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SIMULTANEOUS DIOPHANTINE APPROXIMATIONS
AND CUBIC IRRATIONALS

WILLIAM W. ADAMS

The purpose of this paper is to make some remarks con-
cerning the best order of approximation in two-dimensional
simultaneous diophantine approximations. That is, let c0 be
the infimum over all constants c > 0 such that for every pair
of real numbers βu β2 there is an infinity of rational integers
Q > 0, Pi, pz satisfying

(*) \qβi~Pi\< (c!qY/\ I qβ2 - p21 < (c/g)1/2.

Much research has been done on this problem, and the best values
to date are

(λ \ ^ < r <r ^
{ l ) Ύ = ° < "46^"

due to Cassels [3] and Davenport [5] respectively. This paper will
be concerned with this problem where 1, βλ, β2 is the basis of a real
cubic number field.

Let K be a totally real cubic number field. Let α0, aly a2 be a
basis of K (over the rational numbers, Q). Let

M = Z<α:0, a19 α:2>

be the free Z-module of rank 3 generated by a0, alf a2 (Z = rational
integers). Let DM > 0 be the discriminant of M (see [2] for the re-
levant facts on number fields). Now for ζeM we have

ζ = aox + aγy + a2z

for integers x,y,z, so Nς (N denotes the "norm" of K/Q) defines a
ternary cubic form with rational coefficients. Define

m+(M) = inf Nς
ξeM
ί > 0

and

m_(M) = inf | Nί | .

Set

4m+(M)m_(M)
K,M

1
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where the supremum is over all totally real cubic fields K and all
(full) modules M contained in K.

THEOREM 1. Let c > Co be given. Then for all βl9 β2 such that
1, βu β2 is a basis of a real cubic number field, * has an infinite
number of solutions. Conversely, if c < Co then there exists a pair
β19 β2 such that * has only a finite number of solutions.

We note that in the first assertion of the theorem 1, βί9 β2 is not
restricted to being the basis of a totally real field. Of course, the
β19 β2 of the second assertion will be such that 1, β19 β2 is the basis
of a totally real field.

COROLLARY (Cassels [3]). Let c < 2/7. Then there exists β19 β2

such that * has only a finite number of solutions.

Proof. By Theorem 1 it suffices to show that Co ^ 2/7. Let K
be the cyclic field defined by f(X) = Xz + X2 - 2X - 1 = 0. There
is a positive root θ and a negative root θ' of /. Let M equal the
integers of K. So DM = 49. We have Nfl = 1 and N(-0 ' ) = - 1 .
Moreover θ > 0 and ~θr > 0 so m^(M) = m_(M) = 1. Hence Cl ^ 4/49
as desired.

Now we turn to what is known about Co. We state

Conjecture. Co = 2/7.

That is, for all K, M, m+(M)m_(M) ^ DM/49. Although this re-
sult is true in the cases I have been able to check I have no really
good evidence for its validity. I state it as above merely to have a
positive statement.

One can combine a result of Chalk [4, p. 330] and one of Daven-
port [4, p. 61] to give an upper bound for Co. However, the best
result appears to be the one derivable from Theorem 1 and Daven-
port's result (1). Namely, from the second part of Theorem 1 it is
clear that Co ^ c0. Thus we have

THEOREM 2.

7 = " 461'4

Hence for all totally real cubic fields K and all modules M con-
tained in K,
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m+(M)m_(M) <L 4 ^ β l β .

Theorem 2 is, of course, a result about ternary cubic forms (see
[4, p. 61]). Let / be a factorizable ternary cubic form of discrimi-
nant D(f) > 0. Write

fix) = L

where Lu L2, L3 are real linear forms. Define

m+(f) = inf fix)
xeZs

L1(»)>0
/(as)>0

m_(/)= inf \Ά*)\
xeZs

L1(x)>0
/(x)<0

Then if f(x) has rational coefficients and does not represent 0 non-
trivially we have

4 x 461/2

(For, by [4, p. 263] / is proportional to a "norm" form for a totally
real cubic field.)

