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SEMIGROUPS SATISFYING IDENTITY xy = f(x, ¥)
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Dedicated to Professor Keizo Asano on his Sixtieth Birthday

Let f(z, ¥) be a word of length greater than 2 starting in
y and ending in ., The purpose of this paper is to prove that
a semigroup satisfies an identity xy = f(x, ) if and only if it
is an inflation of a semilattice of groups satisfying the same
identity. As its consequence we find a necessary and sufficient
condition for xy = f(x, ) to imply commutativity.

Recently E. J. Tully has proved [7] that if a semigroup S satisfies
an identity of the form ay = y™x" then S is an inflation of a semilattice
of abelian groups G.’s satisfying x* = 1 for all x ¢ G, where k is the
greatest common divisor of m — 1 and n — 1; hence xy = y™z* implies
commutativity. This paper is to consider the general case of the right
side of zy = y™x" with the left side unchanged.

Let f(z, y) denote a word involving both # and y, and | f(z, v) | be
the length of the word f(x, v): | x|, be the number of x’s which appear
in f(z, v); |y |; be also defined for y. For example if f(x, y) = z*y*xy,
[fle, )| =T, |xz|; =4,]ly|, =3. Throughout this paper we assume
| f(z, y)| > 2, equivalently ||, >1 or |y]|; > 1 or both.

Consider an identity of the form

(1) ry = f(x, y)

in semigroups. A question is raised: Under what condition on f(x, %)
does (1) imply commutativity xy = y2? What we can say immediately
is that f(x, ¥) has to start in y. Because if f(x, ) starts in x, then
left zero semigroups of order > 1 satisfy (1) but are not commutative.
For the similar reason f(x, y) must end in x. From now on we assume
f(x, y) in (1) has the form:

f(xy y) = Yymgt ... ymsx”s’ mz>01 n; > 017' = 1: cee, 8,

() and [f(2, )| > 2.

A semigroup D is called an inflation of a semigroup T if T is a
subsemigroup of D and there is a mapping @ of D into T such that

Px) = for xeT
and
vy = p(x)p(y) for x,yeD .

Let L be a semilattice. A semigroup S is called a semilattice L
of semigroups S,, a¢e L, if S is a disjoint union of {S,; « € L} and
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S.S: & S for all o, Bc L.

Needless to say an identity is preserved by homomorphic images
and by subsemigroups; in particular the identity zy = f(z, y) with (2)
is satisfied by any semilattice.

THEOREM. A semigroup S satisfies an identity xy = f(x, y) with
@) tf and only if S is an inflation of a semilattice of groups satis-
fying the same identity.

COROLLARY. Let f(x,y) be a word involving both x and y, and
let | f(x,y)| > 2. 2y = f(x, y) implies xy = yx in semigroups if and
only if

3.1) f(x, y) starts in y and ends in x, and

(3.2) xy = f(x, y) tmplies xy = yx in groups.

The statement in the theorem can be replaced by another state-
ment. In the following proposition we do not assume zy = f(x, ¥).

PROPOSITION. The following three statements are equivalent:

4.1) S* is a semilattice L of groups G,, ae L.

4.2) S is a semilattice L of semigroups S,, & € L, each of which
1s an inflation of a group G, and

LY € Gap for z,e€8,,y:€8;.

4.3) S is an inflation of a semilattice L of groups G,, ae L.

Let a,, --+, a, be a finite number of elements of a semigroup S.
All the elements « of S each of which is the product of all of a,, ---, a,
(admitting repeated use) form a subsemigroup of S. It is called the
content (of @, ---,a,) in S and denoted by C(a,, ---, a;) or C. The
elements a,, ---,a, are not required to be distinct. For example
C(a, a) = {a’; 1 > 1} but C(a) = {a’; % = 1}. The number k is called
the rank of C(a,, ---, a;).

Any semigroup S has a smallest semilattice-congruence (S”-con-
gruence) p,, that is, S/p, is a semilattice and if S/p is a semilattice,
then p, & p. The decomposition of S induced by p, is called the
greatest .&”-decomposition of S. If p,=S x S, S is called .57-inde-
composable. An .&”-decomposition S = ... S, of S is greatest if
and only if each S, is .&“-indecomposable [4], [5], [6].

LEMMA 1. A content is .&“-indecomposable. (See [6].)

LEMMA 2. apb if and only if there is a finite sequence of contents
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C, -+, C, such that
(5) aeCl, Cincqj+1¢®(i:1,"',t_1), bect-

Proof. Define p, as follows: ap,b if and only if there is a finite
sequence of contents C,, ---, C, satisfying (5). We will prove o, = 0,.
It is easily shown that o, is an equivalence relation. To prove com-
patibility, suppose a0,b. There exists a sequence of contents satisfying
(5), more specifically

Ci:C(aiu"'yaiki) ,Z;:l)""t

5
(%) aeC, d;eC;nNCy, (=1,---,¢-1), beC,.

