SEMIGROUPS SATISFYING IDENTITY xy = f(x, y)

TAKAYUKI TAMURA

Dedicated to Professor Keizo Asano on his Sixtieth Birthday

Let f(x, y) be a word of length greater than 2 starting in y and ending in x. The purpose of this paper is to prove that a semigroup satisfies an identity xy = f(x, y) if and only if it is an inflation of a semilattice of groups satisfying the same identity. As its consequence we find a necessary and sufficient condition for xy = f(x, y) to imply commutativity.

Recently E. J. Tully has proved [7] that if a semigroup S satisfies an identity of the form $xy = y^m x^n$ then S is an inflation of a semilattice of abelian groups G_{α} 's satisfying $x^k = 1$ for all $x \in G_{\alpha}$ where k is the greatest common divisor of m-1 and n-1; hence $xy = y^m x^n$ implies commutativity. This paper is to consider the general case of the right side of $xy = y^m x^n$ with the left side unchanged.

Let f(x, y) denote a word involving both x and y, and |f(x, y)| be the length of the word f(x, y): $|x|_f$ be the number of x's which appear in f(x, y); $|y|_f$ be also defined for y. For example if $f(x, y) = x^3y^2xy$, |f(x, y)| = 7, $|x|_f = 4$, $|y|_f = 3$. Throughout this paper we assume |f(x, y)| > 2, equivalently $|x|_f > 1$ or $|y|_f > 1$ or both.

Consider an identity of the form

$$(1) xy = f(x, y)$$

in semigroups. A question is raised: Under what condition on f(x, y) does (1) imply commutativity xy = yx? What we can say immediately is that f(x, y) has to start in y. Because if f(x, y) starts in x, then left zero semigroups of order > 1 satisfy (1) but are not commutative. For the similar reason f(x, y) must end in x. From now on we assume f(x, y) in (1) has the form:

$$\{f(x, y) = y^{m_1}x^{n_1}\cdots y^{m_s}x^{n_s}, m_i > 0, n_i > 0, i = 1, \cdots, s , \}$$
 and $|f(x, y)| > 2$.

A semigroup D is called an inflation of a semigroup T if T is a subsemigroup of D and there is a mapping φ of D into T such that

$$\varphi(x) = x$$
 for $x \in T$

and

$$xy = \varphi(x)\varphi(y)$$
 for $x, y \in D$.

Let L be a semilattice. A semigroup S is called a semilattice L of semigroups S_{α} , $\alpha \in L$, if S is a disjoint union of $\{S_{\alpha}; \alpha \in L\}$ and

$$S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$$
 for all $\alpha, \beta \in L$.

Needless to say an identity is preserved by homomorphic images and by subsemigroups; in particular the identity xy = f(x, y) with (2) is satisfied by any semilattice.

THEOREM. A semigroup S satisfies an identity xy = f(x, y) with (2) if and only if S is an inflation of a semilattice of groups satisfying the same identity.

COROLLARY. Let f(x, y) be a word involving both x and y, and let |f(x, y)| > 2. xy = f(x, y) implies xy = yx in semigroups if and only if

- (3.1) f(x, y) starts in y and ends in x, and
- (3.2) xy = f(x, y) implies xy = yx in groups.

The statement in the theorem can be replaced by another statement. In the following proposition we do not assume xy = f(x, y).

Proposition. The following three statements are equivalent:

- (4.1) S^2 is a semilattice L of groups G_{α} , $\alpha \in L$.
- (4.2) S is a semilattice L of semigroups S_{α} , $\alpha \in L$, each of which is an inflation of a group G_{α} and

$$x_{\alpha}y_{\beta} \in G_{\alpha\beta}$$
 for $x_{\alpha} \in S_{\alpha}, y_{\beta} \in S_{\beta}$.

(4.3) S is an inflation of a semilattice L of groups G_{α} , $\alpha \in L$.

