
PACIFIC JOURNAL OF MATHEMATICS
Vol. 33, No. 1, 1970

BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS

OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

VlNOD B. GOYAL

This paper is a study of boundedness and other properties
of the solutions of nonlinear partial differential equations of
the form

(1.1) Δu = P(xu %2, , xn)f(u)

where P(xi, X2, , xn) is positive, and u(xu %z, xn) is to be
defined in some region of Euclidean w-space, and Δu =
ΣΓ=i d2ul®χ2i is the Laplacian of u. In particular, we con-
sider the case f(u) = eu.

Our principal result is concerned with the nonexistence
of entire solutions. An entire solution u = u(xu x2, , xn)
will be defined as a solution which though continuous for
0 5ΞΞ r < oo is twice continuously differentiate for 0 < r < oo.
Other results are concerned with the general form of and
explicit bounds for solutions.

In the literature on the subject [3, 4, 5, 8, 9, 11, 12] conditions
have been given on f(u) in order that the equation

(1.2) An = f(u)

or, more generally, the differential inequality

(1.3) Δu ^ f(u)

will have no solutions u = u(x19 x2, , xn) having two continuous
derivatives for all finite values of xly x2, •• ,xn. The most general
conditions which exclude such solutions, obtained by Keller [5], are:
f(u) > 0, f'(u) ^ O f o r - o o < ^ < c o and

S ooΓΓu η-1/2

0 []/(*)<**] du < oo .

For n = 2 Redheffer [10] showed that the monotonicity of f(u) may

be dispensed with.

In § 2 we shall consider a more general question for the equation

(1.4) Δu = P(x, y)e", P(x, y) > 0, Δ = ^ + ^ .

While the coefficient P(x, y) will be assumed to be positive and

twice continuously differentiate for 0 < r < oo, P(χy y) will be

permitted to vanish or to become singular in a manner specified in

the statement of the Theorem 2.1. If P(x, y) has such a singularity
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it will, of course, be reflected in the singular behaviour of the solu-
tions of (1.4). We shall thus give conditions on P(x, y) which ex-
clude entire solutions of (1.4). An example of such a solution is
u = r which solves equation (1.4) with P(x, y) = e~r/r.

For n = 2 it is well known that the function

(1.5) u(z, z) = log. ^ ' ^
1-1/(2) I2

is a solution of

(1.6) Δu = Ae2u

if f(z) is an analytic function satisfying \f(z)\ < 1 and \f(z)\ Φ 0 in
the domain considered. In § 3 we show, conversely, that every
solution of (1.6) is essentially of this form. This converse result is
necessary if it desired to use (1.5) and the theory of bounded analytic
functions to obtain general properties of the regular solutions of (1.6).
If the solution u(z, z) of (1.6) is regular in a disk \z\ < R, Theorem
3.1 leads to a bound for u in this disk. If | f(z) \ < 1 in | z \ < R
then, by Schwarz' lemma | f'(z) |/1 - | f(z) |2 ^ R/R2 - \ z |2. Hence, a
solution of (1.6) which is regular for \z\ < R is subject to the
inequality.

u(z, z) ^ log R

R2 - \z

For z = 0, this leads, in particular, to the well known fact that the
equation (1.6) can not have twice continuously differentiable solutions.

In § 4 comparison theorems are proved and explicit bounds are
obtained for the solutions of

(1.7) Δu = P(r)f(u)

or, more generally

(1.8) Δu ^ P(τ)f{u) .

The behaviour of these solutions at an isolated singularity is in-
vestigated.

2* Entire solutions* The main result is:

THEOREM 2.1. Let

(2.1) [[ P(x, y)dxdy = O(r0) (for small r0)
r<rQ

and
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(2.2) [rtσ(t)dt = O(rε) , ε > 0
Jo

where

(2.3) σ(r) = -A-Γ
2π Jo

// either

(ΔΛ) j e r

or

(O AV \ z>(1-/3)fir(r)r(l-215)+ε2-ε/2 / ] n o . / > Λ \ - i 5 - ε r J / r

where
( i ) c is a constant such that c = (2 — ε)(l — β) where 1/2 < β < 1
ε > 0 &%£ small. And
(ii) £Λe function g(r) is a solution of

such that rg'(r) —> 0 as r —> 0.
TΛe^ (1.4) cannot have a solution which is twice continuously

differentiable for 0 < r < oo awd continuous for 0 ^ r < oo.

That such solutions of (1.4) may exist for certain P(x, y) is shown
by the example u = rn, n ^ 2 where P{x, y) = n2rn~2e~rn.

