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CLASSES WITHOUT THE AMALGAMATION PROPERTY

S. D. COMER

The contents of this paper belong to the general algebraic
theory of those algebras which are studied in connection with
algebraic logic. The main results, Theorems 1 and 2, give
sufficient conditions for the amalgamation and the embedding
property to fail in a class of Boolean algebras with operators.
As a corollary, for 1 < a < ω, the amalgamation property fails
in the class of all (representable) cylindric algebras of dimension
a and in the class of all (representable) polyadic (equality)
algebras of dimension a. Thus, there are finitely axiomatizable
equational classes of Boolean algebras with operators for which
the amalgamation property fails.

The amalgamation and embedding properties have proved to be
an extremely useful tool in model-theoretic investigations (references
may be found in Jόnsson [8]) and in the development of algebraic
analogues to logical theorems (cf., Daigneault [2]). Recently, Don
Pigozzi has shown that for certain classes of cylindric algebras the
amalgamation property is equivalent to a certain algebraic form of
Craig's Interpolation Theorem.

The first answer to Jόnsson's question in [8] concerning whether
or not there exist an equational class of Boolean algebras with operators
for which the amalgamation property fails was given in R. McKenzie
[12]. Using Lyndon algebras McKenzie showed that this property fails
for the class RRA of all representable relation algebras and that the
embedding property fails in a nontrivial way for the classes RRA and
RA (the class of all relation algebras). We also obtain these results.
The negative results obtained in Corollary 4 complement the work of
A. Daigneault and J. Johnson. In [2] Daigneault shows that the
amalgamation property holds for the class of all locally finite polyadic
(equality) algebras of infinite dimension. Johnson [7] has extended
Daigneault's work to show that the amalgamation property holds for
the class of all polyadic and polyadic equality algebras of infinite
dimension. Whether or not it holds for the class CAa, a >̂ α>, in
general, is not known.

It is shown in Los [10] that a necessary condition for any two
algebras of a class to have a common extension in the class is that
all algebras of the class have isomorphic minimal subalgebras. An
example, due to Bialynicki-Birula, given in Los [11] shows the condition
is not sufficient even for equational classes. The classes listed in
Corollary 5 provide further examples of this phenomenon. In § 3 we
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give a necessary and sufficient condition for two algebras of a class
to have a common extension in the class. This condition is then used
to show we cannot remove one of our restrictions on classes of algebras
from the hypothesis of Theorem 2.

1. Throughout this paper we assume familiarity with the basic
notions and results of mathematical logic, set theory and general algebra.
In this section we will briefly introduce and discuss some of our
terminology.

We assume that the ordinal numbers have been defined in such a
way that each ordinal is the set of all smaller ordinals. The cardinality
of a set X is denoted by \X\. The set of all functions from a set X
into a set Y is denoted by x Y; for a binary relation R on a set X and
x in the domain of iϋ, we denote {y e X: (x, y) e R] by R*x. If / is a
function and X is a subset of the domain of /, we denote by /1 X the
function with domain X which is equal to / on X. We use the usual
arrow notation 2C —> S3, 21 >^33, etc., to denote respectively, a homomor-
phism from an algebra 21 into an algebra 33, a monomorphism from 2ί
into 33, etc. For a homomorphism / on an algebra 21 we denote the
homomorphic image of 21 by /*2I.

Let K be a class of similar algebras. We say that K has the
amalgamation property if for ever 21, 330, 33X, e Kand all monomorphisms
fi\ 21 >-* S3ί(ί = 0, 1), there exist a algebra (£ e K and monomorphisms
Qii^&i^^b such that the diagram

2 1 — 3 3 ,

commutes, i.e., gofo = gjlt

We say that K has the embedding or common extension property
if for every 2ί0, %ιeK there exist a 33 e K and monomorphisms fQ: Ao >-> S3
and &:%>-> 18.

