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ON VISUAL HULLS
D. G. LARMAN AND P. MaNI

The concept of visual hull has been introduced by G. H.
Meisters and S. Ulam. In the following article we study a
few of the problems arising from this notion and, in particular,
establish (Theorem 3) a conjecture of W, A, Beyer and S, Ulam.

Let C be a set in R* and 1 <5 <mn — 1. Then the j5* visual hull
H,(C) of C is defined to be the largest set whose j* projections are
contained in those of C. Alternatively, H;(C) is the set of points x
in R* such that each (n — j)-flat through = contains a point of C.
Let G? denote the Grassmannian of j-subspaces in R* with z¢;(G}) =1
for the usual measure p; associated with G} regarded as a metric 0,-
factorspace. (For further information about p; compare, for example,
[3]). The j* virtual hull V;(C) of C is defined to be the set of points
¢ € R" such that almost all (with respect to p,_;) (n — j)-flats through
x contain a point of C. Thus, if n = 3,5 = 2, Hy(C)(V,C)) corresponds
to those points in R* which are photographically indistinguishable (with
probability one) from C. A j* minimal hull of C in R" is a minimal
set in B" whose j* projections coincide with those of C. In [2] the
announced purpose of the paper was to disprove the conjecture that
H,(C) — C is connected to C, i.e., ? disjoint open sets U, V such
that UDH(C)—C+# @ and VOC +# @. To this we remark that
a simple counterexample can be obtained by considering the closed set
C formed by removing the relative interiors of alternate sides of a
regular hexagon inscribed in a plane circle with centre a. The first
visual hull H,(C) is then C U {a}.

2. Visual hulls of unions of polytopes.

THEOREM 1. Let A,, +++, A;:, be spherically convex, closed subsets
(not mecessarily nonempty) of the sphere S, such that each (n —
J — 1)-subsphere of S™' has a monempty intersection with UJiZ! A,.
Then AN -+ NAjp #+ D. (o, that, in particular, each set A; is
nonempty).

REMARK. S"'is the unit sphere of B" and an (n —j — 1)-subsphere
of S*' is the intersection of an m — j subspace with S*'. A set
C < 8" is spherically convex if C is contained in an open hemisphere
of S and, if %,y e C then C contains the minor arc on the 1-sub-
sphere determined by z, ¥ and 0 (the centre of S*%).

Proof. The case » = 1 is trivial. We assume inductively that
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the result is true for all #’ < » and it remains to prove the result
for j + 1 sets on S"'. Assume on the contrary that there exist
spherically convex closed subsets A,, +--, A;1, € S™* such that

TNAU---UAj) #=Q

for each (n — j — 1)-subsphere Tof S"*,and 4, N --- N A, = . Let
A=A N---NA, Then A, A;., are disjoint spherically convex closed
subsets of S"!, and there exists an (n — 2)-subsphere S’ of S*~' which
separates A and A;,, and such that SSNA=@,8NA4;,, = . Set
Al=A; NS (1=<17=7j). Then each A} is a spherically convex closed
subset of S’ and, since A4,., NS = @, each (n — j — 1)-subsphere of
S’ has a nonempty intersection with A]U --- U A}. Hence by the
inductive assumption A;N --- N A} = AN S +# @; contradiction.

THEOREM 2. In R" let C,, +-+, C;s, be j + 1 compact convex sets.
If we Hy(Uit! C;) then either xe Uil C; or there exists a halfline 1
emanating from x such that INC,* @,1<1=<7 + 1.

COROLLARY. In R" let C,, +--,C;;, be compact convex sets. Then
asuffictent condition for H;(Jit!C;) = Uil C; is that the sets do not
have a common transversal.

Proof. On S"' define j + 1 spherically convex closed subsets
A, -+, A;., so that we A, if w e S** and the half line {# + Mu|x = 0}
meets C;. Then, as xe H;(Ji} C;) each (n —j — 1)-subsphere of S
has a nonempty intersection w1th Uiit A;. And so, by Theorem 1,
there exists we MNiil A;, i.e., the halfline {# + Mu|X = 0} meets each
of Cpy +++,Cjyy.

THEOREM 3. In R" let C,, ---, C;;, be nonempty compact convex
sets. Then the number of components of H;(\JiZ! C;) is at most j + 1
with equality if and only if C, ---, C;., are pairwise disjoint.

Proof. By Theorem 2, if ze H; Uiz C,) — Ui C;, then there
exists a halfline [ = {& + M |)\ = 0} such that I meets each of

Cl’ ct 0y Cj+1 .

