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INTEGRAL EQUIVALENCE OF VECTORS OVER
LOCAL MODULAR LATTICES, II

JOHN S. HSIA

In an earlier paper in this Journal we have shown that the
integral equivalence problem for vectors in a modular lattice
L on a dyadic local field F can be determined, for dim Lφ 4,
5, 6, by inspecting the numbers represented in F by the charac-
teristic sets which are canonically associated to the given
vectors. The purpose of this paper is to remove this dimensional
restriction of L. In addition, we shall discuss the effective
determination of integral equivalences amongst vectors as well
as derive some " cancellation " results. Finally, we prove, as
expected, that this same improvement carries over in the
characteristic two situation.

The presentation of the results contatined herein shall be as
follows:

l Preliminary observations.
2* Statement and proof of the main theorem.
3* Effective computability.
4* Cancellation theorems.
5* Characteristic two case.
We shall adhere to the same terminology and notations as those

contained in [2]. The following data will be fixed throughout this
paper. L is a unimodular lattice, u and v are two maximal (primi-
tive) vectors in L having the same quadratic length Q(u) = Q(v) = δ.
Integral equivalence between u and v shall always be denoted by u~ v.

1* Preliminary observations* For any maximal vector w e L,
the characteristic set of w in L is defined as

Έlw = {xeL\B(x,w) = 1} .

It is easy to see that

mw = id + O ) 1 = {w + y\ye<wy}

where Ho is any vector in 3Jίw.

NOTATION 1.1. Almost always when we write

^x + έ?y = A(a, β)

we mean that
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(*) Q(x) = a , Q(y) = β , B(x, y) = l .

However, sometimes—and the context under which it occurs will be
clear—it may simply mean that the lattice &x + έ?y is isometric to
A(a, β) without necessarily implying that the basis vectors {x, y) satisfy
(*).

LEMMA 1.2. <V>! = <V>L does not, in general, imply u ~ v.

Proof. Let L = ̂ x + έ?u — A(a', 0) where ar is a norm generator
for 2?L. Suppose v = e[u — (2/a')x] for some unit ε, and y = — ε~\τ.
Then,

A(ε-V, 0) .

Clearly then,

<V>J = ̂ u ^ έ?v = <v>L .

Any isometry σ e O(L) sending u onto v takes x onto, say,

σ(x) = ay + βv,a, βeέ? .

But, B(σ(x), v) = B(x, u) = 1 implies a ~ 1. The length of σ(.τ) must,
on the other hand, be a! so that

(**) a'( X ~~f V + 2/9 - 0 .

This equation (**), of course, does not always admit integral
solution for β when norm generator a9 and unit ε can be arbitrary.
Thus, we can not expect, in general, to have u — v with just requir-
ing their orthogonal complements to be isometric.

1.3. Unless otherwise specified, d i m L ^ 4 shall be assumed
throughout the rest of this paper. To avoid excessive repetitions, let
us fix a few more notations here. For any primitive vector w e L,
and any vector weWv., put

L(w; id) = έ?w + έ7w M(w; w) = L(w; w)- .

LEMMA 1.4. Let dimL be arbitrary. Q($Jlu) = Q(Wlv) implies

Proof. Pick ΰefΰlUJ and veWlv such that Q(u) = Q(v). Let D
be the common discriminant of L(u; ΰ) and L(v; v). Then,



LOCAL MODULAR LATTICES, II 49

<v,y = M(u; ΰ) 1 <<7ζu - δΰ> ^ M(u; ΰ) _L

< » x = M(v; v) 1 ^ < > - δv> ~ M(v; v) _L

An application of Witt's theorem yields

Also, it is not difficult to see that hypothesis of the lemma implies
the equality of the norm groups (via 93: 21, [4]) may be assumed:

S?M(u; ΰ) = &M(v; v) = Sf *

when d i m L ^ δ ; here, ^ * = ^(<>>±) = ^(<i;>L). Hence, by O'Meara's
theorem on modular lattices (93:16, [4]) M(u; ΰ) is isometric to M(v; v).
So let dim L = 4. Adjoin the hyperbolic lattice A(0, 0) to L and call
the enlarged lattice I/ . Then, ζu)L is isometric to ζvyL in I/. But,

<u>x(in U) = <u}} (in L) ± A(0, 0) ,

and similarly for <V>L. Cancelling A(0, 0) gives the desired result.
When dim L ^ 3, the proof is entirely trivial.

