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A NOTE ON RECURSIVELY DEFINED
ORTHOGONAL POLYNOMIALS

DANIEL P. MAKI

Let {a:}7, and {b;};=, be real sequences and suppose the
b;,8 are all positive. Define a sequence of polynomials {P;(x)};~,
as follows: P,(x) =1, Pi(x) = (x — ay)/b,, and for n =1

(%) buPrii(%) = (& — @n) Pu(®) — bps Puy(%) .

Favard showed that the polynomials {P,(x)} are orthonormal
with respect to a bounded increasing function ¥ defined on
(—co, + ). This note generalizes recent constructive results
which deal with connections between the two sequences {a.}
and {b;} and the spectrum of ¥, (The spectrum of ¥ is the
set S(W) = {A: ¥ + &) —¥(A —e) >0 for all ¢ > 0}.) It is shown
that if b; — 0 then every limit point of the sequence {a; is
in S(v).

2. Preliminaries. In order to use theorems from functional
analysis, consider the space &*(v) ={f: SM fidy < <}, This is a
Hilbert space where the inner product is giowored by (f,9) = S fody
and where we identify all functions which agree on S(y). In [2],
(p. 215), Carleman showed that the condition 3)1/1/5; = o implies
that when + is normalized to be continuous from the left and to have
A(—c0) = 0, ¥(+) =1, then it is unique. In [6], M. Riesz showed
that if + is essentially unique then Parseval’s relation holds for the
orthonormal set {P;} in the space &*(yv). Hence the set {P;} is dense
in this space.

We now make the assumption that lim b, = 0. Combining the
Carleman result and the Riesz result we see that + is essentially
unique and the polynomials {P;} are a dense set in &%*+r). Using
this information we define an operator A on a dense subset of <#%(y).
The domain of A is the set of all functions f which are in _&*(y)
and for which zf is also in <~*v). We take A to be the self-adjoint
operator defined by (Af)(x) = xf(x). By inspection of (x) we see that
for 2=1,2,38, --- we have

(%) A(P) = b;_ P, + a;P; + b,P;., .
We call A the operator associated with the sequences {a;} and {b;}.
3. Theorems. Let o(A) be the spectrum of the operator A4, i.e.,

all points » where A — \I does not have a bounded inverse. Then we
have the following:

611



612 DANIEL P. MAKI
LEMMA. o(4) C S(¥).

Proof. Let neo(A). Since A is self-adjoint, » is in the approxi-
mate point spectrum of A. Hence there exists a sequence {f,} in the
domain of A satisfying || f.|]|=1, n=1,2, --+, and [[(4A — N f.[|—0
as n— co. Now by the definition of the norm in &*(y) this means

+eo +oo
S fidy=1,m=1,2 -, and S (@ — N2 f2dyr — 0 as n— 0. Now
suppose A ¢ S(v). Then there exists ¢ > 0 such that

PN+ € —P(h—e) =0.

Thus + has no mass in the interval [» — ¢, N + ¢], and we have

[Criay+ " ravr =1, n=12-,
and
S;(% = N fhdy + S:(x — A fi—0 as m— oo,
But these are contradictory since
| @ wrridy + | @ =iy
= riay + [ riav] =

This completes the proof.

We are now ready for our result about S(++). It is motivated by the
results in [5] where we constructed + in the case where b, — 0 and
{a;} has only a finite number of limit points.

THEOREM. Let the sequence of polynomials {P;}ly be recursively
defined by (x) and assume b; > 0 for each © and b;— 0. Then each
limit point of the sequence {a;} is a point of the spectrum of the
assoctated distribution function .

Proof. From the above lemma it suffices to show that each limit
point of the sequence {a;} is in o(A). Thus let A be a limit point of
{a;} and suppose {a;.} is a subsequence converging to A. Next let
fa@) = Pyu(x), n=1,2,8, --.. By the defining relation (x) and by
the definition of A4, we have

(A =N FfaP = [[(@ = NP, [
+ o0
= S ”(bi(n)——IPi(n)—l + (@) — NPy + by Piggy1)’dir

= bny—s + (@itny — M) + bl ©
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Now b,— 0 and a;, — X, so we see [[(A—N)f,|P—0 as n— .
Moreover || f,|l = || Py |l = 1, so A€ o(4) and the proof is complete.

ReEMARK. If we choose the a;’s to be dense in the real line, for
example any enumeration of the rationals, then for every set of b,’s
satisfying b; — 0 we have S(vr) = (— oo, + ).

CONJECTURE. The converse of the above theorem does not hold
since in [5] our construction exhibited points of S(y+) which were not
limit points of {a;}. However each limit point of S(y) was a limit
point of {a;}. So it seems reasonable to conjecture that when b, — 0, A
is a limit point of S(y) if and only if A\ is a limit point of {a.}.
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