Proof. If we set

(2.5) u = v-logP

equation (1.4) becomes

(2.6) Av = ev + A(\ogP) .

We introduce the notation

(2.7) ω(r) = (
27Γ Jo

By Green's formula for the circle | z \ ̂  r < R

\[jvdxdy= [ —ds
J J J onJ

\z\=r
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where n is the exterior normal. On account of d/dn = d/dr it follows

that

Δvrdθdr = —rdθ = r— v(r, θ)dθ .

o j o Jo dr dvlo

With the help of (2.6) and (2.7), this yields

(2.8) r—ω(r) = J - ( T V + Δ{\og P))rdθdr .
dr 27rJoJo

o)(r) is single valued and twice continuously diίϊerentiable for r < R.
Because of (2.3) and (2.5), (2.8) is equivalent to

(2.9) rdω(r) = J_[r(2πp^ y)eurdθdr + \r

tσ(t)dt .
dr 27Γ Jo Jo Jo

Since u is continuous, it follows from assumption (2.1) and (2.2) t h a t

(2.10) rω'(r) >0

as r—»0.
Differentiating (2.8) with respect to r and using (2.3), we obtain

(2 11) — —
r dr \ dr / 2π Jo

Since eζ is convex for all ξ, the right hand side of (2.11) can be
estimated by

—\ ev{r'θ)dθ ^ β1/2'τ\ = eω{r) .
2TΓ Jo Jo

Hence (2.11) yields

(2.12) 4-{rlf) - w ( r ) + reωir)

dr \ dr J

We now set

(2.13) ω(r) = flf(r) + /(r)

where g(r) is a solution of

which is continuous at the origin; that is, we compute g(r) from

(2.14) r-±-{g(r)) = [tσ(t)dt .
dr Jo
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Because of our assumption on the behaviour of σ(r) at r = 0, g(r)
will be continuous at r — 0. Inequality (2.12) then takes the from

(2.15) jL(rdJL) ^ rτ(r)ef

dr\ dr /

where τ(r) = eff(r). Introducing the new independent variable by
p = log r and setting

(2.16) F=f+2p

inequality (2.15) yields

(2.17) F ^ τ(p)eF

where dot denotes the differentiation with respect to p. Since the
right hand side of (2.17) is always positive F(p) is convex in p there-
fore, ω(r) is convex in logr.

Now suppose (1.4) and, therefore, also (2.17) has entire solutions.
We observe that F(p) must be positive for all p in (— oo, oo).

Indeed, from (2.16), we get, F(p) = 2 + ep(df(ep))/dr. Since by (2.14)
and the assumption (2.2), g'(r) = 0{rε~ι) we have, linv^ rg'(r) = 0.
Hence, by (2.10) and (2.13) limr_0 rω'(r) = lim^o rf{r) = 0. It follows,
therefore, that lim^.o. F(ρ) = 2. But, by (2.17) F(ρ) is convex in p
and we have, consequently,

(2.18) F(p) ^ 2

throughout (—00,00). It, therefore, follows that F(p) is ultimately
positive. We choose pQ large enough so that F(p) > 0 for p > p0 and
set

(2.19) φ = FF.

Differentiating with respect to p and using (2.17) we have

(2.20) φφ-r ̂  τF^eFF-r + F

where 7 is a constant to be chosen later.
Using the inequality [Hardy-Littlewood-Polya] A + B^(A/a)a(B/βy

where a + β = 1, 0 <> a, β ^ 1. the inequality (2.20) yields

(2.21) φφ-r ̂  τ 1-^! - β)β^β-βe^-^FF1~^pβ-r .

Now we consider two cases:

Case I. Let 2/3-7 = 0, 1/2 < β < 1. Then the inequality (2.21)
becomes

(2.22) -*β > πτ1-βpM-β>F JΓ1-*?
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where cx = (1 - βf-'β'K Since F ^ 2 w e have F^ (2 - ε)^ if ^ is
sufficiently large. Moreover, since e{1~β)FF{1~*β) is increasing for
F > 3/9 - 1/1 - β, inequality (2.22) yields

φφ-2? ^ c2τ
ι-Ppι-^ecp

provided (2 - e)p > 3β - 1/1 -β,c2 = ̂ (2-ε)1-3^3 and c = (2 - ε)(l - /5).
Integration of (2.22) gives

(2.23) - Γ - - 1 >
' 2/9-lL^-Vo) Φ2β-ι{p)l~

Since F is convex and increasing in p, φ1~~2β(p) tends to zero as p —> oo.
Hence, the left hand side of (2.23) is bounded as p —> ̂ c.. This con-
tradicts the assumption (2.4).