For an algebra 21 we denote by τ the n-ary operation on 21
induced by the term τ in the language of the similarity type of 21 and
with variables included among v0, •• ,/yw__1. Now suppose K and L
are classes of algebras of similarity type μ and μ' respectively. Suppose
τ is a function from dom μr into the set of terms of the language of
μ with the property that τi has variables included among v0, , V̂û -i
for all i e dom μr. We say that τ is an equational definitional em-
bedding (e.d.e.) of K into L if the algebra
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belongs to L for all algebras 21 in K. It should be observed that if
K and L are considered as a categories in the natural way then the
correspondence of 21 e K to τ*2l e L associated with an e.d.e. τ is the
object map of functor from K into L.

We now give a few basic definitions from the theories of cylindrifi-
cation and cylindric algebras. For additional information see Henkin
and Tarski [6].

A cylindric algebra of dimensional a(aCAa) is a system

where a is an ordinal, 0 , 1 , dκl eA, —, cκ e
 AA, + , e ΛXΛA and the

following conditions hold for all x,yeA,tc,X,μ< a:
(Co) the system ζA, + , , —, 0, 1> is a Boolean algebra;

(CO x £ cκx;
(C3) cκ(x cκy) = cKx-cKy;
(C4) cκcλx = cλcκx;
(CO dκκ = l;
(C6) if k Φ λ, μ, then dλμ — cκ(dχκ dκi)\
(CO if £ Φ λ, then cκ(dκλ x) cκ(dκχ —x) = 0.
For a CAa 21 and a finite subset Γ of a, say Γ = {λ0, , λ%_1} we

let c{nx = cλocλι ••• Gλn_1x for all xeA. We call JJ_κ,χ<adκχ the main
diagonal of 21 when it exists and occasionary denote it by d& or just
d. We shall discuss neither the elementary arithmetic for cylindric
algebras nor the familiar algebraic concepts of subalgebras, homomor-
phisms, subdirect and direct products of cylindric algebras, nor the
notion of a simple CAa. For information on these concepts see Henkin
and Tarski [6].

For a set U Φ 0 and an ordinal a, consider the system

\β(aU)T U , Π , ~, 0, aU, Cκ, -Dκλ/κ,ϊ<a

where S(aU) is the set of all subsets of aU, U, Π, and — are the
usual set-theoretic operations, and for K, λ < a and I g " i / , Dκλ and
CKX are defined by

Dκλ = {y eaU: yκ — yλ) , and

CKX = {y e aU: y\(a ~ {/c}) = z \ (a — {/c}) for some z e X) .

The above system is called the full cylindric set algebra of dimension
a and base t/and is denoted by %(a, U). A CAJί is representable (an
RCAa) if 21 is isomorphic to a subdirect product of subalgebras of
algebras %(a, U).

An algebra 21 = <A, + , , —, 0, 1, cκyκ<a which satisfies (Co) — (C4)
is called a cylindrification algebra of dimension oc(aCya). The notation



312 S. D. COMER

and definitions given above extend in the obvious way to cylindriίication
algebras. In particular we denote the full cylindrification set algebra
of dimension a and base U by %c(a, U) and the class of all representable
Cya'a by RCya.

If a CAJί has a simple minimal subalgebra, we say that 21 has
characteristic 0 if

for all λ < (a + 1) n o). We may alternatively describe this class of
algebras as the class of CAa's whose minimal subalgebra is isomorphic
to the minimal subalgebra of St(α, a). We can define the class of
polyadic equality algebras of characteristic 0 in a similar manner.

We now introduce conditions (A) and (B) on classes K of Boolean
algebras with operators. Suppose τ is an e.d.e. of K into the class Cya.

Condition (A). There exist sets Uj Φ 0, algebras 3C(£/,-), WleK
and monomorphisms g: Wl >-> 5ί(J7y) for j = 0, 1 such that

( i ) a =g I Uo \< I U, I and | UQ | < ω;
(ii) for j = 0,1, τ*^L(Us) = %c{a, Uj), the full set Cya with base

(iii) DjβAiUj) for j = 0,1, and ^ o ^ 1 is an isomorphism from
#o*20ΐ onto gfWl such that g&^Do — D19 where Dά is the main diagonal
of 3l(a, I7y) for i - 0,1.

