ON UNICITY OF CAPACITY FUNCTIONS

AKIO OSADA

Sario's capacity function of a closed subset γ of the ideal boundary is known to be unique if γ is of positive capacity. The present paper will determine the number of capacity functions of γ in terms of the Heins harmonic dimension when γ has zero capacity, under the assumption that γ is isolated. This includes the special case where γ is the ideal boundary.

1. Capacity functions. Denote by β the ideal boundary of an open Riemann surface R in the sense of Kerékjártó-Stoïlow. We consider a fixed nonempty closed subset $\gamma \subset \beta$ which is *isolated* from $\delta = \beta - \gamma$. Throughout this paper D will denote a fixed parametric disk about a fixed point $\zeta \in R$ with a fixed local parameter z and the uniqueness is always referred to this fixed triple (ζ, D, z) . Here we do not exclude the case where $\gamma = \beta$.

For a regular region $\Omega \supset \bar{D}$ we denote by $\gamma_{\scriptscriptstyle \Omega}$ the part of $\partial \Omega$ which is "homologous" to γ . The remainder $\delta_{\scriptscriptstyle \Omega} = \partial \Omega - \gamma_{\scriptscriptstyle \Omega}$ consists of a finite number of analytic Jordan curves $\delta_{\scriptscriptstyle \Omega_j}$. For a regular exhaustion $\{R_n\}_{n=0}^\infty$ with $R_0 \supset \bar{D}$ and nonempty $\gamma_{\scriptscriptstyle R_0}$, set $\gamma_{\scriptscriptstyle n} = \gamma_{\scriptscriptstyle R_n}$ and $\delta_{\scriptscriptstyle nj} = \delta_{\scriptscriptstyle R_n j}$. Then there exists a unique function $p_{\gamma_n} \in H(R_n - \zeta)$ satisfying

(a) $p_{\gamma_n} \mid D = \log \mid z - \zeta \mid + h_n(z)$ with $h_n \in H(\overline{D})$ and $h_n(\zeta) = 0$, (b) $p_{\gamma_n} \mid \gamma_n = k_n(\gamma)$ (const.) and $p_{\gamma_n} \mid \delta_{nj} = d_{nj}$ (const.) so that $\int_{\delta_{nj}} *dp_{\gamma_n} = 0$, which is called a capacity function of γ_n (Sario [6]). It is known that $k_n(\gamma)$ increases with n and the limit $k(\gamma)$ is independent of the choice of $\{R_n\}_{n=0}^{\infty}$. We call $e^{-k(\gamma)}$ the capacity of γ and denote it by cap γ . When cap $\gamma > 0$, p_{γ_n} converges to a functions p_{γ} , which is independent of the choice of the exhaustion (Sario [6]). Even when cap $\gamma = 0$, we can also choose a subsequence of $\{p_{\gamma_n}\}$ which converges to a function p_{γ} . Such functions p_{γ} will be called capacity functions of γ (Sario [6]). As mentioned above there exists only one capacity function when cap $\gamma > 0$.

It is the purpose of this paper to determine the number of capacity functions p_{γ} when cap $\gamma = 0$.

2. The harmonic dimension of γ . Let R, β , γ and δ be as in 1. Furthermore we suppose that γ is of zero capacity. For a regular region $\Omega \supset \overline{D}$ we denote by V_{gi} components of $R - \overline{\Omega}$ whose derivations are contained in γ and by W_{gj} the remaining components. Here an ideal boundary component will be called a derivation of V_{gi} when it is contained in the closure of V_{gi} in the compactification of R. Here-

after we always choose Ω so large as to make the derivations of $W_a = \bigcup_j W_{aj}$ contain in δ . Therefore W_a is always a neighborhood of all of δ .

We consider the normal operator $L_1^{(a)}$ with respect to $R - \bar{Q}$ associated with the partition $P = \gamma + \sum_j \delta_j$ of β where δ_j is a component of δ (Ahlfors-Sario [1]).

