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CONCERNING CONTINUA NOT SEPARATED BY ANY
NONAPOSYNDETIC SUBCONTINUUM

ELDON J. VOUGHT

Certain theorems that apply to compact, metric continua
that are separated by none of their subcontinua can be gene-
ralized and strengthened in those continua that are separated
by none of their nonaposyndetic subcontinua. For those of
the former type, if the continuum is aposyndetic at a point,
it is locally connected at the point. The same conclusion is
possible if the continuum is not separated by any nonaposyndetic
subcontinuum. Also, if a continuum is separated by no sub-
continuum and cut by no point, it is a simple closed curve.
A second result of this paper is to prove that if no non-
aposyndetic subcontinuum separates and no point cuts the
continuum, then it is a cyclically connected continuous curve
in fact this yields a characterization of hereditarily locally
connected, cyclically connected continua.

A third theorem characterizes an hereditarily locally
connected continuum as an aposyndetic continuum that is
separated by no nonaposyndetic subcontinuum. This is a
somewhat stronger result than the known equivalence of
hereditary local connectedness and hereditary aposyndesis.

A continuum is a closed, connected point set and the theorems
of this paper are true for those continua that are compact and metric.
If x is a point in the continuum M, then the continuum is aposyndetic
at x if for every point y in M — x, there exists an open set U and
continuum H such that xe UaHcM — y. Ifikfis aposyndetic at
x for each point x in M, then M is aposyndetic, and M is nonaposyndetic
if there is a point x in M such that M is not aposyndetic at x. By
this definition a degenerate continuum is an aposyndetic continuum.
The set S in M is said to separate M if M — S is not connected and
is said to cut M if for some pair of points x,yeM — S, every sub-
continuum of M intersecting both x and y must also intersect S. If
every pair of points in M is contained in some simple closed curve
lying in M, then M is cyclically connected. The continuum M is
hereditarily locally connected if M is locally connected and every
subcontinuum of M is locally connected, and M is hereditarily apo-
syndetic if it as well as each of its subcontinua is aposyndetic. In
what follows, a subcontinuum of M is aposyndetic or nonaposyndetic if,
with the relative topology from M, it is aposyndetic or nonaposyndetic
respectively.

Bing has proved that if a continuum that is separated by no
subcontinuum is aposyndetic at a point, it is locally connected at the
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point [1, Th. 2]. The next theorem shows that the same conclusion
follows if the continuum is separated by no nonaposyndetic sub-
continuum.

THEOREM 1. Suppose the compact, metric continuum M is sepa-
rated by no nonaposyndetic subcontinuum. If M is aposyndetic at
x, then M is locally connected at x.

Proof. The continuum M is aposyndetic at each point of M — x
with respect to x. To see this let y be any point in M — x. Since
M is aposyndetic at x there exists a continuum H such that
xeH°(z Ha M- y. If M- H is connected then y e M- Ha M-Ha M- x
and M is aposyndetic at y with respect to x. Suppose that M — H —
A + B, a separation, with y in B. Now H + B is a continuum and
if B is connected, then yeBaBaM — x and again Mis aposyndetic
at y with respect to x. So let B = C + D, a separation, with y in
D. Now D + i ϊ is a continuum separating M into A and C. Hence
D + if is aposyndetic at 7/ with respect to x and therefore so is M.

In the proof that M is locally connected at x no generality will
be lost by assuming x to be a nonseparating point of M. For if x
separates Λf, then each component C of M — x is an open set, C + x
is a continuum with x a nonseparating point, and the proof would
be complete by showing that C + x is locally connected at x.

First let us show that M is connected im kleinen at x. Let K
be a closed set in M such that # ί K. Because M is aposyndetic at
each point of K with respect to x, every point of K is in the interior
of a continuum that does not intersect x, and by compactness K is in
the interior of the sum of a finite number of these continua. For
each pair of this finite collection of continua, there exists a continuum
in M — x intersecting both, due to the fact that x does not separate
and hence does not cut M. Therefore, K lies in the interior of a
continuum L that does not contain x.