Let a_1, \dots, a_k be a finite number of elements of a semigroup S. All the elements x of S each of which is the product of all of a_1, \dots, a_k (admitting repeated use) form a subsemigroup of S. It is called the content (of a_1, \dots, a_k) in S and denoted by $C(a_1, \dots, a_k)$ or C. The elements a_1, \dots, a_k are not required to be distinct. For example $C(a, a) = \{a^i; i > 1\}$ but $C(a) = \{a^i; i \geq 1\}$. The number k is called the rank of $C(a_1, \dots, a_k)$.

Any semigroup S has a smallest semilattice-congruence (\mathscr{S} -congruence) ρ_0 , that is, S/ρ_0 is a semilattice and if S/ρ is a semilattice, then $\rho_0 \subseteq \rho$. The decomposition of S induced by ρ_0 is called the greatest \mathscr{S} -decomposition of S. If $\rho_0 = S \times S$, S is called \mathscr{S} -indecomposable. An \mathscr{S} -decomposition $S = \bigcup_{\alpha \in L} S_\alpha$ of S is greatest if and only if each S_α is \mathscr{S} -indecomposable [4], [5], [6].

LEMMA 1. A content is \mathcal{S} -indecomposable. (See [6].)

LEMMA 2. $a\rho_0 b$ if and only if there is a finite sequence of contents

 C_1, \dots, C_t such that

$$(5) a \in C_1, \quad C_i \cap C_{i+1} \neq \emptyset \ (i = 1, \dots, t-1), \quad b \in C_t.$$

Proof. Define ρ_1 as follows: $a\rho_1b$ if and only if there is a finite sequence of contents C_1, \dots, C_t satisfying (5). We will prove $\rho_0 = \rho_1$. It is easily shown that ρ_1 is an equivalence relation. To prove compatibility, suppose $a\rho_1b$. There exists a sequence of contents satisfying (5), more specifically

$$\begin{cases} C_i = C(a_{i1}, \, \cdots, \, a_{ik_i}) & i = 1, \, \cdots, \, t \\ a \in C_1, \quad d_i \in C_i \cap C_{i+1} & (i = 1, \, \cdots, \, t-1), \quad b \in C_t \; . \end{cases}$$

Let $c \in S$. Consider a sequence of contents

$$C'_{i} = C(c, a_{i1}, \dots, a_{ik_{i}}) (i = 1, \dots, t - 1)$$
.

Then $ca \in C_1'$, $cd_i \in C_i' \cap C_{i+1}'(i=1,\cdots,t-1)$, $cb \in C_i'$. Hence $ca\rho_1cb$. Likewise $ac\rho_1bc$. Thus ρ_1 is a congruence. Since $a, a^2 \in C(a)$ and $ab, ba \in C(a, b)$, we see $a\rho_1a^2$, $ab\rho_1ba$ for all $a, b \in S$, that is, ρ_1 is an \mathscr{S} -congruence on S. Let ρ be an \mathscr{S} -congruence on S. We will prove $\rho_1 \subseteq \rho$. Let $a\rho_1b$. There is a sequence C_1, \cdots, C_t described in (5'). Since C_i is \mathscr{S} -indecomposable $(i=1,\cdots,t)$ by Lemma 1, we have $a\rho d_1, d_1\rho d_2, \cdots, d_{t-1}\rho b$, hence $a\rho b$. Since ρ_1 is the smallest \mathscr{S} -congruence, we have $\rho_0 = \rho_1$.

Let

$$S = igcup_{lpha \in L} S_lpha, \;\; S_lpha S_eta \subseteq S_{lphaeta}, \;\; S_lpha \cap S_eta = arnothing, \;\; lpha
eq eta$$

be the greatest \mathcal{S} -decomposition of S. We notice that if a and b are in S_{α} then the contents C_i ($i=1,\dots,t$) described in (5) are contained in S_{α} .

Lemma 3. An ideal of an \mathcal{S} -indecomposable semigroup is \mathcal{S} -indecomposable.