Then z + a,u e C, for some «, > 0. We set « =min{a, |1 <k <j + 1}
and want to show that x + »ue H;(JiZ! C;) for all » with0 <\ < a
Set y = 2 + Mu and let P be an (n — j)-subspace. As ze H;({JiZ! C;

there exists 7 such that the (n — j)-flat © + P meets C; at v, say
Set 2z =o + aueC,. Then, as y lies between « and z on [, there
exists ¢, 0 < ¢ <1, such that y = g + (1 — ¢)z. Then the (n — j)-
flat ¥ + P through v contains the point pv + (1 — )z of C;. As P
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was arbitrary we conclude that ye H,({IJiz!C;) and hence that x +
zee Hy (Ui C) for 0 <\ < a. Hence, if vxe H; (Ui C;) then « is
connected, via a line segment in H,;(|JiZ! C;), to at least one of the
sets C;. Hence H;(JiZ} C;) has at most j + 1 components with equality
only if the C;’s are dstomt If the sets C,, ---, C;;, are pairwise
disjoint then in order to show that H,(Jii/ C;) has exactly j + 1
components it is enough to show that for each k,1 < k < 5 + 1, there
exist disjoint open sets U,, V, such that U, U V,D> H;(Uii! C;) and
U.oC, Vi,o>{C,U---UC,_,UCis,U--+-UC;}. We suppose, without
loss of generality, that k=1. For i =2, +++,7+1 let H; denote a
hyperplane which strictly separates C, from C;, and let H} be the
open halfspace bounded by H; and containing C,. We can assume that
the H,’s are in general position. Set U, = N H{, V.= R* — U,. Then
U, and V, are disjoint open sets, C,c U,, Uiz C,c V.. It remains
to show that H; (U’“C)C U,U V, and it is enough to show that
({U.nV)nH(UC) = @. Since the H;’s are in general position,
their intersection an is an (» — j)-dimensional flat L. Let I be
the j-dimensional subspace orthogonal to L. If M is any subset of
R" we denote by proj, M the set of all points # € I for which the flat
L,, which is parallel to L and contains x, has a nonempty intersection
with M. proj; U, and proj, V, are two open sets in I with common
boundary proj, (U, N V,). As proj,C, c proj, U,, proj, Ui*i C; < proj, V,
it follows that (proj, (U, N V.)) N (proj, Yit'C;) = @. Now, if z is an
arbitrary point in U, N V, it follows that L, N (Ui#' C;) = @, and since
dimL,=n — j , we find, by the definition of H;, that z does not belong
to H (Ui C Therefore (U, N V) N H(U:: C)) =

REMARKS. The proof of Theorem 3 also shows that any component
of H;(JiZ} C;) has the property that any two points of it can be joined
by a broken line in it, consisting of at most 3 segments. Hence it is
natural to ask: When are these components convex? (supposing now
that the C;’s are disjoint). In [1] W. A. Beyer has shown an example
of three (nondisjoint) polytopes C; in R?® such that H,C, UC,UC,) is
not a polyhedron. We don’t know whether a similar construction would
be possible with disjoint polytopes. Let us mention here a few more
technical terms. If M is any subset of R*, we denote by aff M the
affine hull of M and by conv M the convex hull of M. relint I/ means
the interior of M with respect to the natural topology in aff M. By
the dimension dim M of M we understand the algebraic dimension of
the flat aff M. A polytope is the convex hull of some finite set. If
PcC E™ is a convex set we denote by ext P the set of extreme points
of P and by exp P the set of its exposed points. For an exact definition
of these terms the reader may compare, for example, the introductory
chapters of [4].
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THEOREM 4. (i) In R" let C,, C, be compact convex sets. Then
H,(C, U C,) is the union of at most two convex components which are
polytopes whenever C, and C, are polytopes.

(ii) There exist in R® three disjoint polytopes such that one of
the components of the second visual hull of their union is not convex.

LEmMmA 1. Let C,, C, be n-dimensional polytopes in R". If
ag H(C,UC,) there exists a hyperplane H such that

(1) ae¢H, H separates a from C,

(2) HNC,= @ or H supports C; (1 =1, 2)

(3) aff (HNn(C,UCy) = H.

Proof of Lemma 1. The case n = 1 is trivial, and we assume
n = 2. If there exists a hyperplane P through a which does not
meet C, U C, and does not separate C, and C, then conv (C, U C,) is
an #n-dimensional polytope not containing a, and the lemma follows
from standard results on polytopes. Hence it can be supposed that
there is a hyperplane H for which (1) and also (2): H separates C,
and C, holds. We choose H in the set $ of hyperplanes for which
(1) and (2) holds. We assume that 2 = dim aff T is maximal, where
T=HnN(C,UC,. Obviously h=0. If h<n—1, let FC H be an
(n — 2)-dimensional hyperplane in H containing 7, and denote by 7:
R"— FE the projection along F onto a 2-dimensional flat E orthogonal
to F. It is easy to see that there is a line L in E such that: (a):
the singleton 7(T) is contained in L. (B):7(a)¢ L, L separates m(a)
from the polygon 7(C))(7): L separates =(C,) and 7(C,).