Let ce S. Consider a sequence of contents

C;:C(csaiu "'ya'iki)(i:ly "')t—l)'

Then caecCj,ed;eCiNCi(t=1,---,¢—1),¢beC,. Hence cap,cb.
Likewise acp,bc. Thus p, is a congruence. Since a, ¢’ C(a) and ab,
ba e C(a, b), we see ao,@’, abpba for all a,be S, that is, p, is an -
congruence on S. Let o be an .&”-congruence on S. We will prove
0, S o. Let apb. There is a sequence C,, ---, C, described in (5').
Since C; is .&“-indecomposable (: = 1, -- -, t) by Lemma 1, we have apd,,
d,0d,, +--,d,_,0b, hence apb. Since p, is the smallest .&”-congruence,
we have p, = p..

Let
S:USM Sasﬂgsaﬂ, Sansﬂ:‘@, a;‘éB

aelL
be the greatest .&”-decomposition of S. We notice that if a and b
are in S, then the contents C;(1 =1, - - -, t) described in (5) are contained
in S,.

LEmMMA 3. An tdeal of an & -indecomposable semigroup is -
indecomposable.

Proof. An equivalent statement is proved in [4]. However, we
will prove this by using Lemma 2. Let I be an ideal of an .&”-inde-
.composable semigroup S. Let a,bel,a +b. By Lemma 2, there is
a sequence of contents C; = C(a;;, +++, a;,) &St =1, -+, t) such that
aeC,d;eC;NCiy(t2 =1, ---,t —1),beC,. Consider a sequence of
contents:

G = C(a), Ci = C(a, ay, *+-, a’iki) (t=1,.-419
Cirr = C(b)y i = C(b, Qigy ** aik,-) (=1, ---, t) .
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Then
acCl, a*eC,NCi, ad,eC.nCiy (t=1---,t—1)
abeC,NC;,, dbeCl.,NClL i=1,.--,t—1)
b’eC,NCL.,, beCiy

and all Ci(j =0, ---,2¢t + 1) are in I. By Lemma 2, we have proved
that I is .¢”-indecomposable.

Proof of proposition. The proof of (4.2)=(4.1) and (4.3)=
(4.1) is immediate. We will prove only (4.1) = (4.2) and (4.3). Assume
S? = U... G. where G, is a group for each a. This is the greatest
& -decomposition of S® because the groups G, are .&”-indecomposable.
Let
(6) S=USs.
be the greatest .&“-decomposition of S. Since S? is an ideal of the
.&“-indecomposable semigroup S., S? is also .&”-indecomposable by Lem-
ma 3. For each ac L there is a unique « in L’ such that G. = S.;
for each 7 e L’ there is a unique 7” in L such that S;& G,.. We
define two mappings f and ¢, f: L— L', g: L' — L by &« = f(a) and
7" = g(n), respectively; in other words

G(r g Sf(a)v sz g Gg(",) .

This implies G, S S%., S G, ;- It follows that gf(a) = «; thus gf is
the identity mapping on L. Likewise fg is the identity mapping on
L’. Hence f and g are one-to-one and onto, g = .

Identifying ¢ with f(«), and L with L’, we have
(7) S=US.

neL

(8) SE=US:, Si=0G..

ael

We notice that G, < S,, hence S*N S, = S2=G,. By the assumption
on (6), (7) is the greatest .&”-decomposition of S.

Let e, be an identity element of G,. Since S2= G, ¢, is a unique
idempotent of S,. We will prove (9) through (12) below:

(9) Coilo = €op = €85 for all o, Se L.
Noticing that e..e, € G,
(eaﬂea)(eaﬁea) - (eaﬁeaeaﬂ)ea = (eaﬁeaﬂea)ea = eaﬂea .

Thus e, e, is an idempotent, hence e,e, = e,;,. The proof of the
remaining part is done in the same way.
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(10) L85 = €5, for all #, ¢S, all o, 8¢ L.
By using (9),

s = (Talp)lup = Tol€s€rs) = Dplup = €,50.6,¢

enﬁ(euﬁﬂ;/\) = en‘ﬁxn - (eaﬁeﬁ)wn = e{\ﬁ(eﬁma) = eﬁm(\ .

i

(11) €85 = €.5 = €36, for all o, S L .

We have e.e; = ¢;e, by (10). It can be easily proved that e.e; is
an idempotent. Therefore e,e; = e,;.