Let q be a harmonic function in $R-\zeta$. Then q will be called of L_1 -type at δ when $q=L_1^{(a)}q$ in W_a for an admissible Ω . It is easy to see that this property depends only on δ , i.e., if $q=L_1^{(a)}q$ in W_a , then $q=L_1^{(a)}q$ in $W_{a'}$ for every admissible Ω' .

We denote by $HP_0(V_a)$ the family of functions u such that u is a positive harmonic function in $V_a = \bigcup_i V_{ai}$ with boundary values zero at $\gamma_a = \partial V_a$. We may extend u to be identically zero in W_a . Moreover we consider the following two families of functions. The first family N_a consists of $u \in HP_0(V_a)$ such that $\int_{\gamma_a}^* du = 2\pi$ where γ_a is positively oriented with respect to Ω . The second family is the family F of $g \in H(R-\zeta)$ having the following properties:

- (c) $q \mid D = \log |z \zeta| + h(z)$ with $h \in H(\overline{D})$ and $h(\zeta) = 0$,
- (d) q is of L_1 -type at δ ,
- (e) q is bounded from below near γ .

In addition to the obvious fact that N_{g} and F are convex, they are related to each other as follows.

Lemma. There exists a bijective map T of N_a onto F satisfying

- $(f) \quad T(\lambda u + (1-\lambda)v) = \lambda Tu + (1-\lambda)Tv \text{ for } u, v \in N_a, \ 0 < \lambda < 1,$
- (g) Tu u is bounded in V_{α} .

For the proof let $u \in N_{\Omega}$ and denote by L the direct sum of $L_1^{(\Omega)}$ and the Dirichlet operator with respect to D (Sario [5]). Take the singularity function s_u on $(R - \overline{\Omega}) \cup (D - \zeta)$ defined by $s_u = u$ in $R - \overline{\Omega}$ and $s_u = \log |z - \zeta|$ in $D - \zeta$. Since the total flux of s_u is zero, the equation $p - s_u = L(p - s_u)$ has a unique solution p_u on R, up to an additive constant. Normalize p_u so as to satisfy (c) and set $Tu = p_u$. Obviously $Tu \in F$. Since γ is of zero capacity, T is clearly injective. The property in (f) and (g) follows easily from the definition of T.

To see the surjectivity let $q \in F$. We denote by Bq the bounded harmonic function in V_a with the boundary values $q \mid \gamma_a$ at γ_a . Set u = q - Bq in V_a and u = 0 in W_a . Since q is of L_i -type at o and bounded from below near $\gamma, u \in N_a$. Therefore we have only to show that $q - s_u = L(q - s_u)$ in $(R - \bar{\Omega}) \cup (D - \zeta)$. By the definition of u, q - u = Bq in V_a and $L_1^{(a)}(q - u) = L_1^{(a)}q$ in V_a . Furthermore $Bq - L_1^{(a)}q$ is bounded in V_a and vanishes on γ_a . Hence $Bq = L_1^{(a)}q$

in V_g . On the other hand, $L_1^{(g)}(q-u)=L_1^{(g)}q$ in W_g . Consequently q-u=L(q-u) also in W_g . Finally it is obvious that the same equality holds in $D-\zeta$.

- 3. We denote by $M_{\mathcal{Q}}$ the set of all minimal function in $HP_0(V_{\mathcal{Q}})$ normalized as $\int_{\gamma_{\mathcal{Q}}} {}^*du = 2\pi$. Lemma 2 guarantees that the cardinal number of $M_{\mathcal{Q}}$ is independent of the choice \mathcal{Q} . Extending Heins' definition (Heins [3]), we call it the harmonic dimension of γ , which we shall denote by d_{γ} .
- 4. The number of capacity functions. We are now able to state our main result:

THEOREM. Suppose that γ is an isolated closed subset of zero capacity in the ideal boundary of R. If the harmonic dimension of γ is 1, then the capacity function of γ is unique. If the harmonic dimension of γ is greater than 1, there are a continuum of capacity functions of γ .