REMARK 1.5. The proof of Lemma 1.4 is one without using the
fact that <3(2ftJ equals Q(^Sflv) implies u — v for large enough dimen-
sion of L as we did in Corollary 4.2, [2].

LEMMA 1.6. If \8\ = 0,1, then Q(MU) = Q(2RV) implies u ~ v.

Proof. By Lemma 1.4, ζu}L ~ ζv)L. If δ is an unit, then every-
thing is clear. Otherwise, let δ = 0. Let ΰ and v be the two vectors
as in Lemma 1.4, then we have the radical splittings

= Rad <u>x JL M(u; ΰ) = ^ u ± ikf(^; u)

= Rad <v>1 _L Λf(t;; v) = ^ t ; JL Λί(v; ϊ;) .

But, in this case

(u)1 = <V>X if and only if M(u; ΰ) = Λf(t;; v ) .

In view of this Lemma 1.6, we shall henceforth, unless otherwise
noted, assume that \δ\ is neither 0 nor 1.

1.7. In the proof of Theorem 4.4, [2], an important fact used
was Lemma 4.5, [2], whose proof can be much simplified by observing
that in the case when both u and v are Type I vectors, Q(Wflu) equals
Q(ίΐftv) implies u and v are of the same parity, and also (u}L is iso-
metric to <V>X via Lemma 1.4. Therefore, u — v by Proposition 3.5,
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[2]. Hence, Lemma 4.5, [2] becomes easy to see.

2* Statement and proof of the main theorem*

MAIN THEOREM 2.1. Let L be an unimodular lattice over a
dyadic local field; then, two maximal (primitive) vectors in L having
the same quadratic length are integrally equivalent if and only if
their characteristic sets represent the same numbers in the field.

NOTATIONS 2.2. Put Sf * = %?«u>L) = S^O) 1 ). For any ΰ e
we set

λ- = δQ(ΰ) - 1 ,

the discriminant of <^ΰ + ^u. The letters α, b shall always be
used for norm and weight (base) generator of S^L respectively;
similarly, α* and δ* for the norm group S^*.

2.3. In view of Theorem 4.1, [2], it suffices to prove for dimL =
4, 5, 6. Proposition 3.5, [2] allows us to assume that both u and v
are Type II vectors.

2.4. Because u and v are Type II vectors, we may further sup-
pose henceforth that ζu}1 (hence, also ζv}1) are not "depleted" in
the sense of [1], For, if not, then the norm group of M(u; ΰ) will
be equal to &*,vΰeWlu. Consequently, the integral equivalence be-
tween u and v may be readily deduced from the hypothesis of the
Main Theorem. So, in particular, α*δ* ~ π (i.e., ord α* + ord 6* is odd).

2.5. Roughly, we first observe that the number δ may be assumed
to have a special feature. Using this "reduction lemma," we settle
the 4-dimensional case by computational means; in the case of dimL
equals five, we shall show that the hypothesis, and hence also the
conclusion, of Theorem 4.4, [2] is satisfied. Finally, the dim L = 6
case falls through by a modified argument tailored after the 5-dimen-
sional situation.

LEMMA 2.6. // the quadratic defect Sf{δX-a*) is strictly con-
tained in the ideal a*b*& for some norm generator α* of &*, then

' ) S α * δ * ^ for every norm generator a' of &*.

Proof. Put δ\u = a*t2 + b*t2 + δ χ t,aeέ?. Now, u is a Type
II vector implies | ί | < l . The hypothesis together with the fact
that α*6* — π yields \a\ < 1. Now then,
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a' = α*ε2 + b*M, \e\ = 1, Me &

and

(o) hχ-a' = a*ψe + α*δ*αε2 + a*t*b*M + b*2aM .

The quadratic defect of the right hand side of (o) is clearly contained
in a α*6*^ since each of the last three terms is in it.

COROLLARY 2.7. If lue-$Ru such that for some a*, we have
&(dX-a*) = α*&*^ then, &(dXφ') — a*b*<^ for every norm generator
<L* Of 5?*.