Now suppose that τ is an e.d.e. of K into the class CAa.

Condition (B). There exist sets U3 Φ 0 and algebras 2£( Z7y) e JK"
for j = 0, 1 such that

( i ) a ^ I C701 < I C/i I and | Uo | < ω;
(ii) for j = 0,1 τ*2I(C7i) - 2I(α, l/j), the full set CAa with base ?7, .

2* We now state the main results of this paper.

THEOREM 1. The amalgamation property fails for any class K
which satisfies Condition (A) for some e.d.e. τ of K into the class Cya

for some a where 1 < a < ω.

THEOREM 2. The embedding property fails for any class K which
satisfies condition (B) for some e.d.e. τ of K into the class CAa for
some a where 1 < a < ω.

The proofs depend on the following lemma.

LEMMA 3. Suppose 1 < a <̂  | Uo \ < | ϋΊ \ and \ Uo \ < ω. Then
there does not exist a CyJ8 and isomorphisms /0, fx such that for
i = 0,1 f embeds the full CyJ&c(a, i7<) into S3 and fo(Do) = /i(A) where
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Di is the main diagonal of 2I(α:, C7t ).

Proof. Suppose there exist such isomorphisms f(i = 0, 1) and a
CyJ&. Let /0(A) = d = f{Dγ). Since 3ίc(α, ί70) and Stβ(α, 170 are simple
we may assume that S3 is also simple.

It is easy to verify the following facts about 2Ic(α, X) where
| X | = K.

( 1 ) There exist K atoms, say α̂  for i < Λ:, in 2lc(tf, X) such that

α . ^ #*(«,*> a n d £>w«.*> = χ ί < κ α . .

(1') All atoms of %c(a, X) are of the form ΐli<ac{a^{i})aφ{i) for
0 e *£; αy = Π*<«C(«~{i})αi for j < ic; and if jQ,j\ < a, φeaκ with ^(i0) Φ
φ(ji), then

Letting X be t/0 or U1 and applying the isomorphisms /0, /x we
obtain from (1) and (1') the following:

( 2 ) There exist fc = | ?701 atoms, say a, for i < /c, in f*(^Le(ccf Uo))
such that at ^ d and Σ ; < Ά — ^ (since Λ: < ω).

(2') same as (Γ) with SIc(α, X) replaced by /0*(2ί(tf, Z70)) and
J5̂ H«̂ ) replaced by d.

( 3 ) There exist λ = | U, \ atoms, say b{ for i < λ, in f?{%.e(a, U,))
such that hi g d.

(3') same as (Γ) with 2ίc(α, X) replaced by /Ί*(3lβ(α, ΪΛ)) and
jO2i<«,*> replaced by d.

By hypothesis /c < λ, so from (2) and (3) we may choose j <
tc, m, n < λ, m Φ n such that

( 4 ) α r δ T O Φ 0 and α ^ ^ 0.
We now show

( 5 ) aj'-dΦO.
Let x = c(aM{m])(arbJ ΐ[i<ati¥smc{aM{i])(arbn).
From (2r) and (3') it is clear that x ^ α? — d. Suppose a; = 0.

Then

0 - c ( α M m } )£

Since S3 is simple and arbn Φ 0 by (4), c(a)(aj bn) — 1. Hence

C(«~{m})(αyί>m) = 0

contradicting (4). Thus x Φ 0 and (5) holds. However, (5) contradicts
a3 ^ ώ of (2); hence Lemma 3 is proven.