Also we note that any counterexample to the conjecture given
above would give an improvement of Cassels' result (1). Further, if
the conjecture were true then by analogy with one-dimensional dioph-
antine approximations one would expect that c0 — 2/7 also.

The paper is divided up as follows. In § 2 we give an auxiliary
result on quadratic forms needed in the proof of Theorem 1. In § 3
we give the facts needed in order to determine whether * has or has
not an infinite number of solutions when 1, β19 β2 is a basis of a cubic
field. In § 4 and § 5 we prove Theorem 1 when K is totally real. In
§ 6 we give a much more precise result in the case that K is not
totally real.

2. A result on quadratic forms* We consider two-dimensional
real space R2. Let .^?r be the open square

£&r — \\χi 2/; fc AV . max {\ x , | y \) <^ r j-

for real numbers r > 0. We are concerned with the problem of when
the curve in R2 associated with a given binary quadratic form meets
^ . We consider first the trivial case.

PROPOSITION 1. Let Z(x, y) — ax2 + 2bxy + cy2 be a positive defi-
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nite binary quadratic form of discriminant d = ac — b2 > 0. Let
p > 0 be given. Consider the curve in R2

: Z(x, y) = pd1'2 .

Then if r2 > p/2 we see έ%f (Ί &r Φ φ. Moreover this result is best
possible, as shown by the form ZQ{x, y) — x2 + y2 (dQ = 1).

Proof. With ZQ as above, suppose max (| x |2, | y \2) < p/2. Then
Z0(x, y) < ρ/2 + |θ/2 = p and so (a?, ?/) cannot lie on ^g^.

Conversely, suppose r2 > <o/2. It suffices to find (x, y) e £%f such
that max (x2, y2) ^ p/2. By homogeneity we may assume d = 1. Now
for some choice of signs of a?, y

x* = y* = p/(α + 2 I 6 I + c)

lies on £%f. So it suffices to show that

( 2 ) α + 2 | 6 | + c ^ 2

when ac — b2 — 1. Note that α, c > 0, since Z is positive definite.
By the arithmetic-geometric mean inequality we have

a + c ^ 2(αc)1/2 - 2(1 + δ2)1/2 ^ 2(1 - | b \) ,

which gives (2).
Unfortunately, obtaining the next result is much more tedious.

PROPOSITION 2. Let Z(x, y) — ax2 + 2bxy + cy2 be an indefinite
binary quadratic form with discriminant d = ac — b2 < 0. Let
p, d > 0 be given. Consider the points (curves) in R2

Z(x,y) = -δp\d\112 .

Then if r2 y Λ/ δ p we have 3ίf (Ί &?r Φ Φ* Moreover this result is
best possible, as shown by the form ZQ(x, y) — x2 — dy2(d0 — —δ).

Proof. With ZQ as above suppose that max (x2, y2) < VΎ p. Then

a;2 - δy2 ^ x2 < VT p = p\d |1/2

x2 - δy2 ^ - δy2 > -δVΎ p= -δp\d |1/2

so (x, y) cannot lie on

To prove the main part of the proposition we see we must find

(x,y)e ^f such that
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max (a;2, y2) ^ VΎ p .

The proof involves making a number of reductions and then examin-
ing many cases.

First we note that we may assume that δ ^ 1. For if δ < 1 set
Z1 = -Z,pι = δp and δι = δ'1 > 1 and we have

Sίf = 3ίf\VΎ p = VΎ p1.

Now by the symmetry of the square x —+ x,y —> — y we may assume
that 6 ^ 0 . Further, by the symmetry of the square x —• y, y —> x,
we may assume a < 0 implies c < 0. Also by homogeneity we may
assume d = — 1. And finally, setting Z 1 = Z, δ1 = S, p1 = 1, we see
(x,y)€ ^f1 if and only if (p1/2x, p1J2y) e £%f and so we may assume
p = l.

So, to recapitulate, we have Z(x, y) = ax2 + 2bxy + cy2 where

( 3 ) 62 - ac = 1, 6 ̂  0

( 4 ) α < 0 implies c < 0 .