COROLLARY 2.8. // lΰeMu such that for some α*, we have
^(δλ^α*)9α*&*^, then for every xeWlu such that λ ^ e λ ^ 2

denotes the group of units in έ?), the inequality below is valid

/ ) g α * 5 * ^ , af norm generators of &* .

REDUCTION LEMMA 2.9. We may henceforth assume that

for every ΰ&Έlu and every norm generator af of 5f*. (Of course,
the same goes for all veWlυ and all a! of <&*.)

Proof. Since u is a Type II vector so that, by definition, for
each vector u e $Jl%, the sublattice M{u; u) has norm ideal equal to
α * ^ . If there exists a vector ue$Ru with the property that

then Corollary 2.8 together with a simple computation of the weight
ideal Ύ^«uY) of <uY tell us that ^M{u; u) equals 6*^. In other
ivords, we have an equality of the norm groups

%?M(u;ΰ) - 5f* .

Now, pick any veMv with Q(v) = Q(ΰ). Since λ ^ G λ ^ 2 , Corollary
2.8 implies that the norm group of M(v;v) must equal to Ŝ 7* also.
Hence,

M(v; v) = M(u; ΰ)

by Witt and O'Meara. Thus, u ~ v.

2.10. What Lemma 2.9 says, in effect, is that for any norm
generator α* and weight generator 6* of 5^*, and any vector ue$Jlu,
the number δ has the special feature that
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δx- = a*t2 + δ*7

where 7 is an unit. (Of course, t is not an unit by Type Π-ness.)

2.11. Proof of the Main Theorem for dim L = 4.

Proof. The following claims may be readily proved and we do
not give the proofs here:

(I) For any binary nondepleted unimodular lattice K, whenever
K is represented as K ~ A(a, 7) either a or 7 must be a norm
generator for &K and furthermore, the quadratic defect £&(ay) must
be ^V~L-W~L.

(II) If K has same hypothesis as in statement (I), and if, say,
a is a norm generator for &K and Q(x) = a, for some xe K, then
K = <^x + &y = A(a, β)—where one may take, if needed, β to be a
weight (base) generator.

SUBLEMMA. Suppose K = cώ^(a, b) with ab ~ π and b & 2έ?—in
Riehm's notation, see [6]—and if L is any binary unimodular lat-
tice such that FK (i.e., F(&#K) is isometric to FL, and a'eQ(L)
is a norm generator for both &L and &K, then K = L.

Proof. Let Q(x) = α', for some primitive vector xeL. FL iso-
metric to FK implies the discriminant of K equals that of L so that
if we write the common discriminant as — (1 + a) whose defect is aέ?,
then

L ~ c^(a', —aa'~ι) .

It is easy to see ord( — aa'-1) = ord (b). Hence, their weights (and
therefore their norm groups as well) are equal.

SUBLEMMA. There exists a vector ΰ e -$Jlu such that M(u; u) has
norm group equaling to <&*.

Proof. Choose any u e Έiu. If the norm group of M(u; u) is not
Ŝ 7*, we put

< » J ~ M(u; u) _L <δλ̂ > ,

where, since L is 4-dimensional M(u;u) is isometric to A(a*,β). (N.
B. We used Type Il-ness here.) Performing an ow-transform (see [5])
changing β to β j_ SX^ we see we endup with

<X>L = M(u; ΰ) _

where
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M(u; ΰ) = A{a*, β _L δX^)

whose norm group is obviously that of ^ * .

Using the results collected in this § 2.11, the proof of the dim L = 4
case is apparent. Indeed, choose such a vector ΰ in Wu as mentioned
in the sublemma. Choose a veTtv having Q(u) — Q(v). Since 2.4
allows us to assume <V>L is not depleted, one of the sublemmas im-
ply ies immediately that M(u; u) = M(v; v).

2.12. Proof of the Main Theorem for dim L = 5. In view of
Theorem 4.4, [2], it is sufficient to prove the following statement.

PROPOSITION. Let dim B be either 5 or 6, u be a Type II vector
in L with <V>X being nondepleted; and Q(u) = δ is a number satisfy-
ing the equation in § 2.10. Then, there exists a vector ΰ e Ίίtu such
that M(u; ΰ) is isotropic.