Proof. An equivalent statement is proved in [4]. However, we will prove this by using Lemma 2. Let I be an ideal of an $\mathscr S$ -indecomposable semigroup S. Let $a, b \in I$, $a \neq b$. By Lemma 2, there is a sequence of contents $C_i = C(a_{i1}, \dots, a_{ik_i}) \subseteq S(i = 1, \dots, t)$ such that $a \in C_i$, $d_i \in C_i \cap C_{i+1}$ ($i = 1, \dots, t-1$), $b \in C_t$. Consider a sequence of contents:

$$C_0'=C(a),\,C_i'=C(a,\,a_{i1},\,\cdots,\,a_{ik_i}) \qquad (i=1,\,\cdots,\,t) \ C_{2t+1}'=C(b),\,C_{t+i}'=C(b,\,a_{i1},\,\cdots,\,a_{ik_i}) \qquad (i=1,\,\cdots,\,t) \;.$$

Then

$$egin{aligned} a \in C_0', & a^2 \in C_0' \cap C_1', & ad_i \in C_i' \cap C_{i+1}' & (i=1,\ \cdots,\ t-1) \ ab \in C_t' \cap C_{t+1}', & d_ib \in C_{t+1}' \cap C_{t+i+1}' & (i=1,\ \cdots,\ t-1) \ b^2 \in C_{2t}' \cap C_{2t+1}', & b \in C_{2t+1}' \end{aligned}$$

and all $C'_{j}(j=0,\dots,2t+1)$ are in I. By Lemma 2, we have proved that I is \mathcal{S} -indecomposable.

Proof of proposition. The proof of $(4.2) \Rightarrow (4.1)$ and $(4.3) \Rightarrow$ (4.1) is immediate. We will prove only $(4.1) \Rightarrow (4.2)$ and (4.3). Assume $S^2 = \bigcup_{\alpha \in L} G_{\alpha}$ where G_{α} is a group for each α . This is the greatest \mathscr{S} -decomposition of S^2 because the groups G_{α} are \mathscr{S} -indecomposable. Let

$$S = \bigcup_{\xi \in L'} S_{\xi}$$

be the greatest \mathscr{S} -decomposition of S. Since S_{ξ}^2 is an ideal of the \mathscr{S} -indecomposable semigroup S_{ξ} , S_{ξ}^2 is also \mathscr{S} -indecomposable by Lemma 3. For each $\alpha \in L$ there is a unique α' in L' such that $G_{\alpha} \subseteq S_{\alpha'}$; for each $\eta \in L'$ there is a unique η'' in L such that $S_{\eta}^2 \subseteq G_{\eta''}$. We define two mappings f and $g, f: L \to L', g: L' \to L$ by $\alpha' = f(\alpha)$ and $\eta'' = g(\eta)$, respectively; in other words

$$G_lpha \subseteq S_{f(lpha)}, \quad S^{\scriptscriptstyle 2}_\eta \subseteq G_{g(\eta)}$$
 .

This implies $G_{\alpha} \subseteq S^{z}_{f(\alpha)} \subseteq G_{gf(\alpha)}$. It follows that $gf(\alpha) = \alpha$; thus gf is the identity mapping on L. Likewise fg is the identity mapping on L'. Hence f and g are one-to-one and onto, $g = f^{-1}$.

Identifying α with $f(\alpha)$, and L with L', we have

$$(7) S = \bigcup_{\alpha \in I} S_{\alpha}$$

(8)
$$S^2 = \bigcup_{\alpha \in I} S_{\alpha}^2, \quad S_{\alpha}^2 = G_{\alpha}$$
 .

We notice that $G_{\alpha} \subseteq S_{\alpha}$, hence $S^2 \cap S_{\alpha} = S_{\alpha}^2 = G_{\alpha}$. By the assumption on (6), (7) is the greatest \mathscr{S} -decomposition of S.