@) aff (LN (=(C)Un(C)) = L.

(Notice that the conditions («a) — (v) are fulfilled by =(H)). The
hyperplane 7—*(L) of E" intersects C, U C, in a set S with dimaff S =
h + 1. Since Se $ this contradicts the maximality of #. Hence the
lemma is established.

Proof of Theorem 4. (i) We first prove the result when C,, C,
are n-dimensional polytopes. If C, N C,# ¢ then

Hl(Cl U Cz) = conv (C1 U Cz) ’

which is a polytope. We suppose therefore that C,NC, = @. Let
{H;}", be the finite set of those hyperplanes which do not contain an
interior of C;(j =1,2) and for which dim (H; N (C,UC,)=n —1. By
Cr we denote the (finite) intersection of those closed half spaces which
contain C; and whose bounding hyperplane is amongst {H;}r,, j =1, 2.
Then C*% is polyhedral and, since C,, C, are compact, C} is a polytope,
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j=1,2. We show that H(C,UC,) = C¥UC5. Suppose that z* ¢ C}UC;.
Then there exist closed halfspaces H, Hy with bounding hyperplanes
H,, H, amongst {H;}, such that a*¢ H* > C,a*¢ HFDC, If

x*e H(C,UCy, H, and H,

must separate C, and C,. Consider H, and the two disjoint compact
sets HHNC,H NC, in H. There exists an #n — 2 dimensional flat L
in H, which strictly separates H, N C, and H, N C,. By slightly rotating
H, about L in the appropriate direction we obtain a hyperplane H]
which strictly separates C, and C, as well as z* and C,. Similarly
we can obtain a hyperplane H; which strictly separates C, and C,,
and o* and C,., We may suppose that H], H; are not parallel and so
H; N H; is an » — 2 flat. Suppose, without loss of generality, that
H = {z|{x, > =a>0}, H,={x|<{z,p> =L > 0}. Then

Cicizllz, &> afn{z|<lz, 7)) > B}
Cgc{x|<x,‘/)><a}ﬂ{x)<x,77><6} .

Consider the hyperplane H: {x|<{x, A& + (1 — \)yp> = 0}, where \a +
1—-MB=0and 0<x<1. Then z*e H and, using the above ine-
qualities, C;N H = @,1 = 1,2. Hence z* is not in H,(C, U C,), and we
have H,(C,U C,) cC¥ U C¥. Conversely, if x* e Ci U Cy — H,(C, U C),
suppose without loss of generality that a* ¢ C;. Then, by Lemma 1,
there exists a hyperplane H amongst {H;}", which does not contain
x* and which separates ©* from C,. Then, if H* donotes the closed
halfspace containing C, whose bounding hyperplane is H, x* ¢ H* and
so «* ¢ Cf; contradiction. And so H,(C, U C,) = C¥ U CJ, which is the
union of two polytopes. If C,, C, are compact convex sets we choose
decreasing sequences {P};-,, {P}:, of polytopes such that C; = N, Pr,
¢ = 1,2. Then, using the above notation,

HI(CI U Cz) = plplnx N anz"* .

(ii) Let W be the cube {z = (v, vy 2) | —1 <2, <1,7=1,2, 8}
in R®, and denote by W, the facet of W defined by x; = 1. Set C, =W,
C,=2W, C,=3W, Let B(1 <1< 3)bethe components of H,(|J:_,C,),
where the indices are chosen such that, for all 7, C;c B,. Clearly
(0, 0, 0) € B, as does, of course, the point (1, —1, —1)e B, N C,. However
we show that the line segment m: {x = M1, —1, —1)|0 <\ < 1} is not
in B,. Now C,UC, is contained in the halfspace {x|<z, (0,1,1)> = 0}
whose bounding hyperplane P passes through the points (0, 0, 0),
(1,—-1,1) and (—1, —1,1); P naff W, is a line in direction (0, —1, 1).
If yem, then y = (1, —1, —1) for some p, 0 < pt <1. Consider the
line l =y + {M0, —1,1)|zreal}). If z=(2,2,2)€l then z, = p£ <1,
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i.e., z¢ C,. Also <{z,(0,1,1)> = —2¢ < 0 which means that z¢ C, U C,.
Therefore [ does not meet C, U C, U C,, m does not belong to B,, and
B, is not convex.

In [6] V. L. Klee proved that if all j* projections of a compact
convex body C in R" (j fixed = 2) are polytopes, then C is a polytope.
As a partial analogue to this for unions of two convex bodies we prove

THEOREM 5. Let C,, C, be two disjoint compact convex bodies in
R™ such that each j™ projection of C. U C, (j fixzed = 2) is the union
of two polytopes. Then (i) ext (C;) = exp (C;) and ext (C;) is countable
(¢t =1, 2) but (i) ext (C;) is not necessarily finite.

