, =1 if and only if d, = 1.

Suppose that d, = 2. Then there exists a g ¢ F with ¢ = ¢,. By
the injectivity of A — p;, 4 < ¢,. Conversely it follows from (6) that
¢, < the cardinal number of F' which is not greater than +. Thus
¢, = 4r. In either case, since d, < +, we have ¢, =1 + (d, — 1)¥.

The author would like to express his warmest thanks to Professor
Nakai for his kind guidance. He is also grateful for the valuable
comments of the refree.
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