Proof of Theorem 1. Suppose K is as in the statement of the
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theorem and the amalgamation property holds in K. Then there exist
35 e K, isomorphisms fQ and f1 such that the diagram

Sί(C7o)— »
T ΐ

commutes. By properties of terms, the diagram

commutes. By (A) (iii), fQ(D0) = /^A). This situation is impossible
by Lemma 3.

Proof of Theorem 2. Let if be as in the statement of the theorem.
Suppose there is a ^8eK and monomorphisms fQ and /i such that
/<: 81(17*) ̂ »» for i = 0,1. Then /<: «(α, E7<) >̂  r*93 for i = 0, 1.
Suppose τκX is the term in the language of K which defines dκX. Then
for the cylindric monomorphisms fi9 fi(Dκi) = °τfλ for all i = 0, 1 and
K, X < a. Thus fo(Do) = Uκ,x<a °τfλ = /^DO where Ό{ is the main
diagonal of 2t(α, E7i). Such an embedding of the cylindrification part
is impossible by Lemma 3; thus the theorem holds.

Except for the claim dealing with the class of protective algebras
the following corollaries are immediate. That Theorems 1 and 2 apply
to the classes (RRA)RA of (representable) relation algebras follows
from the relationship between RA's and CA2's found on p. 135 of
Jόnsson and Tarski [9]. For the class of an RA, see Definition 4.34
of Jόnsson and Tarski [9]; for information concerning polyadic and
polyadic equality algebras see Halmos [5] and for information on
protective algebras see Everett and Ulam [4].

COROLLARY 4. The amalgamation property fails for the follow-
ing classes of algebras where 1 < a < ω; CAay RCAa, Cyai RCya, repre-
sentable polyadic and polyadic equality algebras of dimension a,
polyadic and polyadic equality algebras of dimension a, RA, RRA,
and protective algebras.1

The following proof that Theorem 1 applies to the class K of

1 This result concerning projective algebras was pointed out by the referee.
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protective algebras is due to the referee. Define r0 as P o l • PλvQj τι

as PQVQ • PJL, and τ natural for the Boolean operations. Then τ is an
e.d.e. of K into Cy2. Suppose ί7 0 c U19 \ Uo\ = 3, α e Uo and let %{Uό)
be the projective algebra of all subsets of 2Uj with atom {<̂ α, α)>}.
The Boolean algebra with the following atoms is easily seen to be a
projective subalgebra of %{U5):

foj = {<μ, α>} , fu = {<>, ̂ >: w e J7y, u Φ α} ,

Λi = {<fl, v}: v e Z7if v Φ a} , /8 i - {<>, α>: w e Uά1 u Φ a} ,

and

/4 i = {<^, ^>: u, v e Uj - {α}, % ̂  t;} .

Denote this subalgebra by aSi# Then obviously there is a projective
algebra Tt and isomorphisms gά onto 33y such that g^o^Do — Dλ.
Thus (A) holds and Theorem 1 applies.

COROLLARY 5. The embedding property fails for the following
classes of algebras where 1 < a < ω: RCA's and CAJs of characteristic
0, (representable) polyadic equality algebras of dimension a and
characteristic 0, and RRA's and RA's of class 3.

For 1 < a < ω the classes of CAa's and polyadic equality algebras
of dimension a with a fixed nonzero characteristic and the classes of
RArs with class ^ 3 are known to have the embedding property. In
fact, these classes have the amalgamation property (cf., Comer [1]). By
essentially the same argument given on p. 226 of Halmos [5] the
embedding property can be shown to hold for the class of projective
algebras, RCya, and the class of representable polyadic algebras of
dimension a where 1 < a < ω. Whether or not this property holds
for the class Cya where 1 < a < ω and for the class of all polyadic
algebras of dimension a where 2 < a < ω still appears to be open.

By examining the proof of Lemma 3 we see that if we restrict
ourselves to the category of all complete CAa'& with complete homo-
morphisms, then the amalgamation and embedding properties fail for
all a > 1. Similar results hold for the other classes of algebras listed
in Corollaries 4 and 5 if we modify the category.