Define the curves ^ by

, V) = l

Z(x,y) = -δ

where δ ^ 1. Then we must find (x, y) e 30" such that

( 5 ) max (x2, y2) ̂  VΎ .

Now it is readily verified that for some choices of signs of x, y
the values of x2, y2 listed below (under the given condition) yield
points on Sίf.

Condition
a < 0
a > 0
c < 0
c > 0

a + 26 + c > 0

α - 26 + c < 0 .

We show that at least one of the above six points lies on £%? and satis-
fies (5).

(i)
(ϋ)

(iii)
(iv)

(v)

(vi)

X2

VI-a
δb*/a

— c

δc
1

a + 26 + c
-δ

a — 2b + c

— a

δa
VI-e

δb2/c

1
a + 2b + c

— δ

a — 2b + c
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Case 1. Assume a < 0. Thus by (4) we have c < 0. Hence
a — 26 + c < 0 and point (vi) is on £(?. We would be done unless

( 6 ) - τ / T < α - 26 + c < 0 ,

which we now assume. Now points (i), (iii) are on §ίf and so it

suffices to show max (62/ —α, ~a) ίίV δ or max ( — c, b2/ — c) ^ i/"δ~.

We have from (6) that — α, — c ^ V δ . Moreover we now have sym-

metry between α and c, so we assume — a >̂ — c. Then it suffices to

show that 6 2 / - α ^ v Ί Γ or by (3) that c + 1/α ^ -VΊΓ. Now if

— α ^ 1 we have from (6)

c + — ^ c + α > - i / T
a

as desired. So assume

(7) 1 ^ - α ^ -c .

Now by (3) 6 ^ 1 , so by (7) a + 26 + c > 0, so point (v) lies on Sίf.
Thus we would be done unless

(8) 0 < α + 26 + c< J L

which we also assume. Now 6 ^ 1 , so (6) implies that Λ/δ ^ 2 .

Then from (8) we have a + c < -3/2. Putting this back in (6) gives

i / T > 7/2. Further, a + c < -3/2 and (7) yields -a ^ 3/4. So finally

c + — ^ α + — ^ - 1 - — ^ - i / T
α α 3

as desired.
So from now on we may assume that a ^ 0.

Case 2. Assume α + c ^ 0. Now if a + c = 0 and 6 = 0 we
have from (3) — ac = 1 so α > 0, c < 0 and α = 1 = — c. Point (iii)
is on β^ and clearly satisfies (5), since δ ^ 1. Otherwise we have
a + 26 + c > 0, so point (vi) is on έ%f and we are done unless (8)
holds, which we now assume. Now if c ^ 0, then (3) implies 6 ^ 1 and
this contradicts (8), since δ >̂ 1. Thus c < 0, and so a > 0. Now we
have points (ii), (iii) on Sίf so it suffices to show

( 9 ) max (— , δa) ^ VΎ or max ( -c, -^—) ^
V a / V — c/

We note first that we have 62 ^ α/i/ δ . This follows, since a + c ^ 0
and (8) implies 62 < 1/4S. Then from (3) 1 ^ 1/45 - ac. Since a ^ - c
we obtain α2 ^ 1 — l/4<5. So finally
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a> (l~ — Y" > - 4 = ̂  VΎ 62

(since δ Ξ> 1) as desired. Therefore to prove (9) it suffices to show

that a > 1/i/T implies 62 ^ -VΎ c £ δ. Well 1 = 62 - ac ^ a(-c)

implies α( — c ) ^ l < ] / S α implies — c < i / δ . Further, by (8) and

α > l/i/ δ we have 26 + c < 0, so

62 < c2/4 < - VΎ c

since — c < 4τ/ δ .

Case 3. Assume α + c < 0. Then c < 0 (α Ξ> 0). Also

α - 26 + c < 0 ,

so point (vi) is on £ίf and we are done unless (6) holds, which we
now assume.