Proof. Let a be an extreme point of C, and we suppose, without
loss of generality, that a = 0, the origin of R". Then, to prove (i) it
is enough to prove that the convex cone K of outward normals to C,
at 0 is n-dimensional. We assume that dim K <n — 1 so that K is
contained in an (n — 1)-subspace P,, and seek a contradiction. Let P,
be an (n — 1)-subspace which supports C, at 0. Of course P, # P,
We can choose an (n — 1)-subspace P, so that there exists a translate
of P, which strictly separates C, and C, and such that the normal to
P, at 0 intersects P, only at 0. Then P, N P, is a subspace of dimension
at least » — 2 and we choose an n — j subspace @ in P,N P,. The
orthogonal complement S of @ in R" is a j-dimensional subspace which
meets P, in a (5 — 1)-subspace. The projection of C, U C, onto S is
the union of two polytopes. Further, as P,N C,= @, 0 is at positive
distance from proj C,. As 0 is an extreme point of proj C,, it follows
that 0 is a locally polyhedral extreme point for proj C,. Hence, in S,
the cone of outward normals to proj C, at 0 is j-dimensional. Further,
any (j — 1)-plane H of support in S to proj C, at 0 can be extended
to an (n — 1)-plane of support H + @ in R" to C, at 0. Also, the
outward normals to these planes form a j-dimensional convex cone
lying in S. Hence 7 = dim (K N S) = dim (P, N S) = j — 1; contradiction.
And so (i) is proved.

To prove (ii) we construct an example in R® of two convex bodies
C,, C,, both of which have a countable infinity of extreme points but,
nevertheless, each 2-projection of C, U C, is the union of two convex
polygons. Let Il ={x|2, =2,=0, —1 <@, <1} be a line segment and
S={x|(x, —1)®+2a2=1,x = 0} a plane circle. By T we denote the
set of those points on S with z,-coordinate *(1/n) for n =1, 2, ---.
We take C, = conv {l U T}, which is a compact convex body in R*® with
extreme points T U {(0, 0, —1), (0, 0, 1)}. It is easily seen that there
is precisely one 2-projection of C, which is not a convex polygon, and
that is in the direction (0, 0, 1). Further the only limit point of extreme
points of this projection is (0,0, 0). Define C, as a disjoint copy of
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C, formed by placing C, above C, in such a way that their respective
major lines pierce the centres of their respective circles. From above,
every 2-projection of C, U C, is the union of two convex polygons and
and both C, and C, are compact bodies with a countable infinity of
extreme points.

3. Visual hulls of more general sets. The following problem
can be formulated.

Is the visual (virtual) (minimal) hull of a borel (analytic) set
wn R" mnecessarily borel (analytic)?

The answer is affirmative (Theorem 6) for virtual hulls and negative
(Theorem T) for minimal hulls. Whilst it is not true (Theorem 8) that
the 7™ visual hull of a borel set is necessarily borel, we have been
unable to decide whether or not the 5* visual hull of a borel or of an
analytic set is always analytic, except in the cases covered by Theorem
9. It is possible also that the j visual hull of a convex borel (analytic)
set is a borel (analytic) set, and we include some partial results
(Theorem 9) in this direction. As before we denote by G? the Grass-
mannian of j-subspaces of R" and by g, the invariant (with respect to
0, acting in the usual way on G?) measure normalised so that p;(G?) = 1.

LeEMMA 2. Let A be an analytic set in R" and denote by A* the
set of those j-subspaces in G? which meet A. Then

(i) A* is an analytic set in G} and hence A* is p; measurable.

(i) If p;(A*) > a then there exists a compact subset A’ of A
such that p;(A™*) > a.

(ili) If A,C A, C --- is an increasing sequence of analytic sets
in R" then p;(UZ, A)* = lim; .. 1£;(AY).
(iv) If A\DA,D--- is a decreasing sequence of analytic sets

in R then pt(Nim A)* = lims o p1(A7).

Proof. (i) Let I be the set of irrational numbers in [0, 1] and,
if1=(@, -+, 1, +--) is a typical member of I expressed as a continued
fraction, set ¢|n = (4, -+-,14,). Then, as A is analytic, it can be
represented as A = >;.; Moo, A(7|n) where the sets A(¢|n) form, for
each fixed 4, a decreasing sequence of compact subsets of R". Then
A* =3 Ni- A*(tjn). As each A*(i|n) is a compact subset of G7,
we conclude that A* is an analytic set.