Proof. Recall 5?«u»ι = %?* = a*έ?2 + b*έ?, for any norm
generator α* and weight generator 6* of Sf(^X). Pick any u from
Wlu. We see by 93:21, [4], the sublattice M(u;u) may be assumed
to have norm group equal to 2^*.

If dimL - 5 then by 93: 18, [4],

M(u; u) ~ A(V, Apb'-1) J_ < -

where A = 1 — 4p. Here again, V can be any weight generator! And
d is the discriminant of M(u; u). But, clearly by a suitable op-trans-
formation on M(u; u), we can have the following splitting:

( * ) M(u; u) ~ A(b' 1 (-dJ)s2, Apb'~ι) ± <ε>

for some unit ε; s can be any integer.
Now, § 2.10 tells us that

-δxz = (-dJ)f + b ,

where b is a weight generator and t is not an unit because of Type
H-ness. All we have to do next is to let b' to equal to b and apply
the above op-transform so that s = t. Finally, apply another op-
transform on <V>\ this time, changing br JL ( — dA)s2 into

6' _L (-dJ)s2 J_ δX- = 0

and the resulting picture looks like

<XX ~ A(0, 0)
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for some unit μ and some u e 3JΪW. (N.B. We get surely an hyper-
bolic component because Apb'"1 lies in 2<^\) This is, of course, the
vector ΰ that does the job for us.

The proof of the case for dim L = 6 is almost identical except
there the original sublattice M(u; ΰ) looks like

M(u; u) s A(b'9 ±ρV~ι) I A{a', [1 -

for arbitrarily chosen norm generator a' and weight generator b'.

REMARK 2.13. An important observation to be made in the proof
of the proposition in § 2.12 is that under the conditions given in that
proposition, one can always derive a vector ΰ e 9KW such that the
sublattice M(u; ΰ) has an hyperbolic component. This is the key to
the short proof the dim L = 6 case of our Main Theorem to be given
below. Our first proof for this 6-dimensional situation involved long
and elaborate arguments treating the vectors "case by case"; that is,
considering them when they are both ^r- (gf-) regular, irregular,
... etc. Yet, it is precisely by looking at them at such detailed level
that enabled us to realize the necessity for some result like our
"Reduction Lemma", and hence the equality in §2.10.

2.14, Proof of the Main Theorem for dimL = 6.

Proof. By § 2.13, choose a vector ΰ e 2KW such that M(u; ΰ) in-
corporates an hyperbolic component. [N.B. Strictly speaking, the ex-
istence of such a vector ΰ e Wlu has thus far been verified only when
M(u;ΰ) assumes the so-called "if-form", see 93:18, [4]; that is

M(u; ΰ) ~ A(V, 46'-1) 1 A(a', [1 -

It is not difficult to see, however, that if M(u; ΰ) assumes the "J-form":

M(u; ΰ) = A(b'f 0) l A(α', -aa'~ι)

where a is that integer such that

then, an entirely analogous argument carries through.]
A word of caution! The temptation here is to cancel the A(0, 0)

component in both (u)L and ζvy1, and then claim a "reduction" to
the quaternary case. The fallacy is clearly that the resulting charac-
teristic sets in the now smaller lattices need not necessarily represent
the same field elements any more! What one can claim instead is
that one can indeed find a vector w* in Mu such that M(u; u*) has the
"J-form" because
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s A(a*f •) 1 A(0, 0)

^ A(α*, •) 1 A(δXΰ, 0) ± <βK*> for some u* e

~ A(a*, •) i- A(δ*f 0) _L

Pick any v* from Wtv such that Q(v*) equals Q(u*). Put

for some 6 e <£?. We now claim Mfy; v*) must also assume a "J-form"
This is clear when α*6~l. On the other hand, if a*b~π, then δ*6~l
so that since FM(u; u*) is isometric to FM(v; v*), our claim becomes
clear. Therefore, we have

M(v; v*) = A(a*, •) JL A(b, 0)

and

<^>i ~ M(v; v*)

We are now presented in a situation which is strikingly similar to the
5-dimensional case in Theorem 4.4, [2]. Indeed, if 6 has order greater
than that of 6*, a similar op-transformation finishes the proof.

