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GLEASON PARTS AND CHOQUET BOUNDARY POINTS
IN CONVOLUTION MEASURE ALGEBRAS

RICHARD ROY MILLER

Let M be a semisimple convolution measure algebra with
structure semigroup S. Then each complex homomorphism of
M is given by integrating a semicharacter on S. Gleason
parts can be defined on S, the set of semicharacters on S9 by
considering the function algebra obtained from the transforms
of elements of M. We give a partial characterization of the
parts of S utilizing only the functional values of the elements
of S. We then completely characterize the one point parts of
S utilizing only the functional values of elements of S.

If S is a locally compact topological semigroup, then the measure
algebra M(S) is a member of an abstract class of Banach algebras
called convolution measure algebras by Taylor in [12]. Other examples
include Lf(G) for a locally compact group G and the Arens-Singer
algebras introduced in [1]. The convolution measure algebras form
an extremely large and diverse class of algebras. In fact, a large
number of interesting function algebras can be described as comple-
tions, in the spectral norm, of convolution measure algebras.

Taylor's main theorem in [12] is the following: if M is a com-
mutative, semisimple convolution measure algebra, then M may be
embedded in the measure algebra M(S) of a certain canonical compact
semigroup S, in such a way that every complex homomorphism of M
is determined by a continuous semicharacter on S.

Taylor's theorem identifies the maximal ideal space Δ of M as the
set S of all semicharacters on a compact semigroup S. This gives Δ
a considerable amount of structure not generally enjoyed by maximal
ideal spaces. It is natural to try to use this additional structure to
help identify such standard objects as the Shilov and Choquet bound-
aries and the Gleason parts of Δ.

If H = {fe S = Δ: | / |2 = | / |}, then Taylor showed that every
element of S\H lies in an analytic disc in S. Hence the Choquet
boundary points and the one point parts all lie in H and the closure,
H, of H contains the Shilov boundary (c.f. [7, 11, 12]). However,
these results are not sharp since there are trivial examples where H
contains points which are neither one point parts, Choquet boundary
points, nor Shilov boundary points. In fact, <(J), where J is the
additive semigroup of nonnegative integers, is such an example. Here
S is the unit disc in the complex plane C and H = {z: \ z \ — 1 or 0}. The
point 0 is in H and also is in a nontrivial part, ({z: \z\ < 1}), of S.
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In this paper we propose to sharpen Taylor's results through a
detailed study of the Gleason parts of S. Our major contribution is
the following: if /, g e S and / ^ 0, g ^ 0 then / and g are in the
same part if and only if {x e S: f(x) = 1} = {x e S: g(x) = 1}. (Theorems
2.3 and 3.1). For arbitrary f,ge§ we conjecture that / and g are
in the same part if and only if

(*) {*: I f(x) I = 1} = {a: I g(x) I = 1} S {x: f(x) = g(x)} .

It is easy to prove that (*) is a necessary condition for / and g to
be in the same part (Theorem 2.3). However, we only have the
sufficiency in certain special cases.

Our results on parts are sufficient to completely characterize the
one point parts. Since the Choquet boundary is known to be contained
in the set of one point parts, this is progress towards a complete
characterization of the Choquet boundary and the Shilov boundary of
a convolution measure algebra. The result is this: {/} £ S is a one
point part if and only if / e H and there is no g e S, with g Φ f,
which satisfies (*). (Theorem 4.5).

In § 1 we briefly outline certain background information—largely
from Taylor's structure theory. In § 2 and § 3 we solve the problem
of deciding when / and g are in the same part (for f, g }>0), and
then in § 4 we characterize the set of one point parts of S. Also in
§ 4 we relate the parts structure of S to the idempotents in S.

Section 2 and § 3 each deal with the same problem. However, the
proof of our main result, Theorem 3.1, is so drawn out that we have
devoted an entire section to it.

We prove Theorem 3.1 in §3. In that section we show that the
problem of deciding when / and g are in the same part can be reduced
to showing the equivalence of two special functions on a specific
measure algebra situated in the first quadrant of the plane. We then
show the equivalence of these special functions through the use of
positive definite functions on the plane.

Finally, in § 5 we give some examples.

1Φ Preliminaries* We will be working in the setting described
by Taylor in [12]; so, to simplify things, we will outline the parts of
that paper that are most pertinent for what we do here.

In [12], Taylor defines convolution measure algebra and obtains a
representation theorem for such algebras. The following is the main
result of that paper.

THEOREM. Let M be a commutative semίsimple convolution mea-
sure algebra with identity. Then there exists a compact abelian
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semigroup S, called the structure semigroup of M, and an order
preserving isomorphism-isometry v—*vs of M onto a weak-star dense
subalgebra Ms of M(S). Furthermore, each complex homomorphism
hr of M is obtained by integrating a unique semicharacter 7 on S
by means of the formula

hτ{v) = 0(7) = I Ύ(x)dvs(x) .