Hence the inequality (2.17) and also (1.4) does not have entire
solutions.

Case II. Let 2/3 - 7 > 0, 1/2 < β < 1. The inequality (2.21)
becomes in this case

where we have used (2.18). But since

provided (2 - ε)ρ > (7 + β - 1)(1 - β)~\ we have

Choose 7 = 1 + ε, ε > 0. Then β > ( 1 + ε)/2. Therefore, integration
with respect to p gives

(2.24) ]
Φ'(p)l

where c3 = c2(2 — ε)"^"'.
If it were true that u — u(x, y) is entire, the left-hand side of

(2.24) would remain bounded as p—>^o. Since by (2.4)' the right
hand side of (2.24) is unbounded, this leads to a contradiction.

This completes the proof of Theorem 2.1.

3. General solution* Let u(x, y) be of class C 2 in the region
D of x, 2/-plane and satisfy (1.6). Introducing the new independent
variables z = x + iy and z = x — iy equation (1.6) becomes

(3.1)
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where d/dz = l/2(d/dx - i(d/dy)) and d/dz = l/2(3/3a? + i(3/3i/)). How
we prove

THEOREM 3.1. Every solution of (1.6) which is twice continuously
differentiable in a given region D can be written in the form

1 - 1 / ( 2 ) I2

where f(z) is analytic in D such that \f'(z) \ Φ 0 and \f(z) | < 1.

Proof. According to an observation which goes back to Bieberbach
[1] a regular solution of (1.6) can be associated with an analytic
function of z in the following manner: We set

Q = uzz - u\

where u is a solution of (1.6) or, equivalently, of (3.1) and we
compute Q-z. We have, with the help of (3.1), Q-z = 0. Thus, Q is
found to satisfy the Cauchy-Riemann equations. Since Q is continuous,
it must therefore be regular analytic function ω(z).

If we set

(3.2) ψ = e u

and observe that

ψzz = eu(uz — uzz)

we find that ψ is a solution of the linear differential equation

(3.3) ψzz + ω(z)ψ = 0 .

Since co(z) is analytic in z the general solution of (3.3) contains the
analytic solutions of the equation

(3.3)' F"(z) + ω(z)F(z) - 0

because, for an analytic F, we have F'(z) — dF/dz. The general
solution of (3.3) can, therefore, be written in the form

where ψλ and ψ2 are two linearly independent (analytic) solutions of

(3.3)' which may be assumed to be normalized by

( 3 . 4 ) ^ 1 ^ 2 — ^ 2 ^ 1 —~ 1

and A* and 2?* are constants with respect to d/dz — differentiation
used in (3.3) i.e., dA*/dz = dB*/dz = 0. Since these are Cauchy-
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Riemann equations for functions in z we have A* = A(z), B* = B(z)
where A and B are analytic. The general solution of (3.3) is, there-
fore, found to be of the form

(3.5) ψ = A@)ψι(z) + Wz)Ψ&)

where A, B, ψ1 and ψ2 are analytic functions in D. In view of (3.2),
equation (3.5) can be written

(3.6) e = A(s)iK(s) + B(z)ψ2(z) .

Now the proof of the theorem will follow from the following lemma:

LEMMA 3.1. Let ψ1 and ψ2 be linearly independent solutions of
the differential equation (3.3)' where ω(z) is analytic in D. If A(z)
and B(z) are analytic in D and if the expression

(3.7) K(z, z) = A(z)ψM) + B(z)ψ,(z)

is real throughout D but does not vanish identically then K(z, z)
can be written in the form

K(z,z) = ±\σ(z)\2T\τ(z)\>

where σ(z) and τ(z) are two linearly independent solutions of (3.3)'
for which

(3.8) τ{z)σ'(z) - σ(z)τ'(z) = 1 .

Proof. Since K(z, z) is real, we have

(3.9) A(z)^(z) + B(z)ψi(z) = A(z)^(z) + B(z)ψ2(z) .

Differentiation with respect to z and (3.4) give

^(z)[ψ[(z)A(z) - ^(z)A\z)] + f2(z)[ψ[(z)B(z) - B'iz^z)] = -B(z) .