Subcase 1. We assume a — 0. Thus 6 = 1. Then (6) yields

2 - VΎ < c < 0

so δ > 4. Now point (iii) is on J%f. Moreover — c < V δ — 2 < i/ δ .
So we are done, unless

(10) _ J L
c<JL<

V δ
which we now assume. Now by (10)

α + 26 + c = 2 + c >

so point (v) is on £ίf also. Moreover,

1 J— < i < VΎ .
a + 26 + c 2 -

Subcase 2. We may now assume a > 0. So points (ii) and (iii)
are on έ%f and it suffices to prove (9). We first show

-c > VΎ implies 62 ^ ajVΎ^ — .
δ

First by (3) α( — c) ^ 1, so — c >VΎ implies a < 1/V δ . And by

(6) and —c> VΎ we have 26 < α, so δ2 ^ α2/4 ^ ajVΎ, since α <

4/τ/ δ . Therefore we may further assume — c ^ V δ . So to prove

(9) it suffices to show 62 ^ - VΎ c. Now (6) implies δ2 < δ/4. Thus

62 ^ —cVδ unless — c < α/δ/4, which we assume. Then
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4 4 4 16 16

thus δ ^ 16/5. IJNow if[a + 2δ + e ^ 0 we have

6 ^ CL C ^ €

SO

- 4

(since — c ^ V δ). So we may assume a + 26 + c > 0, and so point
(v) is on Sίf and so we are done, unless (8) holds, which we now
assume. If — c ^ 1/τ/δ we have

δ2 = 1 + ac < 1 ^ -VTc ,

as desired. Otherwise — c < 1/τ/ΊΓ. Then from (8)

2δ + c < α + 2δ + c < 1/τ/ΊΓ ,

so

Λ7 -, JL ^, LΛ

and

since — c > α and δ > 2, and this contradicts (3).

3* Some facts about cubic fields* Let K be a real cubic num-
ber field. Let 1, βlf β2 be a basis of iΓ. In [1] we showed how to
count the number of solutions to * for sufficiently large c. In this
section we record the results obtained in [1] which allow us to gain
information concerning whether, for a given c, * has an infinity of
solutions. All unproved statements given in this section may be found
in [1].

If aeK, denote by a = a{0), α(1), α(2) the conjugates of a.

LEMMA 1. Given a basis 1, βu β2 of K there is a basis ao,aly a2 of
K satisfying

(11) of > + α<*>& + apβt = 0 (i = 1, 2)

(12) /c0 = a0 + tfA + <22/32 > 0 .
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Conversely, given a basis a0, alf a2 of K, we can find a basis 1, β19 β2

of K satisfying (11); (12) may be guaranteed by changing the signs
of a09 a19 a2.

Now assume we have a0, au a2, βu β2 as given in Lemma 1 with
/c0 > 0. Let

M = Z<a0, a19 a2y .

For ξ G M write ξ = qa0 + p^ + p2a2i and in this way we view M as
being in one-to-one correspondence with the possible solutions to *.

Now for i = 1, 2 we have from (11)

-£<*> = aί^qβ, - Pl) + a^(qβ2 - p2) .

Set Ίi = qβi — Pi (i = 1, 2) and we see Nf = ξZ(Ύ19 Ύ2) where Z is the
quadratic form

(13) Z(x, y) = (a^x + a^y){a[2)x + a™y) .

Let d > 0 be large but fixed, depending only on the initial data.
Consider all ξ e M (for q > 0) giving rise to a solution of * with
c = d. Then for q > 0 large

(14) ξ = q(a0 + - 2 L Λ l + -2L α Λ = gκ0 + Ofe-1'8)
V g g /

(in particular f > 0). Let δ, = g1/27, (ΐ = 1, 2) and thus from (14) and

Z(δlf d2) = qZ(ylf 72) - tfζZiyu 72) + 0(q->»)

that is,

(15) Z(δl9 δ2) = ito^Nf + 0(g-3/2) .