Let e_{α} be an identity element of G_{α} . Since $S_{\alpha}^{2} = G_{\alpha}$, e_{α} is a unique idempotent of S_{α} . We will prove (9) through (12) below:

$$e_{\alpha\beta}e_{\alpha}=e_{\alpha\beta}=e_{\alpha}e_{\alpha\beta}\qquad \qquad \text{for all }\alpha,\,\beta\in L\;.$$

Noticing that $e_{\alpha\beta}e_{\alpha}\in G_{\alpha\beta}$,

$$(e_{lphaeta}e_{lpha})(e_{lphaeta}e_{lpha})=(e_{lphaeta}e_{lpha}e_{lpha}e_{lpha})e_{lpha}=(e_{lphaeta}e_{lphaeta}e_{lpha})e_{lpha}=e_{lphaeta}e_{lpha}$$
 .

Thus $e_{\alpha\beta}e_{\alpha}$ is an idempotent, hence $e_{\alpha\beta}e_{\alpha}=e_{\alpha\beta}$. The proof of the remaining part is done in the same way.

(10)
$$x_{\alpha}e_{\beta} = e_{\beta}x_{\alpha}$$
 for all $x_{\alpha} \in S_{\alpha}$, all $\alpha, \beta \in L$.

By using (9),

$$egin{aligned} x_{lpha}e_{eta}&=(x_{lpha}e_{eta})e_{lphaeta}=x_{lpha}(e_{eta}e_{lphaeta})=x_{lpha}e_{lphaeta}=e_{lphaeta}x_{lpha}e_{lphaeta}\ &=e_{lphaeta}(e_{lphaeta}x_{lpha})=e_{lphaeta}x_{lpha}=(e_{lphaeta}e_{eta})x_{lpha}=e_{lphaeta}(e_{eta}x_{lpha})=e_{eta}x_{lpha}. \end{aligned}$$

(11)
$$e_{\alpha}e_{\beta}=e_{\alpha\beta}=e_{\beta}e_{\alpha}$$
 for all $\alpha,\,\beta\in L$.

We have $e_{\alpha}e_{\beta}=e_{\beta}e_{\alpha}$ by (10). It can be easily proved that $e_{\alpha}e_{\beta}$ is an idempotent. Therefore $e_{\alpha}e_{\beta}=e_{\alpha\beta}$.

By (10) and (11) we have

$$(x_{\alpha}e_{\alpha})(y_{\beta}e_{\beta}) = x_{\alpha}(e_{\alpha}y_{\beta})e_{\beta} = x_{\alpha}(y_{\beta}e_{\alpha})e_{\beta} = (x_{\alpha}y_{\beta})(e_{\alpha}e_{\beta}) = (x_{\alpha}y_{\beta})e_{\alpha\beta} = x_{\alpha}y_{\beta}.$$

Let mappings $\varphi_{\alpha}: S_{\alpha} \to G_{\alpha}(\alpha \in L)$ be defined by

$$\varphi_{\alpha}(x_{\alpha}) = x_{\alpha}e_{\alpha} = e_{\alpha}x_{\alpha}$$
.

Then each φ_{α} is a homomorphism of S_{α} onto G_{α} such that $\varphi_{\alpha}(x_{\alpha}) = x_{\alpha}$ for all $x_{\alpha} \in G_{\alpha}$ and

(13)
$$x_{\alpha}y_{\beta} = \varphi_{\alpha}(x_{\alpha})\varphi_{\beta}(x_{\beta}), \quad x_{\alpha} \in S_{\alpha}, \quad y_{\beta} \in S_{\beta}.$$

Consequently S is an inflation of $G = \bigcup_{\alpha \in L} G_{\alpha}$ and S_{α} is an inflation of G_{α} . Thus we have proved that $(4.1) \Rightarrow (4.2)$ and (4.3).

REMARK. In the proof of the proposition, if we use the fact that a semilattice of groups is an inverse semigroup, we immediately have (11), hence (9). However, we proved these directly without using the property of inverse semigroups.

Proof of theorem. We will need two lemmas to prove the theorem.

LEMMA 4. If S satisfies xy = f(x, y) with (2), then every content of rank greater than 1 is a group.