By a semicharacter on a topological semigroup T we will always
mean a continuous homomorphism of T into the unit disc. We do not
include the zero homomorphism in this definition. By M(S) we mean
the algebra of all finite regular Borel measures on S under convolution.

We will always let M denote a commutative semisimple convolution
measure algebra with identity and we will let S denote its structure
semigroup. Furthermore, we will identify M with Ms and drop the
subscripts. Finally, we let S denote the set of all semicharacters on
S and we identify S with the maximal ideal space of M. We note
that as a set of functions, S separates the points of S [12].

The dual S of S is rich in algebraic and analytic structure.
Specifically, note the following: if /, g e S then

( i ) f geSjeS and | / | e S ;
(ii) if / ^ 0 and Re z > 0 then fz e S;
(iii) if v e M and f >̂ 0, 1 ̂  i ^ n, then

is an analytic function for Re z{ > 0, 1 ̂  i ^ n.
In [4], Gleason notes that if A is a function algebra on its

maximal ideal space X and if x, y e X, then the relationship

sup|/(aθ-/(i/)|<2
11/11̂

is an equivalence relation. Gleason calls the equivalence classes under
this relation the "parts" of X. In this paper we use the following
facts about parts:

(a) x and y are in the same part if and only if there exist
representing measures vx for x and vy for y which are mutually
absolutely continuous with bounded Radon-Nikodym derivatives.

(b) x and y are in the same part if and only if there exist
representing measures vx for x and vy for y which are not mutually
singular.

(c) If there exists a sequence {/»}*=! with | | / Λ | | ^ 1 for all n
such that lim^eo fn(x) = zx and lim^^ fn(y) = z2 then x and y are not
in the same part provided either | zι \ < 1 and | z21 = 1 or | zY \ — \ z21 = 1
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b u t Z X Φ z2.
A map φ from {z: | z | < 1} into the maximal ideal space X of a

function algebra A on X is said to be analytic if foφ is an analytic
function for all feA.

(d) The image of an analytic map is contained in a single part.
(a) and (b) can be found in [2] and [4], (c) follows from the

definition after application of linear fractional transformations, and
(d) follows from the definition and Schwarz's lemma [4].

Throughout this paper we constantly use results from the theory
of compact semigroups. For a discussion of this subject see [6].

2* Parts and structure in S. As a way of getting at the
Choquet boundary of a convolution measure algebra M, we look at the
Gleason parts of S [4]. We mean by this, the Gleason parts of S
relative to the function algebra obtained by completing, in the spectral
norm, the algebra of Gelfand transforms of elements of M. We will
write f ~ g if / and g are in the same part.

We have already noted that S, in addition to being the maximal
ideal space of M, has the algebraic structure of a semigroup with
involution (conjugation). Furthermore, it has an order relation and
an "analytic structure" (provided there are nonnegative semicharacters
feS with f2 Φ / ) . Thus, one might expect that this additional
structure is related to the decomposition of S into parts. This is the
case as the following propositions show.

PROPOSITION 2.1. / / / , g and h are in S and if f and g are in

the same part, then f and g are in the same part and f h and g h
are in the same part.

Proof. Since ί(f) ~ \f(x)dv(x), we have v(f) = v(f), and f ~ g

whenever f ~ g.
If h e S and v e M then the measure μ defined by dμ — hdv is in

M since M is an L-space [12]. Furthermore,

|| μ 11* = sup I \k(x)h(x)dv(x)
keS

Thus,

< 1101

sup I £(/.Λ) - ί(g h) I = sup I \[f(x) - g(x)]h(x)dv(x)

^ sup \\[f(x) - g(x)]dv(x) < 2

if f ~ g Thus f — g implies f h~ g h.
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PROPOSITION 2.2. If fu /2, fn are in S with f^x) ^ 0 for all
xeS and Rez, > 0, 1 ̂  i ^ n, then frf2 - - - fn and fp-fi* / > are
in the same part.

Proof. The proposition follows from the facts that the map
(2i> , 3Λ) —> v(ΛZl ' * * /£*) is an analytic function for each v in M and
that the image of analytic map is contained in a single part [4].

Proposition 2.2 is usually difficult to apply since it is generally
difficult to tell whether or not two given semicharacters can be
written in the form of Proposition 2.2. However, if one knows how
two semicharacters behave as functions then the following theorem
can be of use.

THEOREM 2.3. / / / and g are in S and if f and g are in the

same part then f(x) = g(x) whenever either \ f(x) \ — 1 or \ g(x) \ — 1.