2.15. The proof of the Main Theorem is now complete.

3. Effective computability*

3.1. Binary case* Given a maximal vector u with quadratic length
Q(μ) = δ, it is easy to find a vector ΰ from Mu. Do the same for v.
Compute Q(ΰ) and Q(v) and see if they are congruent modulo o)^,
where ω, as usual, denotes max {<?, 2}. If they are, then it is easily
verified that u and v must be of the same parity so that Theorem
2.1, [2], tells us u ~ v. If not, obviously u and v are not of the
same parity. Hence, u and v are not integrally equivalent. Since the
vectors u and v are arbitrarily chosen, we see the actual computation
involved for checking integral equivalence in dimL = 2 is quite minimal.

3.2. Computationally, it is not always a pleasant task to deter-
mine Q(Wlu) for a given vector u. Fortunately, for sufficiently large
dimension of the given lattice L, say dimL ^ 5 , there is a good
remedy. We have, indeed the following result.

THEOREM. Suppose one can find a single pair of vectors ΰ e SKM

and veWlv such that Q(ΰ) = Q(v), and suppose further we have
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then, u ~ v whenever dim L ^ 5.

Proof. Express

<u>L = M(u; u) J_

By 93:21, [4], there is a Jordan decomposition

O ) 1 s M(u; v,*) _L

such that Xu* = λ*, and ^(M(u; u*)) = S^*. Do the same for vector
v. We see then the norm groups for M(u; u*) and M(v; v*) are equal
and moreover, ζu}L = <V>L, whenever % and # are anisotropic vectors.
If 8 should be zero, then modulo radicals <V>X is just M(u; ΰ).
Similarly for <¥>L. But, ^«n}L) = &(M{u; ΰ)) so that the hypothesis
that the norm groups for <V>L and <V>X being equal implies here their
isometry.

Suppose, for the moment, that dim L ^ 7, then dim M(u; ΰ) g: 5
so that

Therefore, the hypothesis of the theorem here implies Q(2Ktt) =
and ^ — v by the Main Theorem.

For dim L = 6, again ikί(^; ΰ) represents every element of its own
norm group by a theorem of Riehm, see Theorem 7.4, [6]. So, once
again u ~ v by Main Theorem.

Let dim L = 5. If % is ^-regular and S satisfies condition (D) in
the sense defined in §3, [2], then it is not difficult to see with the
help of Corollary 3.3, [2], that u ~ v. If δ does not satisfy condi-
tion (D), then, since we have already shown that ζu}L = <V>X, we
deduce u ~ v by Proposition 3.4, [2]. So, let u be %Ar-regular, but
^-irregular. If £^(δλ^α*)§Ξα*&*^ = 6*^, then, we can show, by
same argument in the proof of Main Theorem, that 5^(M(u; ΰ))
would equal to S^7*. Similarly, for t and M(v; v). Thus, u — v. If,
on the other hand,

then, as in §2.14, we can find a vector u* such that M(u\ u*) supports
an hyperbolic component and again we get

Q(M(u; u*)) = %?(M(u; u*))

by Theorem 7.4, [6]. Everything repeats once more; u ~ v is there-
fore clear.

The theorem is therefore proved.
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COROLLARY 3.3. If dimL ^ 6, S^«V>L) equals ^ ?«i;> 1) and there
exists a single pair of vectors ΰ e %RU and v e Tlv such that

Q(u) = Q(v) mod 5f (O) 1 ) ,

then, u ~ v.

REMARK 3.4. As in the binary case, if one can concoct a single
pair ΰ e Tlu and ve Wlv such that Q{u) is not congruent to Q(v) modulo
5^*, then u can not be integrally equivalent to v. Here again, there-
fore, the computation is reduced essentially to finding the norm groups
for <V>L a n d (vyλ The Jordan decompositions involved are rather
simple and the associated fundamental invariants can usually be read off
directly from an arbitrary Jordan splitting. In the cases for dim L — 3,
4, it is expedient to check the classification of the given vectors u
and v and then employ the results contained in § 3, [2]. The excep-
tional cases in these dimensions must be handled via characteristic
sets, which for such low dimensions are not computationally unman-
ageable.