Proof. Let $C = C(a_1, \dots, a_k)$, k > 1. Each element of C is expressed as a word involving all the letters a_1, \dots, a_k . Let $w \in C$ be decomposed into the product of two words w_1, w_2 of a_i 's, namely elements w_1, w_2 of S: $w = w_1w_2$. Replacing w by $f(w_1, w_2)$ repeatedly we can arrange w such that $|a_i|_w > 1$ for all i. First we will prove that each element w has a form $a_iv', v' \in C$. If a_i is the initial letter of w, then we have already the form since $|a_i|_w > 1$ and hence $v' \in C$. Suppose

$$w = w_1 a_i w_2, w_1, w_2 \in S$$
.

Replacing $w_1(a_iw_2)$ by $f(w_1, a_iw_2)$ we have a form $w=a_iv'$. Since $|a_j|_w>1$ for all $j, |a_i|_{v'}\geq 1$ and $|a_j|_{v'}>1$ for $j\neq i$. Hence $v'\in C$. Again we can arrange v' such that $|a_j|_{v'}>1$ for all j. Now let w' be any element of C:

$$w'=a_{i_1}a_{i_2}\cdots a_{i_l}.$$

By repeating the same procedure

$$w = a_{i_1} w_{i_1} = a_{i_1} a_{i_2} w_{i_2} = \cdots = a_{i_1} a_{i_2} \cdots a_{i_l} w_{i_l} = w' w_{i_l}$$

where $w_{i_j} \in C(j=1,\dots,l)$. In the same way we have $w=w'_{i_l}w'$ for some $w'_{i_l} \in C$. Thus we have proved the right and left divisibility; therefore $C(a_1,\dots,a_k)$ is a group.

LEMMA 5. Let $S = \bigcup_{\alpha \in L} S_{\alpha}$ be greatest \mathscr{S} -decomposition of a semigroup S. If S satisfies xy = f(x, y) with (2), then S_{α}^2 is a group and $S^2 = \bigcup_{\alpha \in L} S_{\alpha}^2$.

Proof. Let $a \in S_{\alpha}^2$, a = xy for some $x, y \in S_{\alpha}$. Then a is in the content C(x, y) which is a subgroup of S_{α}^2 by Lemma 4. Thus S_{α}^2 is a union of subgroups, hence a disjoint union of maximal subgroups of S_{α} . We will prove that for two distinct arbitrary elements a and b of S_{α}^2 there are subgroups G_a and G_b which contain a and b, respectively, such that $G_a \cap G_b \neq \emptyset$. Then S_{α}^2 will be a group. Since a, $b \in S_{\alpha}$ there is a finite sequence of contents C_1, C_2, \dots, C_t in S such that

$$a \in C_1$$
, $C_i \cap C_{i+1} \neq \emptyset$ $(i = 1, \dots, t-1)$, $b \in C_t$.

As remarked in § 1, $C_i \subseteq S_\alpha$ $(i=1,\cdots,t)$. Since $a,b \in S_\alpha^2$, we may assume C_1 and C_t are of rank > 1. Also we may assume C_2,\cdots,C_{t-1} are of rank > 1 for the following reason. Suppose C_i , 1 < i < t, has rank 1, $C_i = [x]$, the cyclic subsemigroup generated by x. If x is in either $C_i \cap C_{i-1}$ or $C_i \cap C_{i+1}$, then $C_i \subseteq C_{i-1}$ or $C_i \subseteq C_{i+1}$, respectively; so C_i can be excluded from the sequence. If x is in C_i but not in $(C_i \cap C_{i-1}) \cup (C_i \cap C_{i+1})$, then we can replace C_i by $\{x^i; i > 1\}$ of rank > 1. By Lemma 4 all the C_i $(i=1,\cdots,t)$ are subgroups of S_α . It is easy to prove that $C_i \cap C_{i+1}$ and $C_{i+1} \cap C_{i+2}$ are also subgroups; hence $C_i \cap C_{i+2} \neq \emptyset$ since the identity element of the group C_{i+1} has to lie in C_i and C_{i+2} . Continuing this procedure we have $C_1 \cap C_i \neq \emptyset$ as desired. Thus it has been proved that S_α^2 is a group. Let $G_\alpha = S_\alpha^2$ for each $\alpha \in L$. G_α is the greatest subgroup in S_α , a maximal subgroup in S_α . Now let $z \in S^2$, z = xy for some $z \in S_\alpha$, $z \in S_\alpha$. The element z is in a subgroup $C(x,y) \subset S_{\alpha\beta}^2$, hence $z \in G_{\alpha\beta}$. Thus we have