(12) s = (2.,)(Y:65) for all #, €S, w:e8S,;, all o, Be L.
By (10) and (11) we have
(Cae)(Y:e:) = Calels)es = Ta(Ysta)es = (Wals)(€ats) = (L¥p)ews = Tl -
Let mappings ¢.: S, — G.(xe L) be defined by
PulBa) = Tulr = €al0 -

Then each ¢, is a homomorphism of S, onto G, such that ¢.(z,) = &,
for all »,e G, and

(13) TolYp = @a(xa)@ﬁ(xﬁ)y P € Sm Ys € S[, .

Consequently S is an inflation of G = U..,. G. and S, is an inflation
of G,. Thus we have proved that (4.1) = (4.2) and (4.3).

REMARK. In the proof of the proposition, if we use the fact that
a semilattice of groups is an inverse semigroup, we immediately have
(11), hence (9). However, we proved these directly without using the
property of inverse semigroups.

Proof of theorem. We will need two lemmas to prove the
theorem.

LemmA 4. If S satisfies xy = f(x, y) with (2), then every content
of rank greater than 1 is a group.

Proof. Let C =C(a, +-+,a,), k>1. Each element of C is ex-
pressed as a word involving all the letters a,, -+-, a,. Let weC be
decomposed into the product of two words w,, w, of a,’s, namely
elements w,, w, of S: w = w,w, Replacing w by f(w,, w,) repeatedly
we can arrange w such that |a;|, > 1 for all 7. First we will prove
that each element w has a form a;0’, v’ € C. If q, is the initial letter
of w, then we have already the form since |a;|, > 1 and hence v' e C.
Suppose
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W = W,a;W,, W, W, €S .

Replacing w,(a;w,) by f(w,, a;w.) we have a form w = a;v’. Since
la;|, >1 for all 7,|a;|, =1 and |a;|, >1 for j # 4. Hence v eC.
Again we can arrange ¢’ such that |a;l,, > 1 for all . Now let w’
be any element of C:

= Gy, + A, .

By repeating the same procedure

14

@, + o0 QpW;, = WW

i

W= QW = @AW, = e = ) i
where w; € C(j =1, ---,1). In the same way we have w = w/,w’ for
some w;,€C. Thus we have proved the right and left divisibility;

therefore C(a,, ---, @,) 18 a group.

LemmA 5. Let S = ... S. be greatest .&“-decomposition of a
semigroup S. If S satisfies vy = f(x, y) with (2), then S? is a group
and S = U, S

Proof. Let acS? a = zy for some z,y<S,. Then ¢ is in the
content C(x, ¥) which is a subgroup of S? by Lemma 4. Thus SZ is
a union of subgroups, hence a disjoint union of maximal subgroups
of S,. We will prove that for two distinct arbitrary elements a and
b of S? there are subgroups G, and G, which contain a and b, respec-
tively, such that G, NG, = @. Then S? will be a group. Since a,
be S, there is a finite sequence of contents C, C,, --+,C, in S such
that

aeCl, CiﬂCi.;_lv—i @(izl,“'t'—l), beCt.

As remarked in §1, C, &S, (=1, ---,%). Since a,bec S we may
assume C, and C, are of rank >1. Also we may assume C,, ---,C,_,
are of rank > 1 for the following reason. Suppose C;, 1 <1 < t, has
rank 1, C; = [z], the cyclic subsemigroup generated by x. If 2 is in
either C;NC,_, or C;NC,., then C,< C,_, or C; & C,.,, respectively;
so C; can be excluded from the sequence. If z is in C; but not in
(C;NC;_)U(C;NC;..), then we can replace C; by {&’; ¢ > 1} of rank > 1.
By Lemma 4 all the C;(1 = 1, ---, {) are subgroups of S.. It is easy
to prove that C;NC;, and C;., N C,., are also subgroups; hence
C; N Cir. # @ since the identity element of the group C,., has to lie
in C; and C,.,. Continuing this procedure we have C,NC, == @ as
desired. Thus it has been proved that S? is a group. Let G, = S2
for each a e L. G, is the greatest subgroup in S., a maximal subgroup
in S. Now let 2¢8?% z = a2y for some z¢S,,y<S; s0o 2e€S,;. The
element z is in a subgroup C(z, ¥) < S2;, hence z¢€ G,;. Thus we have
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S = LGJLG‘” G, = 8.