(i) If p;(A*) > a + 6 with 6 > 0, then we can choose m,, 1 <
m, < oo, such that if I, denotes the set of irrational numbers

P D S

with 1 <4, =m, and Af = 3., Ny A*(|n) then p;(AF) > a + 0.
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Proceeding by induction we may define natural numbers m,, 1 < p < oo,
such that if I, denotes the subset of those irrationals 7 with 1 <7, < m,
forp=1,---q,and A7 = 3., M7= A*(t|n) then p;(A7) >a + 0. Let
I’ be the compact subset of [0, 1] defined as the set of those irrational
numbers ¢ for which 1 <4, <m, for p=1,2, ---, and

A% =3 (A*Gi|n) .

€1’ m=1

Then N;., A7 = A’* and so p;(A™*) = a + 0 > a. Also

A = ez;‘ DLA('& [n)
is a compact subset of A, as I’ is a compact subset of I.
(iii)  p;(UR A)* = p(Uz AF) = limg_., (A7),
(iv) Clearly p;(N7Z 4)* < lim,_.. p2;(AF). Now set p,(N7 A)* = a
and suppose lim,_., ¢£;(A}) > a + ¢, for some positive number ¢. By (ii)
we find a compact set B, C A, such that p;(By) = p;(A¥) — ¢/2. Now
we have A = (B, N A)* U (4F — Bf), where

A —Br ={FeGi|FNA+o, but FNB = Q}.

Since AF c A} we derive further A} C (B, N A)* U (A — By), or
pi(AF) < pi(B. N A)* + ¢/2. Since B, N A, is analytic there exists,
again by (ii), a compact set B, (B, N 4,) such that

#i(Bz)* Z #:’(Bl N Az)X - 8/4

and consequently zt;(B,)* = t;(A)* — (¢/2 + ¢/4). Continuing this pro-
cess we obtain a decreasing sequence {B;}, of compact subsets of R"
such that B;C 4;,+=1,2, ---, and p;(Bf) = pt;(AF) — 3 . ¢/(2°?). Then

=i Bf = (n?’:l Bz)* o (nil Az)y’ and #j(nf':l B;) = limi-»oo #J(B’L*) =a;
but also lim; .. ¢;(Bf) = lim,_., £,(A}) — . Combining the last two
inequalities we find lim,_. z¢,(4;) < a + ¢, a contradiction.

THEOREM 6. Let C be a borel (analytic) set in R". Then the j*™
virtual hull V,(C) is a borel (analytic) set.

Proof. Suppose first that C is a borel set in R”, and we need to:
show that V(C) is a borel set. If D is a subset of R” and x ¢ R",
let D[z, n — j] denote the set of those n — j subspaces F' in G7_; such
that (x + F)ND= @. If 0 <x<1let D(n— 7,1 be the set of all
¢ in R" such that p,_;(Dlz,n — j]) > \. Let B denote the largest
family of subsets of R" such that De B if (i) D is a borel set in R".
(i) D(n — 7, \) is a borel set for all »,0 <X < 1. We shall prove that
B coincides with the family of borel subsets of R”, and it is enough
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to show that B contains the open sets and is closed under the operations
of increasing union and decreasing intersection. If D is an open subset
of R*, then it is easy to see that D(n — j, \) is open for all A, 0 < A <1,
and so B contains all the open sets. Now suppose that {E;}, is an
increasing sequence of sets in B and set £ = |J>, £;. We want to show
that for each N, 0 <\ <1, the equality E(n — 7, \) = U, Ei(n — 7, )\)
holds. In order to do this we observe the following equivalences:
ze En —j,\) < t, j(Elr, n —j]) >N < limo M, _(Ei[z, n — J])) > A —
xelUs, Ei(n — j,\). Here the first equivalence holds by definition,
the second one follows directly from Lemma 2, (iii), if we observe
that this lemma remains true if M* denotes, for each M cR", the set
Mz, n — j] (e R™ fixed). (The lemma itself is stated for the special
case where z is the origin of R*.) The last equivalence again follows
immediately from the definitions, we only have to observe that the
sequence {E;}7, is increasing. Now suppose that {H;}, is a decreasing
sequence of subsets of B and set H = 2., H;. Suppose )\ fixed,
0<x<1, and let m be a natural number such that » + 1/m < 1.
Then, using (iv) of Lemma 2, we find by an argument analogous to
the one above, H(n — j,\) = U N Hi(w — j, N + 1/p).  Hence
H(n — j, ) is a borel set, and He B. Therefore, B is the family of
borel subsets of R" and so, in particular, Ce B. Further V;(C) =
Ny-:C(n — 7,1 — (1/p)) and so V,;(C) is a borel set.