$$S^2 = \bigcup_{lpha \in L} G_lpha, \quad G_lpha = S_lpha^2$$
 .

Proof of theorem. By Lemma 5 and the proposition, it has been proved that if S satisfies xy=f(x,y) with (2) then S is an inflation of $\bigcup_{\alpha\in L}G_{\alpha}$, a semilattice L of groups G_{α} , in which G_{α} satisfies the identity xy=f(x,y). We will prove the converse of the theorem. Suppose that S is an inflation of $\bigcup_{\alpha\in L}G_{\alpha}$, where each G_{α} is a group satisfying xy=f(x,y) with (2). Let $x_{\alpha}\in S_{\alpha}$, $y_{\beta}\in S_{\beta}$. By proposition $x_{\alpha}y_{\beta}\in G_{\alpha\beta}$. By using (10) and by recalling the form of f(x,y) we have

$$x_{\alpha}y_{\beta}=x_{\alpha}y_{\beta}e_{\alpha\beta}=(x_{\alpha}e_{\alpha\beta})(y_{\lambda}e_{\alpha\beta})=f(x_{\alpha}e_{\alpha\beta},y_{\beta}e_{\alpha\beta})=f(x_{\alpha},y_{\beta})e_{\alpha\beta}=f(x_{\alpha},y_{\beta})$$
.

This proves that S satisfies the same identity. Thus the proof of the theorem has been completed.

Proof of corollary. Suppose xy = f(x, y) implies xy = yx in semi-groups. Then (3.2) is obvious and the necessity of (3.1) is already proved in § 1. It remains to prove the sufficiency of (3.1) and (3.2). The theorem describes the structure of S satisfying the identity xy = f(x, y) in which |f(x, y)| > 2 and f(x, y) satisfies (3.1), that is, f(x, y) has the form (2). Now additionally assume (3.2). By using (10)

$$x_{lpha}y_{eta}=(x_{lpha}e_{lphaeta})(y_{eta}e_{lphaeta})=(y_{eta}e_{lphaeta})(x_{lpha}e_{lphaeta})=y_{eta}x_{lpha}$$
 .

Examples and problems. As the application of corollary we give a few examples below:

EXAMPLE 1. (Tully). $xy = y^m x^n, m \ge 1, n \ge 1$,

EXAMPLE 2. $xy = (yx)^m, m \ge 1$,

EXAMPLE 3. $xy = y^{m_1}x^{n_1}\cdots y^{m_h}x^{n_h}$, $m = \sum_{i=1}^h m_i$, $n = \sum_{i=1}^h n_i$, the greatest common divisor of m-1 and n-1 is 2 or 1.

Each identity of Examples 1, 2 and 3 implies xy = yx in semigroups because it can be easily proved that commutativity follows in groups.

Example 4. $xy = (y^2x^2)^2$.

In groups this identity is equivalent to the identity

 $x^3 = e$, e the identity element.

We know that the free group G generated by a and b subject to $x^3 = e$ is a finite noncommutative group [2][3]. Therefore commutativity

does not follow.

Finally we give examples which satisfy (3.2) but not (3.1).

EXAMPLE 5. $xy = x^2y^3x$,

Example 6. $xy = yx^3y^2$,

EXAMPLE 7. $xy = xy^3$.

Each of Examples 5, 6, and 7 implies commutativity in groups. Accordingly we can say:

The conditions (3.1) and (3.2) of the corollary are independent.