Proof of theorem. By Lemma 5 and the proposition, it has been
proved that if S satisfies ay = f(z, y) with (2) then S is an inflation
of U..:; G, a semilattice L of groups G., in which G, satisfies the
identity ay = f(xz, ). We will prove the converse of the theorem.
Suppose that S is an inflation of .., G., Where each G, is a group
satisfying oy = f(x, y) with (2). Let %,€8S,, y;¢S;. By proposition
%.Ys € Gus. By using (10) and by recalling the form of f(x, y) we have

ZalYs = B s€us = (Xulup)(Y1645) = F(X0lusy Ysluz) = [(@u, Ys)las = f(Tas Ys) -

This proves that S satisfies the same identity. Thus the proof of
the theorem has been completed.

Proof of corollary. Suppose zy = f(x, y) implies xy = yx in semi-
groups. Then (3.2) is obvious and the necessity of (3.1) is already
proved in §1. It remains to prove the sufficiency of (3.1) and (3.2).
The theorem describes the structure of S satisfying the identity 2y =
Sz, y) in which | f(z,v)| > 2 and f(z,y) satisfies (3.1), that is, f(z, )
has the form (2). Now additionally assume (3.2). By using (10)

BoYs = (¥a€us)(Ys€05) = (Y5€as)(Xa€0s) = Ysbu «

Examples and problems. As the application of corollary we
give a few examples below:

ExamvpLE 1. (Tully). zy =ymaz",m=1,n=1,
EXAMPLE 2. zy = (yx)™, m = 1,

EXAMPLE 3. 2y = y™a" ««. g™ ap = S\2 m,, n = >2, n,;, the
greatest common divisor of m — 1 and » — 1 is 2 or 1.

Bach identity of Examples 1, 2 and 3 implies 2y = yx in semigroups
because it can be easily proved that commutativity follows in groups.

EXAMPLE 4. oy = (y*z*)%.

In groups this identity is equivalent to the identity
2® = ¢, e the identity element .

We know that the free group G generated by a and b subject to ° = ¢
is a finite noncommutative group [2][3]. Therefore commutativity
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does not follow.
Finally we give examples which satisfy (3.2) but not (3.1).

ExAMPLE 5. 2y = 2’4z,
ExAMPLE 6. 2y = ya*y?,
EXAMPLE 7. 2y = xy’.

Each of Examples 5, 6, and 7 implies commutativity in groups.
Accordingly we can say:

The conditions (3.1) and (3.2) of the corollary are independent.

ADDENDA. 1. Let f(x, ) and g(x, y) be words involving both =
and y and let | f(x,%)| = 2 and | g(z, v) | = 2.

If g(x, v) = f(z, y) implies xy = yx in semigroups!, then one of
g(x, y) and f(x,y) is xy and the other satisfies the condition (3.1);
hence this case is reduced to that of the corollary.

Suppose |g(x, ¥)| > 2 and | f(z, y)| > 2. Let F be the free semi-
group generated by the two letters a and b, and I be the ideal of F'
consisting of all words with length more than 2. Let S = F/I. We
see S ={0,a,b, a*, b, ab, ba}. S satisfies g(z, y) = f(z, y) but it is not
commutative as ab = ba. We may assume the identity is axy = f(x, ¥)
which is the condition in the corollary.

2. Let f(z, y) be a word involving both x and y.

a2 = f(x’ y) does not imply rY = Yx in general .

For the reason used for (3.1), we may assume f(x, y) starts in y and
ends in y. Let F be the free semigroup generated by a and b, and
I be the set of all words which involve either at least two a’s or at
least two b’s. I is an ideal. S = F/I = {0, a,b, ab, ba}. S satisfies
x® = f(x, ¥), but is not commutative.

ProBLEMS. 1. Let f(z,y) = y™a™ -.. y™ix* with (2). How can
we describe explicitly (3.2) in terms of m,, n, ««-, My, 1,7

2. Determine the structure of semigroups satisfying an identity
of the form zy = y™g™ ... y™—1gmh—1y™ m, == 0, m, = 0, h = 2.

3. Determine the structure of semigroups satisfying an identity
of the form zy = a™y™ ... gm—1y"i—1 m, £ 0, n,_, #+ 0.

1 The author owes this result to Dr. D. G. Mead’s helpful suggestion.
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4. Let f(z, y) = y™a™ « .. ymrgmhy™i+t m,, m,,, + 0, h %= 0. Under
what condition on f(z, y) does the identity = = f(x, ) imply 2y = ya?

A semigroup S satisfying the identity x = f(z, y) is a group.
In fact S is a union of groups. By [1] S is a semilattice L of
completely simple semigroups S.(« e L)

S=US..
we L
We can easily prove that|L| =1; S is a completely simple semigroup,
that is, a rectangular band B of groups. However we can prove that
|B| = 1.
A partial answer follows:

h-+1 h
Let g.c.d. (Z My SN — 1) =g,
i1 = /
If gy = 2, the answer is affirmative.
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