Denote by C_{τ} the family of all capacity functions of γ , by c_{τ} the cardinal number of C_{τ} and also by ψ the cardinal number of the continuum. Then the statement of our theorem can also be summarized in a single formula as follows:

$$(1) c_r = 1 + (d_t - 1)\psi.$$

5. Before entering the proof we need two lemmas, which will be used to show that $C_7 = F$. Let R_n , γ_n and δ_{nj} be as in 1. Set $V_{ni} = V_{R_ni}$ and $W_{nj} = W_{R_nj}$ (see 2). Moreover put $\Omega_{0n} = R - \bar{V}_0 - \bar{W}_n$ with $V_0 = \bigcup_i V_{0i}$ and $W_n = \bigcup_j W_{nj}$.

LEMMA. Let $p \in F$. Then there exists a sequence $\{p_n\}_{n=0}^{\infty}$ with $p_n \in H(\Omega_{0n}-\zeta)$ satisfying

- (h) $p_n \mid D = \log |z \zeta| + h_n(z)$ with $h_n \in H(\overline{D})$ and $h_n(\zeta) = 0$,
- (i) $p_n \mid \gamma_0 = p + k_n$ (const.) and $p_n \mid \delta_{nj} = d_{ni}$ (const.) with

$$\int_{\delta_{nj}}^{} *dp_n = 0 ,$$

(j) $\{p_n\}$ converges uniformly to p on any compact K with

$$ar{K} \subset \Omega_{\scriptscriptstyle 0} = R - ar{V}_{\scriptscriptstyle 0} - \zeta$$
 .

For the proof construct p_n with (h) and (i) by the linear operator method of Sario [5]. Denote by D_{ε} a parametric disk about ζ with

radius ε and by α_{ε} its circumference. We orient α_{ε} and γ_{0} negatively with respect to $\Omega_{0n} - \bar{D}_{\varepsilon}$ and write according to Ahlfors-Sario [1]:

$$A_{arepsilon}(p) = \int_{lpha_{arepsilon}+7_0} p^* dp \; , \; \; \; B_{\scriptscriptstyle n}(p) = \int_{\delta_n} p^* dp \; , \; \; \; A_{\scriptscriptstyle arepsilon}(p,q) = \int_{lpha_{arepsilon}+7_0} p^* dq$$

and

$$B_n(p,q) = \int_{\delta n} p^* dq$$
.

For m>n we denote by $D_{n,\varepsilon}(p_m-p_n)$ and $D_n(p_m-p_n)$ Dirichlet integrals of p_m-p_n taken over $\Omega_{0n}-\bar{D}_\varepsilon$ and Ω_{0n} respectively. Since $B_n(p_n)=0$, $B_n(p_n,p_m)=0$,

$$D_{n,\varepsilon}(p_m-p_n)=B_n(p_m)+2A_{\varepsilon}(p_n,p_m)-A_{\varepsilon}(p_n)-A_{\varepsilon}(p_m)$$
.

Observing that $B_n(p_m) < 0$ and letting $\varepsilon \to 0$,

$$(2) \quad D_{\scriptscriptstyle n}(p_{\scriptscriptstyle m}-p_{\scriptscriptstyle n}) \leqq a_{\scriptscriptstyle m}-a_{\scriptscriptstyle n} \,\, ext{where} \,\, a_{\scriptscriptstyle j} = \int_{ au_0} p^* dp_{\scriptscriptstyle j} + 2\pi \, k_{\scriptscriptstyle j} \quad (j=n,m) \,\, .$$

Moreover we construct another sequence $q_n \in H(\Omega_{0n} - \zeta)$ satisfying

- (h') $q_n \mid D = \log \mid z \zeta \mid + h'_n(z)$ with $h'_n \in H(\bar{D})$ and $h'_n(\zeta) = 0$,
- (i') $q_n | \gamma_0 = p + k'_n$ (const.) and the normal derivative of q_n vanishes on δ_n . By the same way as above we obtain

(3)
$$D_n(q_m-q_n) \leqq b_n-b_m ext{ where } b_j=\int_{r_0} p^*dq_j+2\pi k_j' ext{ } (j=n,m)$$
 and

$$(4) D_n(p_n-q_n)=b_n-a_n.$$

From (2), (3) and (4) we see a_n is increasing and b_n is decresing as n increases and that $a_n \leq b_n$. Therefore $\lim_n a_n$ and $\lim_n b_n$ exist and are finite. In particular it follows from (2) that p_n converges uniformly to p on any compact K with $\overline{K} \subset \Omega_0$.