We need to show that there is a continuum H such that
xeH° a HczM — K. Assume such a continuum does not exist.
Then M — L is not connected and is the sum of separated sets A and
B with x in A. The point x is not in the interior of the component
C of A containing it, so there exists a sequence of points xlf x2,
converging to x each point of which belongs to a different component
d of A. Let Kι be an irreducible subcontinuum of C* + L from x{

to L. Now Ki + L separates M and Kt + L is therefore aposyndetic.
Because iSΓ* is irreducible from â  to L, K^L is degenerate and i^ is
an aposyndetic continuum. Since every point in K{ — (xt + L) is a
cut point of ϋΓ{, everyone of these points must be a separating point
of Ki and hence Ki is an arc. Let K' = lim sup i^ (it is possible
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to construct the K s so that ϋΓ' Σ ^ ί — 0) . Now let us show that
the continuum K' + Σ Γ̂* + I* 1B n o t aposyndetic at x. Let yt = K{-L
and let y be a limit point of ^ #2, in K' L. If in If' + Σ ^ + L
there were a continuum JBΓ with x in its interior that did not contain
y, then there would exist an integer n such that

(H-KΛ) + (H-[(K' + ΣKi + L)- Kn])

is a separation of H. So If' + Σ %i + ^ ^s n °t aposyndetic at a? with
respect to ?/. Hence this continuum does not separate M and there-
fore A + L = K' + ̂ Kt + L. So A + L is a continuum not aposyndetic
at x with respect to y. But this means that M is a continuum that
is not aposyndetic at x with respect to y. For if, on the contrary,
H is a continuum in Msuch that xe H° cz Ha M — y, then H J5 =£ 0
or else A + L is aposyndetic at a? with respect to y. Due to the fact
that L is an aposyndetic contiuum (it separates M), H L is contained
in the sum S of a finite number of continua of L each of which
misses y. Now H — S — P + Q, a separation, with xePczA and
QaB. But P + S has a finite number of components since S does
and therefore x lies in the interior of the component of P + S con-
taining x. This means that A + L is aposyndetic at a? with respect
to y which is false. Thus M cannot be aposyndetic at x and this
contradiction shows that M is connected im kleinen at x.

Finally, let us show that M is locally connected at x. Let C be
a subcontinuum such that M — C = A + B, a separation of M (if no
such subcontinuum exists, then M is locally connected at x as re-
marked earlier). If xeC, then because M is connected im kleinen at
x, there exists a continuum iJ such that xe H° c H and C + H
separates ikf. So C + J3Γ is aposyndetic and so is M at each interior
point of C + H. Therefore M is connected im kleinen at each interior
point of C + H which means that M is locally connected at x. If
xeA and A + C is not irreducible about x + C, then by the above
argument, ikf is locally connected at x. On the other hand, if A + C
is irreducible about x + C, then it is well known that M is locally con-
nected at x. This completes the proof of the theorem.

In [4, Th. 5] it is shown that the notions of hereditary aposyndesis
and hereditary local connectedness are equivalent. The next theorem
uses the result of Theorem 1 to establish a stronger characterization
of hereditarily locally connected continua.

THEOREM 2. A compact, metric continuum M is hereditarily
locally connected if and only if M is an aposyndetic continuum that
is separated by no nonaposyndetic subcontinuum.

Proof. Let us prove the sufficiency. The necessity is trivial.
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Since a continuum is hereditarily locally connected if and only if it
is hereditarily aposyndetic, it is sufficient for us to prove that M
contains no nonaposyndetic subcontinuum. Assume that M contains
the nonaposyndetic subcontinuum N. The continuum M is aposyndetic
and hence, by Theorem 1, is locally connected. Let y be any point
in M — N, let U be an open set such that ye £7c UczM — N, and
let C be the component of M — y containing N. Let Vly V29 •••, Vm

be connected open sets of C such that (U — U) C is a subset of
Σ Vi and Vr(y + N) = 0 , 1 ^ i <: m. Denote by A*, 1 ^ i ^ m, an
arc that intersects Vi9 does not contain y, and has only an end point
in common with N.

Because N is not an aposyndetic continuum, there exist points p
and q in N such that N is not aposyndetic at p with respect to q.
Now in the continuum N' = N + Σ F<; + Σ A , the set Σ V{ + Σ Λ
has only a finite number of points in common with N and therefore
N' cannot be aposyndetic at p with respect to q. Furthermore the
set (U — U)-C separates Minto sets E and F with yeE and NcF.
Since the continuum N' contains (U — U)-C but not y, then Fc:N'
because Nr is nonaposyndetic and cannot separate M. But Λί is locally
connected at p; consequently there is a connected open set V in M
containing p and lying in F such that q g V. This means that N' is
aposyndetic at p with respect to q and this contradiction establishes
the theorem.

Another result due to Bing [1, Th. 10] is that a continuum is a
simple closed curve if it is separated by no subcontinuum and cut by
no point. Next this is generalized to continua not separated by any
nonaposyndetic subcontinuum.