Proof. Let /, g be elements of S and let x e S where | f(x) | = 1
but g(x) Φ f(x). If I g(x) | < 1, then consider the sequence {xn}Z=ι in S.
It must cluster, say to y, as S is compact. Since | g(xn) | = | g(x) \n

and I g(x) \ < 1, we have g(y) = 0. Clearly | f(y) \ = 1.
Let δy denote the unit point mass at y. We have | δy(f) \ =

f(y) I = 1 but δy(g) = 0. Since M is weak-star dense in M(S) and
since M is an L-space, there must exist a net {va} in M, with va >̂ 0,
H^αll ^ 1 for all α, that converges weak-star to δy [12]. Thus we
have limαDα(/) = 1 and limα va(g) = 0. Since || va {{„ ^ || va \\ ̂  1 we
conclude that / and g are not in the same part.

If I g(x) I = 1 then as above there is a net {va} in M satisfying
va ^ 0, || va || ^ 1 for all a and converging weak-star to δx. Since
{£«(/)} a n ( i {Va(g)} converge to different points on the unit circle, we
conclude that / and g are in different parts.

The above arguments are symmetric in / and g so we have the
conclusion of the theorem.

We conjecture that the converse of the above theorem is also
true. That is, we conjecture that / and g are in the same part if
and only if f(x) = g(x) whenever | f(x) | = 1 or | g(x) \ = 1. The complete
solution to this problem is still open, but we give a partial converse
in Proposition 2.7. Then, in Theorem 3.1, we prove the converse for
nonnegative semicharacters.

DEFINITION 2.4. If feS define f0 by

(0 if f(x) = 0

if
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Note that /„' is a multiplicative Borel function and that / = / o ' | / | .
Also note that if f,geS and if f(x) = 0 implies g(x) = 0 then /0' g is
in S. In fact, Taylor shows that if / is in S then />' is equal almost
everywhere with respect to each v in M to an element f0 in S. Fur-
thermore, / = / o | / | This is Taylor's polar decomposition theorem
[12]. In what immediately follows, it will not matter whether f0 or
/o is used since fo(s) = /o'(s) whenever /(s) Φ 0. At all other points
we will be multiplying by functions that are zero. However, in § 3
there will be one point where the full force of the polar decomposition
theorem will be used.

LEMMA 2.5. Let f,geS and suppose that there exists an r, 0 gΞ
r < 1 such that f(s) = g(s) whenever \ f(s) \ > r or \ g(s) | > r. Then
there exists a k > 0 such that \\f(s) \zfQ(s) - \ g(s) \zg0(s) | ^ 2e~kRez for
all se S and Rez > 0.

Proof. If r = 0 then the inequality holds for any k > 0 so let
r > 0.

If either | /(s) | > r or | g(s) | > r then g(s) = /(s) so /0(s) = #0(s)
and I f(s) \ = \ g(s) |. Hence | f(s) \zf0(s) - | g(s) \go(s) = 0 and the inequality
holds for any k > 0. So, let | /(s) | ^ r and | gr(s) | ^ r. We then have
||/(8) |"/o(8) - I flr(s) | flro(s) I ̂  I f(s) \Rez + I flf(s) Γ ^ 2rR-. If we set k =
— /n(r) then we have the conclusion of the lemma.

The next lemma is an immediate consequence of the maximum
modulus theorem.

LEMMA 2.6. Let k > 0 and let h be an analytic function on
{zeC:Rez> 0}. Furthermore, let \ h(z) \ ̂  De~kRez for some D > 0.
If I h(z) I ̂  2 ί/wm m fact | fe(«) | ^ 2e~kRez.

PROPOSITION 2.7. Lei /, g e S and suppose that there exists an
r, 0 ^ r < 1, such that f(s) — g(s) whenever either | f(s) \ > r or \ g(s) | > r.
Then f and g are in the same part.

Proof. Note t h a t h(z) = j( |/(s) |z/0(s) - | flf(s) |βflr0(β))dv(β) is analytic

for Re z > 0 and v e Jf. If || v \U ^ 1 then | λ(2) | ^ 2. Also, by 2.5

there exists a & > 0 such t h a t

(z) I 5Ξ j | | f(s) | /0(8) - I flf(β) \'go(s) \d\ v |(β) ^ 2| | v | | e- f c κ -

So, by 2.6, |fe(2)| ^ 2e~kB*z whenever \\ί>\U ̂  l Thus,

sup I v (I / |'/0) - 0(| flr |'flr0) I ^ 2<r*R" .
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At z = 1 this gives f ~ g.

3. More parts. The object of this section will be to prove the
following theorem.

THEOREM 3.1. // / and g are in S with / ^ 0 and g ^ 0 and
if {x e S: f(x) = 1} = {x 6 S: g(x) = 1} then f and g are in the same
part.

We will prove Theorem 3.1 by first introducing a specific example.
The truth of Theorem 3.1 for this example implies its truth in general.

DEFINITION 3.2. If / , g e S set N(f, g) = {se S: f(s) Φ 0, g(s) Φ 0},

set 0(/) - {s e S: \ f(s) \ = 1}, and set Z(f) = {seS: f(s) = 0}.

Each of Z(f) and Z(g) is a closed prime ideal [12] in S. Since
the union of two closed prime ideals is a prime ideal, we have the
following lemma.