To show that V;(A) is analytic whenever A is analytic, we use the
well known result that there exists an F,;, set K in R"™ such that
A is the orthogonal projection proj K of K into R" (see, for example,
[8]). Call an (n — j + 1)-subspace H of R"*' upright if H has the
form {H + M0, +++,0,1)| —co <\ < oo} where HeGr_;. Let U,,, be
the set of upright (» — j + 1)-subspaces in R"*' with the measure
induced by f,_; in the obvious manner. We can define U;,,(C) of a
set C in R"*' as the set of all those points x in R"*' such that almost
all (with respect to p') upright (» — j + 1)-flats through 2 meet C.
As above, it can been shown that U,,,(C) is a borel set whenever C
is a borel set. Clearly proj U;.,(K) = V,;(A) and, since the projection
of a borel set is analytic, we conclude that V;(A) is an analytic subset
of R".

THEOREM 7. Let C be an open convex subset of R*. Then assum-
ing the continuum hypothesis, C contains a mintmal j* hull D such
that every analytic subset of D 1is countable.'

Proof. We assume the continuum hypothesis and let 2 be the

1 As the referee pointed out, Theorem 7 may be a special case of a much more
general theorem on effective constructions.
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first uncountable ordinal. Let {4.}.., be an enumeration of the analytic
subsets of R" of (n — j)-dimensional measure zero; let {H,}.., be an
enumeration of the (n — j)-flats which meet C. Let F be a fixed
(n — 7)-subspace of R" and denote by « a fixed set, which is not a
point of R". We now choose a set E = {M}.., and a collection of
translates {F.}.., of F inductively as follows. Take M,e(H, — A)NC
and let F, be a translate of F' through M,. Suppose now that M.., F.,
have been defined for all & < & where ¢ is some ordinal proceeding
Q. If H. is a translate of F' we take F, = H, and consider two
possibilities:

(a) If 38 < & such that M, € H, then we take M, = a.

(b)y If 3¢’ < & such that M. € H. we choose M, in the set (H, —
(Uece He UUece A:)) N C. Such a choice is possible as H. N C has
positive (n — j)-dimensional measure whereas H, N (U: <: H: UU: <c 4:)
has zero (n — j)-dimensional measure, being a countable union of sets
of measure zero. If H, is not a translate of F we find, by similar
arguments, that the set (H, — (Uo<e Ho U Usce 4Ae U Uece Feo)) N C
is not empty. We choose M, in this set and let F, be the translate
of F through M,. We claim that the set D = F — « is a j® minimal
hull for C which meets each analytic subset in at most a countable
number of points. To show that all 5 projections of D coincide with
those of C, it is enough to show that the j7* visual hull of D contains
C. Let x be a point of C and let P be an (n — j)-flat through x. Then
P is amongst {H.}..,, say P=H,. If M, +«athen M., e DN H,. If
M, = a then IM,., & < &, such that M., e DN H,. In either case
P meets D and so xe H;(D).

If D is not minimal then there exists M,, § < 2, such that

H,D - M)=C.

But, projecting C and D — M, onto the orthogonal complement of #
we see that by construction proj C N proj F'; + @&, but proj (D — M,) N
proj F. = @. Hence D is a j** minimal hull for C. Finally, suppose
that B is an uncountable analytic subset of D. If B has positive j-
dimensional measure then it is possible to find an uncountable analytic
subset of B of zero j-dimensional measure. Hence it can be supposed
that B has zero j-dimensional measure and so B = A, for some & < Q.
But A, = A. N Dc Y.< M., which is countable; contradiction.

Of course, if G is an open or compact set in R" then H;(G) will
accordingly be an open or compact set. Apart from these cases it does
not seem entirely trivial to determine the nature of H;(G) for a given
subset G of R". Here we prove the following

THEOREM 8. (i) There exists, in the plane R, a borel set C
such that H,(C) is analytic but not borel.
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(ii) If D is an F,-subset of R" then H;(D) is the complement
of an analytic set.

REMARKS. We note that by (i) if C is analytic then H,(C) is not
necessarily the complement of an analytic set. To disprove the state-
ment that whenever A is analytic then H;(4) is analytic, it would be
enough, using (ii), to find an F,-subset D of R" such that H;(D) is
not borel. (Notice that, a subset, M of R" is borel if and only if M
and R" — M are both analytic. Compare, for example, [5]).

Proof. (i) As already observed, every analytic set in R' can be
represented as the projection into R' of some F,; set in R*. Let A
be an analytic subset of R' such that A is not a borel set and let B
be an F,, set in R?* such that projB = A. Take C to be the union
of B and the “y-axis” (R')*. Then it is easily seen that H,(C) is the
union of all lines which are parallel to (R')* and contain a point of C.
However this is not a borel set as H,(C)N R' = AU {(0,0)} is not a
borel set.