Now the values of Nf for ξ e M are a discrete set of numbers. Thus
the set of curves

(16) Z(x9 y) = Λo^Nf

for ξeM form a discrete set of curves. Moreover, from (15) and *
values of Nf are bounded and so there are only a finite number of
possible curves (16) for solutions to *. Thus what we have shown is
that the solutions to

(i.e., * with c = d) lie essentially on a finite set of curves in R2 de-
fined by (16). The key result from [1] tells us how these points are
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distributed on these curves.

PROPOSITION 3. Let &r he the open square of radius r > 0 de-
fined in § 2.

(1) Suppose that for some ζ e M, έ%?r meets (16). Then there are
an infinity of solutions to * with c = r2.

(2) Conversely, suppose that for all ζ e M the closure of &r does
not meet (16). Then * has only a finite number of solutions with
c — r2.

Proof. (1) Let

Vi = teΓΈ)1'2^ (i = 1, 2)

(for ζ > 0). Then

that is, (ηιy rj2) lies on (16). Now consider a curve (16) that meets
&r for some ξ0 e M. Then from [1] we know that the set of all
(Vij Vz) o n th ί s curve such that the corresponding (δ19 δ2) satisfy * for
some c = C1 sufficiently large are dense in the part of the curve lying
in &r. Since for these £ the (δ19 δ2) satisfy * it is clear that for
these ξ, q—*oo. From (14) then we see that for'i = 1,2, | rj{ — hi \ —> 0
as q—> oo. There must then be an infinite number of pairs (δly δ2) in
^ also, as desired.

(2) Since the set of curves (16) form a discrete family, we have
by hypothesis an rr > r such that none of the curves (16) meets &r,%

Suppose there is an infinite number of solutions to * with c = r2.
Then as above we have for the corresponding ξ that Nί is bounded.
So an infinite number of the pairs (δ19 δ2) in &r correspond to the
same curve (16). As in Case 1 we have for these (δ19 δ2) that

I t t - ^ l —o (?—~)

we see that an infinite number of pairs (ηίf rj2) lie in g$r,. Hence
some curve (16) meets . ^ , . This contradiction completes the proof
of Proposition 3.

We require one more formula, namely one for κ0. Write

Z(x, y) — ax2 -f 2bxy + cy2 .

Then from (13)

(17) a = a[l)a[l)

(18) 26 = a[l)a'2
2) + a[2)a2

l)

(19) c = a2

l)a'2) .
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Note that even if K is not totally real the a,b, c are real, since then
for aeK we have a{ί) = a{2) (complex conjugate). Let d = ac — b2

be the discriminant of Z. Clearly

4

It is readily checked that d Φ 0. Moreover, solving equations (11)
and (12) for tc0 and using the assumption κ0 > 0, we obtain

(20) tc-1 = Δ a ι

\DM\1'2

where DM = det {a{5))2 (i,j = 0,1, 2) is the discriminant of M.
We note finally that Z is indefinite or positive definite depending

on whether K is totally real or not, respectively.

4* Proof of the first half of Theorem 1 for K totally real.
We combine Propositions 2, 3 to yield the result. We in fact

prove the slightly more general

THEOREM 3. Let K be a totally real cubic field. Let 1, βu β2

be a basis of K/Q and define ocQ, aly a2 as in Lemma 1. Let

M = Zζa0, aly a2y .

Then for any c > 0 such that

2 4m+(ikf)m_(M)
DM

* has an infinity of solutions.

Proof. Let

(21) p = 2m+(M)/D]ί2

(22) δ = m_(M)/m+(M) .

Set r2 = c. So by hypothesis

r2 > 2(m+(M)m_(M))ll2/Df = VΎ p .

Thus, by Proposition 2, &r n ^f Φ φ. That is, &r intersects

(23) Z(x, y) = 2 l r f [1/a m+(M)

or

(24) Z(x,y) - -
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There is a ξ e M such that Nf = m+(M) or Nf = — m_(M), whichever
is desired (i.e., choose ξ depending on whether (23) or (24) meets
&r) So by Case 1 of Proposition 3 we have an infinite number of
solutions to * with r2 = cy as desired.