LEMMA 3.3. // /, g e S then S\N(f, g) is a closed prime ideal.
In particular, N(f, g) is an open sub-semigroup of S.

In a is an angle satisfying 0 ^ a <̂  π/4 and a is a nonnegative
real number, set Xa,a equal to {(x, y) e R2: either x = y = 0, or x > 0,
y > 0 and tan a <̂  y/x ^ tan (τr/2 — a), or x ^ α, y ^ a). Note that
Xα,α is a subsemigroup of it!2 under coordinatewise addition.

LEMMA 3.4. Let f and g be elements of S satisfying:
( i ) / ^ 0 , < 7 ^ 0
(ii) f(x) = 1 if and only if g(x) = 1.
Define F: N(f, g)->R2 by F(s) = (-/nf{s), -/ng(s)). Then F is

a continuous homomorphism of N(f, g) into R2. Furthermore, there
exists an angle α, 0 < a ^ π/4 and an α > 0 such that F(N(f, g)) £ Xa,a.

Proof. F is clearly a continuous homomorphism of N(f, g) into
Xo,o s R2. Let S - {s e S: f(s) ^ 1/β} and b = infse5 [-/^(s)] . We
claim that δ > 0. To show this, note that B is a compact sub-semigroup
of S. Thus, if it were the case that 6 = 0, then there would be an
element seB satisfying g(s) = 1 but f(s) < 1. This cannot happen so
b> 0.

Similarly, if B = {s e S: g(s) ^ 1/β} then 0 < c = infsejB [-/w/(β)]. If
we let α = min (1, 6, c) then for seS, either —/nf{s) ^ α and —/ng(s) ^
α or else F(s) e [0, 1] x [0,1].
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There cannot exist an S G S satisfying 0 < — /nf(s) g 1 and

— /ng{s) a .

-/nf{s) 2

otherwise, a/2 > — /ng{s%)/ — /nf(sn) for all n. Thus we could choose
an n such that 1 < —/nf(sn) ^ 2 but — /hg(sn) < α, a situation that
cannot occur. Similarly, there is no se S ior which 0 < — /ng(s) ^ 1
and —/nf(s)/ — /ng(s) < a/2. Thus, if a =\arctan (a/2) we have

F(N(f, g)) £ Xata .

The above lemma can be used to map the algebra of Theorem 3.1
into M(Xa,a), the algebra under convolution of all finite regular Borel
measures on Xat<x. Once in Λf(-3Γα,β) we note that integration of the
function e~lx] and e~m define complex homomorphisms of M(Xa,a). We
will show that e~lxϊ and e~ly] are equivalent relative to M(Xa,a). The
equivalence of / and g in Theorem 3.1 will then follow.

Our method of attack in showing that e~{x{ and e~m define equiva-
lent homomorphism of M(Xa,a) will be to construct nonmutually singular
representing measures for e~lx{ and e~m. To do this we need some
specific positive definite functions on R2. (For a discussion of positive
definite functions on a group see [9].)

Let T(x) be the function defined by T(x) = 1 - | x | if | x | ^ 1 and
T(x) = 0 if I x I > 1.

LEMMA 3.5. For sufficiently large k > 0, the functions
( 1 ) f(x) = e~lxl - l/ke-blxlT(x) on R,
( 2 ) f(x, y) = e- | x | - l/ke~bix)T(x) on R2,
( 3 ) g(x, y) = l/ke-]bχ-yle~ly]T(x) on R2\
( 4 ) h(x, y) = e~lxl - l/ke-blxlT(x) + l/ke-[bχ-yle~lyιT(x) on R2,

where b ̂  1 is fixed, are positive definite.

Proof. If a denotes the Fourier transform of α, (either on R or
jβ2, whichever is appropriate), then for E(x) = e~lxl we have

( 1 )
π(l

2τrJ-ooe

( 2 )

= 6[62 + ^ 2 ] + [w2 - b2] + β~b[(62 - w2) cos w - 2bwsinw]

π[b2 + ^ 2 ] 2

and since f=E- l/kEbT
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( 3 )

e~b[(b2-w2)cosw-2bwsmw]}
f(w) = 1 + w*

By Bochner's theorem [9], an integrable function is positive definite
if its Fourier transform is nonnegative. Hence, E is positive definite.
To show that / is positive definite, consider

W + w2Y _ { 6 ( ί > 2 + w2) + (w2 _ fe2) + e ^ ¥ _ W2^cosw _ 2bwsinw]}
1 + w2

( 4 )
^ k(b2 + w2) - {b(b2 + w2) + (w2 - b2) + e~b[(b2 - w2) cos w - 2bwsin w]}

= (k + l)δ 2 - 63 + (k - b - l)w2 - e~b(b2 - w2)cosw + 2bwe~hsmw .