(ii) We define a complete separable metric space £, whose points
are the (n — j)-flats of R", as follows. For each (» — j)-flat F in R
let ¥ be the nearest point of F to 0 and set F N (S** + y) = F. Then
the distance o(F, F’) of two (n — j)-flats in Q is defined as the Haus-
dorff distance of F, F’ in R*. Let DcC R* be an F, set, say D =
Uz. D; with D, c D,.,, each D, compact, i = 1,2, ---. Let D}, i =
1,2 ... denote the closed subsets of 2 such that Fe D} if F meets
D; in R". Similarly defined, relative to D, is D*. Then D* = Uz, D}
and so D* is an F, subset of 2. Hence 2 — D* is a G, set and so,
in particular, Q — D* is an analytic subset of Q. Set

Q- D* =S, NAG[p),
where the A(¢|p),p =1,2, ---, form a decreasing sequence of compact
subsets of 2, for each v1eI. Set

B,={x|zeR",—-m<x, <m1=1,.--,n}.

Let K, (¢|p) be the closed subset of B, such that ¢ K, (¢|p) if = is
contained in an (n — j)-flat F with F e A(¢|p). Similarly, we define
K, c B, relative to 2 — D*. Then K,, = >, N;-: K.(2| p) is an ana-
Iytic subset of R" and so, therefore, is K = 3., K,. We claim that
H,D)=R"— K. If x€ K then z ¢ K,, for some m and so & is contained
in some (n — j)-flat F' which is contained (in Q) in some set M-, A(¢| p).
Hence F'e 2 — D* which means that F does not meet D; i.e., x ¢ H;(D).
Therefore R” — K D> H;(D). Conversely if x ¢ H,(D) then there exists an
(n — j)-flat F through « such that F’ does not meet D. Hence F e —
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D* and so Fe;., A(2|p) for some 7€ I. Hence xec N, K.(i|p) for
some positive integer m, i.e., x € K. Therefore R* — K c H,(D) and
so H;(D) = R* — K is the complement of the analytic set K.

DEFINITION. An irregular point 2 of some closed convex set C in
R? is an extreme point & of C such that x lies in two distinct 1-faces
l, I, of C, with neither of [,, [, being contained in a 2-face of C. Let
C Dbe a closed subset of a simple closed curve in the plane OXY. We
say that a set B C x (— oo, ) is vertically convex if every line
which is perpendicular to OXY meets B in a (possibly empty) line
segment. We shall make use of the following immediate corollary to
a theorem of K. Kunugui [7].

Lemma 3. (Kunugui) Let B be a vertically convex borel set in
C X (—o0, ). Then the projection of B into C is a borel set.

As an immediate consequence of Lemma 3, we have

LEMMA 4. Let B be a vertically convex borel subset of some ver-
tically convex closed subset D in C X (— oo, ). Then the set DN
{(proj. B) X (— oo, )} is a vertically convex borel set.

In [9] the authors have derived properties of visual hulls for the
class of convex sets. Our contribution in this direction is

THEOREM 9. (i) If C 1is a convex borel (analytic) set in R*
then H,(C) is a borel (analytic) set.

(ii) If C is a convex borel (analytic) set in R* and C does mot
have wrregular points then H,(C) is a borel (analytic) set.

Proof. (i) We first show that if C is a convex borel (analytic)
set in R* then H,(C) is a borel (analytic) set. If dim C = 1 then the
result is trivial and so it can be supposed that dimC = 2. Note that
C°c H(C)=C. Let the 1-faces of C be {F;}=,. Then

Hl(C)ﬂ(C'—QFi)ZC—QF“

which is a borel set. Let {F;}>, be the 1-faces of C which meet C.
Then relint F; c H(C)N F;,v =1,2,---. The two endpoints of F;
may, or may not, be in H,(C). Nevertheless, H,(C) differs from the
borel set (C — Us, F;) U UL, relint F; by at most a countable number
of points. And so H,(C) is a borel set. Similarly, if C is a convex
analytic set in R? then H,(C) is an analytic set. Suppose now that
C is a convex borel set in R°. If dimC < 2 then H,C) = C, and so
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it can be supposed that dim C = 3. Let {F;}, be an enumeration of
the 2-faces of C. Then each F; is closed and H,(C) N (C — U=, F)) =
C N (C — Uz, F;), which is a borel set. As H,(C) < C, it is now enough
to show that H,C) N F; is a borel set for ¢ =1,2, .-.. Let H/(CNF,)
denote the first visual hull of C N F; relative to aff F;, Then, from
above, H/(CN F;) is a borel set. Let {F;}7, be an enumeration of
the 1-faces of F;. Then Hy(C)N(F; — U F;) = HI(CNF,) — UL Fy;
which is a borel set K;, say. Let {F; }, be the 1-faces of F; which
meet C and have the property that the only plane of support to C
which contains F;  is aff F;. Then relint F;, c HyC) and the end
points of F;, may or may not be in Hy(C). Hence H,(C)N F; differs
from the borel set K; U (UL, relint F;, ) U (U5 (F:; N C)) by at most
a countable number of points. Therefore H,(C) N F; is a borel set,
and so, therefore, is H,(C). Similarly, it can be shown that if C is
a convex analytic set in R® then H,(C) is an analytic set.