5* Proof of the second half of Theorem 1 for K totally real*
Again we prove the slightly more general

THEOREM 4. Let K be a totally real cubic field. Let MciK be
a full module. Let c > 0 satisfy

, 2 ^ 4m+(M)m_(ikQ
"\ zr

Then there exists a basis a01 alf a2 of M such that for the associated
βu βz of Lemma 1, * has only a finite number of solutions.

Proof. The proof is taken, essentially, from [6]. Define p, δ by
(21), (22) respectively.

We first determine aQ, a19 a2. Let N > 0 be large. By a lemma
of Davenport [4, p. 16] there is a basis a0, au a2 of M satisfying

<> = N+ 0(NίJ2)

a^ = i / T N + 0(iV1/2)

αf} = -VTN + 0(N112)

(N—> oo). Let β19 β2 be determined by Lemma 1. We assume fc0 > 0
(nothing is really altered in what follows if we replace a{ by — a{

(i = 0,1, 2)).
Define £lf as in Proposition 2, that is, by (23) and (24). Let

r2 — c. Now if we show that for N sufficiently large, ^ Π έ%f — Φ
(bar denotes closure), then &r does not meet (16) for any ζeM, by
the definition of m+(M), m_(M) as minimal values of Nf. Thus by
Proposition 3, * has only a finite number of solutions, as desired.

It remains then only to show that <WT does not meet έ%f. From
the definitions (17), (18), (19) we compute

a = N2 + 0(iV3/2)

b = 0(ΛP/2)

c = -δN2 + 0(iV3/2) ,

and so

\d\112 = VT N2 + 0(N312) .

So suppose (x,y)e ^ . That is,
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max y, ifl g r* = c < p

Then

Z(x, y) ^ N 2 x 2 + 0((x2 +\xy\+ y2)N312)

= N2x2 + 0(ΛΓ3/2)

- d-1!21 d |1/2 x2 + O(ΛΓ3/2)

< p I d |1/2 (for N large)

and

Z(x,y) ^ ~δN2y2 + 0(iV3/2)

- -8ll2\d\ll2y2 + 0(ΛP/2)

> -δρ\d\112 (for iV large) .

Thus, (x, y) cannot lie on έ%f.

6* The nontotally real case*
It remains to prove Theorem 1 in the case where K is not totally

real. Now we showed in § 1 that

c > 2

Since 1/231/2 < 2/7, the following theorem suffices.

THEOREM 5. Let c > 23"1/2. Let 1, βίy β2 be a basis of a real
nontotally real cubic field. Then * has an infinite number of solu-
tions. Conversely, if c < 23~1/2, then there exist βlf β2 such that
1> βi, βz is a basis of a real nontotally real cubic field and * has
only a finite number of solutions.

The second half of this theorem is due to Furtwangler [7]. Also
Theorem 5 could be stated in the more general form of Theorems 3
and 4 (see below).

Proof. The first half of this theorem parallels the proof in § 4.
Let ccoy alf a2 correspond to β19 β2 as in Lemma 1. Let M be the
module generated by a0, au a2. Set

ξeM
£>0

m(M) = inf Nf .
ξM

Then it is known [4, p. 61]

(25)
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Now in Proposition 1 set

2m(M)

and define ^f as there. Then if

γ% > m(M)

we have &r n ^f Φ ψ. Let r2 = c. Then by hypothesis and (25)

r' = c > 2 8 - 1 ^ m ( i k f )

Now there is a feΛf such that THζ = m(M). For this ζ and the
formula (20) for tc0 we see that βέf in Proposition 1 is the curve (16)
of Proposition 3. So by Proposition 3 there is an infinite number of
solutions to *.

The converse follows closely the proof given in § 5. It uses the
field generated by the real root of X3 — X — 1 of discriminant 231/2

in the same manner as the corollary to Theorem 1. We use Daven-
port's lemma to make Z(x, y) look like N2(x2 + y2). We do not carry
out the proof here; it is essentially carried out in [6].
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