If I w I ^ b then (4) becomes greater than or equal to

( 5 ) (k + l)b2 - V + ( k - b - l)w2 - b2e~h - 2b2e~b

which is strictly positive if k > b + 2.

If \w\ ^ b then (4) is greater than or equal to

( 6 ) (k + l)b2 -V + (k -b - l)w2 - w2e~b - 2w2e~b

which is strictly positive if k > b + 4.
Thus, for sufficiently large k, (3) is always positive and hence /

is positive definite. Furthermore, by Bochner's theorem, if dv — f(w)dw
then v is a positive measure and the inverse Fourier transform of v
is/.

Let d0 be the point mass at zero in R. The positive measure
v x δQ on R2 has inverse Fourier transform equal to f(x, y) on R2.
Again by Bochner's theorem, this makes f(x, y) positive definite on R2.

We have shown that x—>e~lxl is positive definite. Likewise, T is
positive definite as can be seen by computing its Fourier transform.
By using product measures as before, we can show that (x, y) —>e~lxl

and (x, y) —> T(x) are positive definite on R2. Furthermore, since x —>
e~lxl is positive definite, it follows from the definition of positive definite
that (x, y)—> e-ιbχ-yl is positive definite on R2.

We note that the convolution product of positive measures yields
a positive measure. We also note that the inverse Fourier transform
of a convolution product of measures gives a pointwise product of
functions. Hence, by Bochner's theorem, g(x, y) is positive definite.
Finally, by taking a positive sum of positive definite functions, we
get h(x, y) positive definite.

Let C+ = {z e C: Re z ^ 0}. Then for (z19 z2) e C+ x C+, define

/(βl,*2)(α> y) = e~iziχ+zzy). The formula v(zly z2) = [e-^x+'iV)dv(x, y) defines
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a complex homomorphism of Af(-3Γα>α) for fixed (zL, z2). Thus, we may
consider C+ x C+ a subset of the maximal ideal space of M(Xa,a). This
subset is, in fact, the maximal ideal space of the ideal of M(Xa>a)
consisting of absolutely continuous measures. Using this fact together
with the maximum modulus theorem one can easily show that the
product of the imaginary axes in C+ x C+ is contained in the Shilov
boundary of M(Xa>a). We state this as a lemma.

LEMMA 3.6. The product of the imaginary axes in C+ x C+ is
contained in the Shilov boundary of M(Xa,a).

Note that that the Gelfand transform of v e M(Xa,a), when restricted

to the product of the imaginary axes in C+ x C+, agrees with the

ordinary Fourier transform v. Thus, if rj is a positive measure con-

centrated on the product of the imaginary axes in C+ x C+ we have

vdr] = vηdv where r) is the positive definite function obtained from rj

through the inverse Fourier transform. With this in mind we prove

the following lemma.

LEMMA 3.7. // a > 0 and 0 < a <̂  ττ/4 then the complex homo-
morphisms of M(Xa,a) obtained by integrating the functions (x, y) —•*
e~lx{ and (x, y) —> e~ιy{ are in the same part.

Proof. We will let f(x, y), g(x, y) and h(x, y) be as in 3.5. We
also assume that a ^ 1. [If a ^ 1, redefine T{x) so that the support
of T(x) lies in ( — a, a).] We choose b > max (1, cot (a)) so that h(xyy)
agrees with (x, y) —> e~lxl on XatCt. Finally, we choose k large enough
so that all of the functions of 3.5 are positive definite.

Let vι be the positive measure on R2 such that the inverse Fourier
transform of vγ if h(x, y). Furthermore, identify R2 with the product
of the imaginary axes in C+ x C+. By 3.6, this gives a positive
regular Borel measure on the Shilov boundary of M(Xa>a). Since h(x, y)
agrees with e~{x{ on M(Xa,a) and since h(0, 0) = 1, this gives a repre-
senting measure for e~lx].

If we interchange x and y in the above argument then we obtain
a representing measure v2 for e~]yl. Each of vi and v2 has an absolutely
continuous part with an analytic Radon-Nikodym derivative (due to the
term g(x, y) in h(x, y)). Hence, vx and v2 are not mutually singular.
Thus e~]x] and e~m are in the same part relative to M(Xa,a).

PROPOSITION 3.8. Let f, g e S satisfy f(s) = g(s) whenever either
I f(s) I = 1 or I g(s) \ = 1. Also, suppose that each of {s e S: f(s) Φ 0,
g(s) = 0} and {s e S: f(s) = 0, g(s) Φ 0} is a set of measure zero for
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each v eM. Then f and g are in the same part.

Proof. Define F: N(f, g)-+R2 by F(s) = {-/nf{s), -sng(s))). Then
by 3.4, F is a continuous homomorphism of N(f, g) into Xa>a for some
a, 0 < a ^ τr/4, and a > 0. lΐveM define v on Xα,α by v(E) = v(F~ι{E)).
Since S\N(f, g) is a prime ideal, the restriction of measures on S to
N(f, g) is a homomorphism. Since i*7 is also a continuous homomorphism,
it follows that the map v-+ΰ is a homomorphism of Λί into M(Xa,a).
By composing homomorphisms we see that || ϊ> W^ ^ || v \\^ so v —» v is
spectral norm decreasing.