(ii) Again we shall prove the result for convex borel sets, and
indicate at the end the modifications required for convex analytic sets.
Let {r;}, be an enumeration of the rational numbers and let P;, denote
the 2-flat {x|x,=7}k=1,2,8;7=1,2, .... For each 1,7, k, let B(3,J, k)
denote the closed set formed by the point set union of all maximal
line segments in C — C° which meet both both P;, and P,,. Let {G.}5_.
be the 2-faces of C. If a 2-face G,, of C meets B(3, j, k) then G, meets
Ci(C; = (C —C)N P;) and C,(C; = (C — C° n P;;) in line segments 1;,
and 1;, respectively. Let 1%, 1% denote the (at most) two maximal
line segments in G, such that each segment contains an endpoint of
1,, and 1;, but 1. and 1% do not intersect except possibly at end
points. Set C* = (C — C°) N P, where P is a plane parallel to P;, and
lying strictly between P;, and P,,. Then G, cuts C* in an interval
I,. Let 1, denote the subinterval of I,, with endpoints 1! N C*, 13, N C*,
and let 1, be the relative interior of 1,. Then

¢’ = BG,j, k) n(c* - UL)

is a closed subset of C*. If xe(’, let £ denote the unique maximal
line segment in B(%, j, k) which passes through x and meets C, and C,.
Let X denote the closed set formed by the point set union of the line
segments Z, x € C', and set Q(¢, 4, k) = {y|ye X, 32 C", ZNC+ @, y € &}.
We now show that Q(<, j, k) is a borel set. Every point y of X can
be given a coordinate vector y = <{x, h), where yeZ and i is the
height, relative to the j™ coordinate, of y above C*. Because C does
not have irregular points, the number of points y in X which receive
two different coordinate vectors is countable. Let @ be the mapping
X —C* X (—oo, ) defined by taking @<z, h)> = (x, h), z€C’. Then
K is a borel subset of X if and only if @(K) is a borel subset of the
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closed set @(X). Hence &(C N X) is a vertically convex borel subset
of C" X (—oo, ). Hence the set D = X N {proj &(C N X) x (— oo, )}
is a convex borel set and so Q(%, 7, k) = @(D) is a borel set. Hence
the set R(i, 7, k) = Qt, 7, k) — Us-. G, is a borel set. Consider now
the set S = U.,,;.» R(%, 7, k) and consider the borel set T defined as the
point set union of all 1-faces of C which are not contained in some
2-face of C. We assert that the set H)(C) = H,(C)N (T — Uz..G»)
equals S. For if y € H:(C) then, because C does not have any irregular
points, there exists a unique 1-face I, not contained in |J;_, G., such
that yel. Then ye H(C) if and only if I N C = &, which happens.
if and only if 1 CQ(, 7, k) or in other words ye R(4, j, k) for some
1,7, k. Hence HY(C)=S. Let V denote the borel set of exposed
points of C and HXC) = V N H(C), HX(C) = Uz_, (H,(C) N (G, — V).
Now H,(C) = H{(C) U HXC) U H}C). H}C) =S is a borel set and,
since HXC) = V N C, HXC) is a borel set. Hence it is enough to show
that H,(C) N (G, — V) is a borel set for all m. Now let {G, }. be
those 2-faces of C which meet C. Then relint G, < H¥C) for all ».
Let {G., .}7-. be the 1-faces of G, . Then either relint G, , < HY(C)
or relint G, , N H(C) = @. Then the endpoints of G, , may or may
not be in H}C). Let H, be the countable set of those endpoints of
{Gn o} which lie in H3(C) and let {G,,. Ji-. be the 1-faces of G,,
whose relative interiors are contained in H{(C). We have G,,, N H{(C) =
relint G,, U (U7, relint G, . ) U H,,, which is a borel set. If, on the
other hand a 2-face of C does not meet C, its intersection with H}(C)
is empty. Therefore H¥(C) N G, is a borel set for all m, and H,(C)
is a borel set.

For the case when C is an analytic set, say C = 3., N, C(i| n)
in the usual representation, the only modification required to the above
proof is to show that the set Q(¢, J, k) is an analytic set. With the
previous notation, Q(i|n) = {y|lye X,xecC,2NCGE|n) = O, yel}.
Then Q(i|n) is a closed set and Q(¢, 7, k) = e N Q7| n). There-
fore Q(¢, j, k) is an analytic set.
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