6. The following lemma is easy to see and plays an important role in the proof of our theorem.

LEMMA. Let $p \in F$. Then there exist an exhaustion $\{R_n\}_{n=0}^{\infty}$ and a sequence $\{p_n\}_{n=0}^{\infty}$ with $p_n \in H(R_n - \zeta)$ having the properties (h) of Lemma 5 and

(k)
$$p_n \mid \gamma_n = p + k_n$$
 (const.) and $p_n \mid \delta_{nj} = d_{nj}$ (const.) with

$$\int_{\delta_{n,i}}^{} *dp_n = 0 ,$$

(1) $\{p_n\}$ converges uniformly to p on any compact K in $R-\zeta$.

Since γ has zero capacity we can see that there exists an Evans potential e_0 for γ , i.e., a function $e_0 \in H(R-\zeta)$ satisfying the following conditions (Nakai [4]):

- $e_0 \mid D = \log \mid z \zeta \mid + w(z) \text{ with } w \in H(\bar{D}) \text{ and } w(\zeta) = 0,$
- (n) e_0 is of L_1 -type at δ ,
- (o) $\lim_{z\to \gamma} e_0(z) = +\infty$.

Needless to say $e_0 \in F$.

7. Proof of theorem. Consider $p_{\lambda} = \lambda e_0 + (1 - \lambda)q$ with a fixed $q \in F$ and $0 < \lambda < 1$. It is clear that $\lim_{z \to \gamma} p_{\lambda}(z) = + \infty$ and $p_{\lambda} \in F$. Therefore by Lemma 6 we obtain

$$\{p_{\lambda}\}_{0<\lambda<1}\subset C_{\gamma}.$$

On the other hand, obviously

$$(6) C_r \subset F.$$

Moreover observe that $\lambda \to p_{\lambda}$ is injective if $e_0 \neq q$.

By the approximation theorem of Heins [2], we can see at once that if $d_{\tau} = 1$, so is the cardinal number of F. It is trivial that the converse is valid. Hence $c_{\tau} = 1$ if and only if $d_{\tau} = 1$.

Suppose that $d_{\tau} \geq 2$. Then there exists a $q \in F$ with $q \neq e_0$. By the injectivity of $\lambda \to p_{\lambda}$, $\psi \leq c_{\tau}$. Conversely it follows from (6) that $c_{\tau} \leq$ the cardinal number of F which is not greater than ψ . Thus $c_{\tau} = \psi$. In either case, since $d_{\tau} \leq \psi$, we have $c_{\tau} = 1 + (d_{\tau} - 1)\psi$.

The author would like to express his warmest thanks to Professor Nakai for his kind guidance. He is also grateful for the valuable comments of the refree.

REFERENCES

- L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960.
- 2. M. Heins, A lemma on positive harmonic functions, Ann. of Math. 52 (1950), 568-573.
- 3. —, Riemann surfaces of infinite genus, Ann. of Math. 55 (1952), 296-317.
- 4. M. Nakai, On Evans patential, Proc. Japan Acad. 38 (1962), 624-629.
- 5. L. Sario, A linear operator method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc. 72 (1952), 281-295.
- 6. —, Capacity of the boundary and of a boundary component, Ann. of Math. 59 (1954), 135-144.
- 7. L. Sario and K. Noshiro, Value distribution theory, D. Van Nostrand, 1966.

Received October 2, 1967 and in revised form February 27, 1968. This is a part of the author's thesis for the partial satisfaction of the degree Master of Science at Nagoya University.

MATHEMATICAL INSTITUTE NAGOYA UNIVERSITY