If it were the case that / and g are not in the same part of S,
then there would exist a sequence {vn}~=γ in M satisfying ||ίw | |oo ^ 1
for all n and l i m ^ | vn(f) - vn{g) \ = 2.

Note that

^lx]dv(x, y) and v(g) = \^gdv - je- | lMde(.τ, y)

since each of {s e S: f(s) φ 0, g(s) = 0} and {s e S: g(s) Φ 0, f(s) = 0} is
a set of measure zero for v. Thus we have

lim I \e-^dvn(x, y) - \e-^dvn(x, y) = lim | v%(f) - vn{g) | = 2

But Halloo ^ 1 for all n. This says that β~ia;i and e~m are not equi-
valent relative to M(Xa,a), contradicting 3.7. Thus, it must be the
case that / and g are in the same part.

We will now prove Theorem 3.1. Let f,geS satisfy /, g ^ 0 and
f(x) = 1 if and only if g(x) = 1. We then have that N(f, g) is an
open subsemigroup of S and S\N(f, g) is a prime ideal. Thus, the
characteristic function of N(f, g), χN, is a multiplicative Borel function
on S. By Taylor's polar decomposition theorem [12], there is an heS
such that h2 — h and h — χN almost everywhere with respect to each
v in M. Furthermore, h(x) = 1 whenever f(x) = 1 or g(x) = 1.

By 3.8, f h is equivalent to g h. Thus, it suffices to show that
f h ~ f and g-h — g.

Note that Z(h) = [x e S: h(x) = 0} is compact, so / must assume
a maximum r on Z(h). Clearly r cannot be one so 0 S r < 1. If
fix) > r then x e O(h) = {xeS: h(x) = 1} so f(x)h(x) = fix). If hix) > r
then hix) = 1 so f(x)h(x) = fix). Thus by 2.7, f h~f. Similarly,
g h ~ g. Hence f — g.

4* The one point parts of S. Even through Theorem 3.1 does
not give a complete converse to Theorem 2.3, it is sufficiently general
to allow us to characterize the one point parts of S. The Choquet
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boundary [8] is the set of points having unique representing measures.
Since points in the same part must have mutually absolutely continuous
representing measures with bounded Radon-Nikodym derivatives [2],
the Choquet boundary is contained in the set of one point parts of a
function algebra. Thus, the characterization of the one point parts
can be considered as progress toward characterizing the Choquet bound-
ary. With this in mind we proceed.

DEFINITION 4.1. H = {feS:\ f(x) | = 0 or 1 for all x e S}.

PROPOSITION 4.2. // {/} c S is a one point part, then f e H.

Proof. If / is not in H then by definition there is an x e S for
which 0 < \f(x) I < 1. Thus, there exists a z with Res > 0 such that
I / \z Φ I / |. By 2.1 and 2.2, / = fo\ f \ ~ fQ\ f \z Φ f. Thus, the one
point parts of S are contained in H.

PROPOSITION 4.3. If feH and {/} is not a one point part then
f is equivalent to an "analytic half plane" in S. That is, f is
equivalent to elements in the "analytic structure" of S.

Proof. Let fe H and / - g where f Φ g. By 2.3, f(x) = g(x)
whenever | f(x) | = 1 or | g(x) \ = 1 so / = go\ f \. Furthermore, gφ f
gives that g is not in H. In particular, | g \ is not equal to \g\z for
all Re z > 0. By 3.1 and 2.2, | / | - | g \ and | g \ - | g \z for all Re z > 0.
Thus, / = flfo| / I - go I 9 I = 9 ^ 9o\ 9 \* ^ / and / is equivalent to the
"analytic half-plane" z—>go\g\*.

PROPOSITION 4.4. An element f in H is in the same part as an
element g in S if and only if f(x) = g(x) whenever either \ f(x) \ — 1
or I g(x) I = 1.

Proof. One direction is just 2.3. To go the other way, let feH,
g e S where f(x) = g(x) whenever either | f(x) | = 1 or | g(x) | = 1. Then

by 3.1, I / I ~ I 0 I so by 2.1, f = go\ f \ ~ 9o\θ\ = 9

THEOREM 4.5. Let f e S. The following statements are equiva-
lent:

(a) {/} is a one point part;
(b) if g e S and f(x) = g(x) whenever either \ f(x) \ = 1 or \ g(x) = 1

then f = g.

Proof. The theorem follows immediately from 4.2 and 4.4.
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It is well known, [10], that if K is the kernel of S, (minimal
ideal of S [6]), e the identity element in K and K the dual group of
K then every / in K can be extended continuously to all of S to give
an element / of S by means of the formula f(x) = f(xe). It is clear
from 4.5 that every such element of S must form a one point part.
Thus we get the following corollary.