ADDENDA. 1. Let f(x, y) and g(x, y) be words involving both x and y and let $|f(x, y)| \ge 2$ and $|g(x, y)| \ge 2$.

If g(x, y) = f(x, y) implies xy = yx in semigroups, then one of g(x, y) and f(x, y) is xy and the other satisfies the condition (3.1); hence this case is reduced to that of the corollary.

Suppose |g(x, y)| > 2 and |f(x, y)| > 2. Let F be the free semi-group generated by the two letters a and b, and I be the ideal of F consisting of all words with length more than 2. Let S = F/I. We see $S = \{0, a, b, a^2, b^2, ab, ba\}$. S satisfies g(x, y) = f(x, y) but it is not commutative as $ab \neq ba$. We may assume the identity is xy = f(x, y) which is the condition in the corollary.

2. Let f(x, y) be a word involving both x and y.

$$x^2 = f(x, y)$$
 does not imply $xy = yx$ in general.

For the reason used for (3.1), we may assume f(x, y) starts in y and ends in y. Let F be the free semigroup generated by a and b, and I be the set of all words which involve either at least two a's or at least two b's. I is an ideal. $S = F/I = \{0, a, b, ab, ba\}$. S satisfies $x^2 = f(x, y)$, but is not commutative.

PROBLEMS. 1. Let $f(x, y) = y^{m_1}x^{n_1} \cdots y^{m_h}x^{n_h}$ with (2). How can we describe explicitly (3.2) in terms of $m_1, n_1, \dots, m_h, n_h$?

- 2. Determine the structure of semigroups satisfying an identity of the form $xy = y^{m_1}x^{n_1} \cdots y^{m_{h-1}}x^{n_{h-1}}y^{m_h}$, $m_1 \neq 0$, $m_k \neq 0$, $k \geq 2$.
- 3. Determine the structure of semigroups satisfying an identity of the form $xy = x^{m_1}y^{n_1} \cdots x^{m_{h-1}}y^{n_{h-1}}$, $m_1 \neq 0$, $n_{h-1} \neq 0$.

¹ The author owes this result to Dr. D. G. Mead's helpful suggestion.

4. Let $f(x, y) = y^{m_1}x^{n_1} \cdots y^{m_h}x^{n_h}y^{m_{h+1}}$, $m_1, m_{h+1} \neq 0$, $h \neq 0$. Under what condition on f(x, y) does the identity x = f(x, y) imply xy = yx?

A semigroup S satisfying the identity x = f(x, y) is a group.

In fact S is a union of groups. By [1] S is a semilattice L of completely simple semigroups $S_{\alpha}(\alpha \in L)$

$$S = \bigcup_{\alpha \in I} S_{\alpha}$$
.

We can easily prove that |L| = 1; S is a completely simple semigroup, that is, a rectangular band B of groups. However we can prove that |B| = 1.

A partial answer follows:

Let

g.c.d.
$$\left(\sum\limits_{i=1}^{h+1}m_i,\sum\limits_{i=1}^{h}n_i-1
ight)=g$$
 .

If g = 2, the answer is affirmative.

References

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Math. Surveys No. 7, Amer. Math. Soc., Providence, R.I., 1961.
- 2. J. A. Green and D. Rees, On semigroups in which $x^r = x$, Cambridge Philos. Soc. 48 (1952), 35-40.
- 3. M. Hall, The theory of groups, Macmillan Company, New York, 1959.
- 4. Mario Petrich, The maximal semilattice decomposition of a semigroup, Math. Zeit. 85 (1964), 68-82.
- 5. T. Tamura, The theory of construction of finite semigroups I, Osaka Math. J. 8 (1956), 243-261.
- 6. _____, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Jap. Acad. 40 (1964), 777-780.
- 7. E. J. Tully, Semigroups satisfying an identity of the form $xy = y^m x^n$ (to be published.)

Received May 25, 1968.

UNIVERSITY OF CALIFORNIA DAVIS, CALIFORNIA