For the sake of completeness we will also consider the amalgamation
property for the classes Cya and CAa for a <* 1 (and hence also for
the classes of all polyadic and polyadic equality algebras of dimension
a^ 1).

THEOREM 6. For a <,l the amalgamation property holds for the
classes CAa and Cya.
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Proof. For a — 0 the algebras to be considered are just Boolean
algebras so the conclusion follows from Dwinger and Yaqub [3], For
a — 1 notice first that we can clearly amalgamate the simple algebras
of each of the classes. The amalgamation property for the classes now
follows by the same argument as used in Theorem 2.7 of Daigneault
[2] for the class of all locally-finite polyadic algebras of infinite
dimension.

3. We conclude the paper by establishing in Theorem 8 a sufficient
(and obviously necessary) condition for two given algebras of a class
K to be embeddable in some algebra of K. Conditions of a different
nature may be found in Los [10], [11]. As a corollary of Theorem 8
we show that the hypothesis | Uo | < ω is necessary for the conclusion
of Lemma 3 and Theorem 2. More precisely:

COROLLARY 7. If \ Uo |, | U11 ̂  ω and 1 < a < ω, then we can
embed the full set Cyjs 3ίc(α, Uo) and 3Ic(α, UΊ) in a Cya such that
the main diagonals of 3ϊ(α, Uo) and §ί(α, ϋΊ) are mapped to the same
element.

We need the following definition. For the general notion of reduct
consult Tarski [14]; for the notion restricted to cylindric algebras as
well as the notion of a neat embedding consult Henkin and Tarski [6].
Suppose the similarity type μ is an expansion of the similarity type
τ, i.e., dom τ £ dom μ and μ | dom τ = τ. A class L of algebras with
similarity type μ is called a μ-extension of a class K of algebras of
type τ if every τ-reduct of an algebra in L belongs to K. We donote
the r-reduct of J / G L by RdΓ

THEOREM 8. Suppose K is a class of similar algebras of type τ
and §1, S3 e K. A sufficient {and obviously necessary) condition for
there to exist &e K such that 31 and S3 are embeddable in © is that
there exist a μ-extension Kr of K for some expansion μ of τ and
algebras Sί' and S3' in Kr such that

( i ) 31 y^ Rd r §1' and S3 >-> Rd r S3';

(ii) There exist (£' e Kr such that 31', S3' are embeddable in (£'.

Proof. Suppose we are given μ, K', 3ί', S3' as in the statement.
By (ii) there ί s a K ' e Kr such that 31' >-> (£' and S3' >-> (£'. By (i) and
properties of reducts 3ί and S3 are embeddable in RdT (£' which belongs
to K since K' is a /i-extension of K.

Proof of Corollary 7. First observe that it suffices to embed the
CAa's 3t(α:, E7o) and 3ί(α, ϋΊ) in some CAa. To do this we apply



CLASSES WITHOUT THE AMALGAMATION PROPERTY 317

Theorem 8 with K = CAa and Kf the class of locally-finite CAJs. It
is clear that K' is a //-extension of K where μ is the similarity type
of K\ 5ΐ(α, £70) and 2t(α:, UΊ) can be neatly embedded (cf., Theorem
1.2 of Monk [13]) in locally-finite subalgebras 31' of Sί(w, £70) and
S3' of St(ω, ί/i), respectively. Hence we have SΓ and S3' for which 8 (i)
holds. Since | Uo |, | Z7i | ^ ω, 21' and 33' have isomorphic minimal sub-
algebras; thus by the amalgamation property for locally-finite CAJs
condition 8 (ii) holds. The corollary now follows.

Another obvious consequence of Theorem 8 is that if K is a class
of similar algebras of type μ which has the embedding property, then
the class Rdr K = {Rdr 31: 21 e K] also has the embedding property,
where τ is any restriction of μ.

I wish to thank the referee for his suggested improvements and
his contribution to Corollary 4.
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