COROLLARY 4.6. Every f e S satisfying | f(x) | = 1 for every xe S
forms a one point part.

Let J be an open-compact prime ideal in S, let K be the kernel
of S\J, let eι be the identity of K and suppose that J has an identity
e2. If g e K then g can be extended to g e S by defining g(x) = 0 for
x e J and g(x) = g{xex) for x e S\J.

If h e S then h(e2) = 0 or 1. If h(e2) — 1, then h cannot be equiva-
lent to an element derived from K in the above manner. If h(e2) = 0,
on the other hand, then h is identically zero on J. Furthermore, if
h(ej) = 1 then h(x) = h(xe^ for all x e S\J so h is completely determined
on S\J by its action on K. Thus we have the following corollary to 4.5.

COROLLARY 4.7. // J is an open-compact prime ideal in S, if J
contains an identity p and if K is the kernel of S\J then each
element of K extends to an element in the set of one point part of S.

Corollary 4.7 indicates the important role that idempotents play in
determining the parts structure of S. We will later give an example
to show that if the J of 4.7 does not have an identity then the elements
of K need not extend to elements in the set of one point parts of S.
In the meantime, we will investigate more closely the relationship
between idempotents in S and one point parts of S.

DEFINITION 4.8. Let s,teS. We will say that s is dominated
by t, denoted s ^ ί, if f(s) ^ f(t) for all feS satisfying / ^ 0.

LEMMA 4.9. Let q, s e S where q2 = q and s ^ q. Then q s = s.

Proof. If qs Φ s then there is an feS such that f(qs) Φ f(s)
[12]. Since f(qs) = f(q)f(s), this forces f(q) φ 1. Hence f(q) = 0. In
particular, | / \(q) - 0. Since s ^ q we have 0 < | / \(s) ̂  | / \(q) = 0
so f(s) = 0. This cannot be, so qs = s.

The following proposition shows the relationship between one-point
parts in S and the existence of certain kinds of idempotents in S.
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PROPOSITION 4.10. // f2 = feS and p is the idempotent in the
kernel of O(f), then {/} is a one-point part if and only if whenever
s ^ p and f(s) = 0, there exists an idempotent q e S such that q Φ p
and s <; q ^ p.

Proof. Suppose that {/} is a one point part. Define G = {ge S:
g^O, g(s) > 0}. Since p ^ s, g(p) = 1 for all geG. Since f(s) = 0
and {/} is a one point part, we must have O(f) Φ O(g) for all geG.
Furthermore, since g(p) = 1 for all g e G, we must have g(x) = 1 for
all x e O(f). Thus, O(g) properly contains O(f) for every geG.

If g,heG, then g(s)h(s) > 0 so g-heG. In particular,

[O(flf) n O(h)]\O(f)

is not empty. It follows that {O(g)\O(f): geG} is a family of compact
sets having the finite intersection property.

Set A = Γ\geG [O(flf)\O(/)] Φ Φ and £ = Π ^ O ^ ) . Note that each
of A and β is a compact subsemigroup of S and that #(#) = 1 for all
geG, and xeB.

Let if be the kernel of B. Since A £ Z(/) and A g δ w e have
iΓ s A. Let q be the idempotent in K. Note that pq — q and p Φ q.
Hence p ^ q. Thus, we need only show that q ^ s.

lί g e S with # ̂  0 then either g(s) = 0 so #(g) ̂  g(s) or else g(s) > 0,
in which case geG and #(g) = 1. Thus, q ^ s.

Now to go the other way, suppose that {/} is not a one point
part so f ~ g e S where we may choose g ^ 0, / Φ g. Since f — g
whenever f = 1 or g = 1, there is an s e S such that 0 < g(s) < 1.
Clearly f(s) = 0. Also, clearly, ps ^ p and 0 < #(ps) < 1. If q = q2 e S
with ps ^ q ^ p then we have #(s) = #(ps) ^ #(#) ̂  #(#>). Since g(q) = 0
or 1 this forces #(g) = 1 and q e O(g) = O(f). Since, q ^ p we have
pg — q by 4.9. Since p is the idempotent of the kernel of O(f) and
qeθ(f), pq = p. Thus p = q. But by hypothesis, there is a g ^ j>
with q2 = g and ps <Ξ g ^ p. Thus, {/} must be a one point part.

The hypothesis f2 = / in 4.10 was needed since the converse of
the following proposition does not hold. We will later give an example
to show this.

PROPOSITION 4.11. // {| f\} is a one point part of S then so is {/}.

Proof. Let g ~ f. Then O(f) = O(g) and f(x) = g(x) for all
x e O{f) by 2.3. If / Φ g then since \ f \e H, there must exist an
seS such that 0 < | g(s) | < 1. By 3.1, \f\~\g\. But | / | Φ \ g | and
{|/|} is a one point part. This cannot happen so we must have f = g
and {/} is a one point part.
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5* Examples* In this section we give several examples to illus-
trate theorems or to serve as counterexamples to questions that arise
naturally as a result of this work.