4* Cancellation theorems*
One of the basic results in the study of integral quadratic forms

over dyadic local rings is a result of O'Meara's which allows one to
(orthogonally) cancel hyperbolic components. Over fields (characteristic
not two), the classical Witt's Theorem can be stated in any of the two
equivalent forms: the cancellation version and the extension version.
The solutions given in this paper and in [2] completes the investigation
of one-dimensional integral analogue of Witt Extension Theorem for the
case of modular forms over any dyadic local ring. (N.B. Over rings,
cancellation is not equivalent to extension.) At present, the theory of
orthogonally cancelling equivalent forms over rings (even over dyadic
local rings) is still practically nonexistent. In this short section, we
observe some immediate consequences of our Main Result and others
from §3.

NOTATION 4.1. If T are S and isometric sublattices of a given
lattice L and if te T, se S, then we write t ~ s over [T: S] to mean
that there is an isometry σ on L such that σ(t) = s, and o(T) — S.

THEOREM 4.2. Let L = Ku l Ju = Kv JL JV with Ju ^ Jv and
ue Ku,ve Kv. Moreover,

Q{JU) c Q(Ttu in Ku)

Q{JV) S Q(mv in Kv) .

Then, u — v over L implies u ~ v over [Ku : Kv].
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COROLLARY 4.3. // u is integrally equivalent to v over

K j_ A(0, 0) ± Λ(0, 0)

where u and v both lie in K, then u ~ v over K _l_ A(0, 0). (N.B.
Thus, if there are two hyperbolic components in the orthogonal com-
plements of the vectors, one can always cancel at least one ef them.)

COROLLARY 4.4. Let L = Ku _L Ju = Kv j_ /„

u 6 ϋΓM, v 6 Kυ, dim ϋΓ% ^ 6. Furthermore, g?Ju g ^ « i 6 > 1 m Ku) and
&JυS &(ζyyL in Kv) Then, u~v over L implies u~v over
[K,: £•.].

5* Characteristic two case* Although there is no longer the
possibility for L having dimension five, it is not difficult to see
that the techniques introduced in the proof of the Main Theorem
in § 2 carry through here in the characteristic two case—with obvious
parallel arguments. Hence, the actual proofs are left as exercises to
the readers. (Note, for example, that the case when both u and v
are both Type I vectors is once more being taken care of by a result
like that of Proposition 3.5, [2]. However, the proof for this propo-
sition must be modified as follows. Pick any u from Tlu. Let σ be
the isometry sending <(u)L onto ζvyL. Put

σM(u, ΰ) — M(v, v)

for some veWlv. If d is integral, then the hypothesis of u and v be-
ing of the same parity implies the equality of norm groups

SfL(M, u) - gfL(v, v) .

Hence, an isometry between the lattices L(u, ΰ) and L(v, v) by theorems
of Sah and Arf (the characteristic two parallels of O'Meara and Witt).
If d is not integral. Once again, define the space isometry:

Φ: FL(u, ΰ) > FL(v, v)

sending u onto v and u + δΰ onto μv + δv, where μ is that number
in the ground field which appears from comparing the Arf invariants
—instead of the discriminant comparisons as in the characteristic zero
situation—of the two lattice. Namely,

δQ{ΰ) = δQ(v) + μ2 + μ .

It is readily checked that Φ indeed is an lattice-isometry between
L(u, u) and L(v, v).

Again, when δ is integral: after seeing L(u, ΰ) is isometric to
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L(v, v). We apply Theorem 2.1, [2] whose characteristic two analogue
was proved in [3].)

Thus, we state the result:

THEOREM. Let L be any unimodular lattice over the local ring
& — &[[ττ]] of formal 'power series in one nniformizing variable π
and k being a finite field of characteristic two. Two maximal vectors
having same quadratic lengths are integrally equivalent if and only
if their respective characteristic sets represent the same elements in
&'. (N.B. The result is of course valid for any 3ϊ-modular lattice, Sί
a fractional ideal in the quotient field of &.)

Clearly, the discussion about effective computability treads through
a parallel course.
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