THEOREM 3. A compact, metric continuum M is both hereditarily
locally connected and cyclically connected if and only if M is separat-
ed by no nonaposyndetic subcontinuum and cut by no one of its
points.

Proof. Again the proof of necessity is trivial so let us turn to
the sufficiency. All we need to prove is that the continuum is aposynde-
tic because then, by Theorem 2, M will be hereditarily locally connected
and since no point cuts M, then no point separates M and continua
of this type are cyclically connected [3, p. 138].

Let us suppose that M is not aposyndetic at a point x in M.
According to a theorem of Jones' [2, Th. 18] if no point cuts M, then
M is aposyndetic on a dense subset of M. Let y, z be two points at
which M is aposyndetic. By Theorem 1 there exist continua H and
K neither of which contains x such that y e H° c H, ze K° c K, and
H-K= 0. If M — (H + K) is connected, then x is in the interior
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of the continuum M — (H + K) that separates y from z in M. So
this continuum and therefore M itself is aposyndetic at x. Thus we
can assume that M — (H + K) = A + B, a separation of M. One of
the sets, H + A + K or H + B + K, must be a continuum. Let us
show that the other is also a continuum. Let H + A + K be a con-
tinuum and suppose that H+B + K=P + Q, a separation, with
HdP and KaQ. Now If + A + ϋΓ is not irreducible about H + K
or else points in A will cut points in P from points in Q. Let Γ be
a proper subcontinuum of £Γ + A + K containing H + K. If P — H Φ
0 ΦQ- K, then the continua H + A + K, P+ T and Q + Γ all separate
Λf and hence are aposyndetic continua. This means that M is aposyndetic
at each point of A + B. But this is impossible since x lies in A + B.

Suppose P — H — 0 so that P — H, Q — K + J3, and assume that
the point of nonaposyndesis x is in 2?. The continuum Q is not irreducible
about x + K or else in M a point of 5 will cut x from a point of
K. Let T be a proper subcontinuum of Q containing x + K. By the
above argument Q — T is connected. Let the decomposable continuum
Q — T be written as the sum of continua X and F. Both X and F
must intersect T or else as is in the interior of a continuum X + T
or F + T that separates Λf, and hence M is aposyndetic at x. So
X. T Φ 0 Φ Y- T and therefore each continuum X + T and F + T
separates M. Thus each is aposyndetic, so is the sum Q, and this
means that M is aposyndetic at x. Hence x cannot lie in B and must
be in A. If A is connected, then A separates M and M is aposyndetic
at x. On the other hand, if A is not connected, then each point of
A is in the interior of some continuum that separates M and hence
is in the interior of an aposyndetic continuum. This shows then that
M is aposyndetic at each point of A + B and means that the supposition
that H + B + K is not connected is false. So H + B + K as well as
H + A + K is a continuum.

If jff + A + X" and H + J5 + K are both irreducible about H + K,
then let us show that the upper semi-continuous decomposition iJ',
whose elements are points of A together with the sets H and K, is
an arc. To do this let us use the result that if the compact, metric
continuum M is irreducible about two of its points a and b such that
no point of M (including a and 6) cuts any other point of M from
a + 6, then M is an arc [1, Th. 6]. In our case because M contains
no cut points, no point of A cuts any other point of A from H H- K
in H + A + K. In addition neither H nor iΓ cuts the other from a
point of A in if + A + K. This means that the decomposition Hf is
an arc and since H + B + K is also irreducible about H + K, then it
can be similarly decomposed into an arc K'. But then M would be
aposyndetic at each point of A + B which is impossible. So we can
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assume that H + A + K or H + B + K is not an irreducible continuum
about H + K.

Let N be an irreducible subcontinuum of H + A + K about H + K
and let p be a point of A — iV at which M is aposyndetic. Let q be
any point of B at which M is aposyndetic. Now M is connected im
kleinen at both p and q. Therefore there exist continua P and Q such
that p e P° c P, g e Q° c Q, P c A - (AT + x) and Q c B - x. By the
above argument M — (P + Q) = C + D, a separation of M, where
P + C + Q and P + Z> + Q are continua. Since iV-(P + Q) = 0 , AT
lies in C. So (P + D + Q) iV = 0 and therefore P + D + Q c A + ΰ .
This is impossible since peP-A and qeQ B. Thus the assumption
that M contains a point at which M is not aposyndetic has led to a
contradiction and the proof is complete.

COROLLARY (Bίng). If the compact, metric continuum M is
separated by no subcontinuum and cut by no point, then M is a simple
closed curve.

This follows easily as an application of Theorem 3.
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