Let M be a convolution measure algebra. Suppose that M can be
represented as an algebra of measures on a locally compact semigroup
T which is not necessarily the structure semigroup S. Further suppose
that integration of the semicharacters on T yields all of the complex
homomorphisms of M. Then it follows from the uniqueness of the
structure semigroup S that S is just the compactification of T having
the property that every semicharacter on T has a unique continuous
extension to S (c.f. [12]). We will make use of this fact in the
following examples.

Let Tι be the semigroup under addition given by Tι = {e} U {x e R:
x Ξ> 0} where e is a discrete identity. Let T2 be the semigroup under
addition, T2 — {x e R: x = 0 or x ^ 1}. Let vx be the measure on T\
consisting of the unit point mass at e plus Lebesgue measure on the
nonnegative reals. Let v2 be the measure on T2 consisting of the unit
point mass at zero plus Lebesgue measure on the reals greater than or
equal to one. Finally, let Mι = L'{v^) and M2 = L'(v2) under convolution.

Topologically, T1 and T2 are the same, and the maximal ideal space
of each of Mx and M2 can be identified with the one point compactification
of the complex numbers with nonnegative real part. That is, if Re z > 0
define fz by fz(x) = e~zx(fz(e) = 1). Also, on 2\ let /„, be the characteristic
function of e and on Γ2, let /«, be the characteristic function of zero.
Then integration of each fz gives a complex homomorphism of Mι (or
M2), and these are all of the complex homomorphisms.

It follows immediately from 4.10 that {/„} is a one point part
relative to M19 but /«, is equivalent to {fz:Rez> 0} relative to M2.
The difference is that ϊ\ has two idempotents, e and 0, whereas T2

has only one idempotent, 0.
Hoffman [5] has constructed a type of function algebra having a

one point part off of the Shilov boundary. Garnett used a specific
one of these in [3]. One might ask whether or not function algebras
obtained from convolution measure algebras can have this property.
The answer is yes so our characterization of the one point part does
not always give a complete characterization of the Choquet boundary.

The version of Hoffman's example used by Garnett can be obtained
by completing, in the spectral norm, the set of Gelfand transforms of
the convolution measure algebra which we now construct. Let a > 0
be an irrational number and let X = {(m, n): m, n are integers, m +
na 2> 0} where the operation in X is coordinate-wise addition. Let
M = M{X) under convolution.

The semicharacter on X which corresponds to the one point part
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off of the Shilov boundary in Hoffman's example is the characteristic
function of (0, 0) which we denote by /«,. It follows from what Hoffman
did that /«, has all of the required properties, but we will show that
{/«>} is a one point part using the results of this paper.

If ((&!, a2) and (bly b2) are in X with b1 + ab2 > αx + aa2 > 0 then
(cίy c2) = φι — aίy b2 — a2) is in X. If / e X and / = /« then there
must exist a point (6ly 62) ^ (0, 0) in X such that f(bL, b2) Φ 0. We
can clearly pick (a19 α2) 6 X such that bx + αδ2 > αL + αα2 > 0 so we can
find (c19 c2) as above. Note, | f((c19 c2) + (a19 α2)) | = | f(c19 c2) | | /(αx, α2) | ==
I fφί9 b2) I > 0. Since | /1 ^ 1 we must have either | f(c19 c2)\^\ fφ,. b2) |1/2

or \f(a19a2)\ ^ I fφ19 b2) |1/2. By proceeding in this manner and noting
that S is a compactification of X, we see that | f(s) | = 1 for some
se S where s Φ (0, 0). Thus, / is not equivalent to /«, relative to
M. Hence {/<»} is a one point part.

We would now like to show that the converse to 4.11 is not true.
Set X1 = {(z, x) e C2: \ z \ — 1, x ^ 0} and let (z19 xx) o (̂ 2, a;2) = (2X22, xι + a?2)
in Xx. Set X2 = {x: x ^ 1} and let ^07/ = x + 2/ in X2. Finally set
X = Xx U X2 where for (3, #) e Xx and y e X2(z, x)oy = y, (the operations
within Xi and X2 remain the same). Then X is a topological semigroup.

Let v be the measure on X which is obtained as follows: on X19 v
is Haar measure on the circle group cross Haar measure on the real line
restricted to the nonnegative reals, plus the unit point mass at (0, 0);
on X2, v is Haar measure on the real line restricted to the reals greater
than or equal to one. Our algebra M is L'(v).

If / is a semicharacter on X then / is either identically zero on
X2 or else it is identically one on Xx. Any semicharacter on X which
is absolute value one on Xίf but not identically equal to one on X19 forms
a one point part. However, the characteristic function on XL is equi-
valent to the function which is one on Xλ and e~x on X2.
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