Setting

(3.10) g(z) = f[(z)A{z) - ^{

and

(3.11) h(z) - γ[(z)B(z) -

we have

(3.12) Ϋ&)9{z) + ir2{z)h{z) = -B(z)

But the left-hand side of (3.12) is a solution of (3.3)'; hence (-B(z))
satisfies
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Bzz + ω(z)B = 0

where ω(z) is an analytic function. But since B{z) is analytic in z,

B"(z) + ω(z)B(z) = 0 ,

consequently, B is of the form

(3.13) B(z) = aψ^z) + βf2(z)

where a and β are constants. Arguing in the same manner (3.4)
and (3.9) give

(3.14) A(z) = Ύψ^z) + δf2(z)

where 7 and δ are constants.
Also from (3.12) and (3.13), f^jψ^z) = - ((h(z) + β)/(g(z) + a)).

But since ψ^jψ^z) is analytic in z and, moreover, since ψ1 and α/r2
are linearly independent, we must have g(z) + ά = 0 and h(z) + β = 0,
or equivalently

(3.15)

and

(3.16) ( α ^ + #f2)τft - (α^j + /5f'2)fx = -β

respectively. With the help of (3.12), (3.14), (3.15) and (3.16) the
equation (3.7) becomes

(3.17) K(z, z) = 7 I ψ, |2 + β I ψ21
2 + άψrtt + af2f, .

Now let σ(z) and r(«) be any other solutions of (3.3)' such that
ψL(z) = aσ(z) + bτ(z) and ψ2(z) = cσ(2;) + dτ(2;) where α, δ, c and d are
constants satisfying

(3.18) ad - be = 1

and

(3.19) b(ya + tfc) + d(cβ + άα) = 0 .

This is possible if the determinant

/> = 7 | α | 2 + /9|c|2 + 2Re(aac)

does not vanish. Evidently this can always be achieved as long as
not all numbers a, β and 7 are zero. However a, β and 7 cannot
all be zero since, in view of (3.17) K{z, z) would then be identically
zero, and this case is excluded.

Substituting ψλ and ψ2 in (3.17) and using (3.19) we obtain
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(3.20)
K(z, z) = I σ(z) \2{y I a |2 + β \ c |2 + aca + aca}

+ I τ(z) I2{7 I b |2 + β I d |2 + bda + bda} .

Now we consider the following two cases:

Case I. Let β Φ 0, 7 ^ 0 . We set a Φ 0 and c = 0 then, with
the help of (3.18) and (3.19), (3.20) becomes

K(z, z) = I σ(z) |2 7 I α |2 + I τ(z) |21 d \2y-ι(βy - | a |2) .

( i ) Let 7 > 0, /37 — I α |2 = m (m is a positive integer). Hence,

z, z) = I σ* |2 + I τ*

where σ* = σ(y\a |2)1 / 2 and τ* = τm1/2(7 | a I2)-1'2 are solutions of (3.3)'.
(ii) 7 > 0, βy — \a\2 = —m. In this case

K(z, z) = I σ* |2 - I τ* |2 .

(iii) Let 7 < 0, /S7 - | a |2 = m. Then

(iv) 7 < 0, βy — \a\2 = —m. This gives

Case II . Let /3 = 0, 7 = 0. We set a, b φ 0. With this choice
(3.18) and (3.19) reduce (3.20) to

K{z,z)= -\

= α"1/2 |τ j(α/3)1/2 and are solutionswhere j σι \ = ] cr | (αα)1/2&-1/2 and
of (3.3)'.

Summing up, we have thus proved that, if the function K(z, z)
is real, it must have either of the three following forms

( 1 )

( 2 )

( 3 )

K(z, z) = I τ |2 - I a |2

K(z, z) = I r |2 + I σ |2 (S)

where σ and τ are solutions of the differential equation (3.3)' normalized
by (3.8). The case K(z, z) — | σ |2 — | τ |2 is evidently not essentially
different from case (1). Case (3) can be excluded immediately, since
beacuse of (3.6) and (3.7) K(z, z) must be positive. This also shows
that, in case (1), we necessarily must have

(3.21)

We now define

\τ(z)\ > \σ(z)\.
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(3.22) f(z) = -^4
τ(z)

In view of (3.8) we have

1
(3.23) f'(z) =

τ\z)

and thus | σ |2 + | τ |2 = (1 + | f(z) |2)/| f'(z) | in case (2) and | τ |2 - | σ |2 =
(1 - \f(z)\2)/\f'(z)\ in case (1). Comparing this with (3.6), (3.7) and
(S) we find that u(z, z) must be either of the forms

u(z, z) = log —ί

u(z, z) = log —'

u(z, z) = log 1 +

Since the last two functions are not solutions of (1.6), these cases
are excluded. Hence any real solution of (1.6) must be of the from

u(z, z) = log -

where because of (3.21) and (3.22) | f(z) | < 1 and in view of (3.23)

This completes the proof of Theorem 3.1.

4* Bounds for the solutions of Au >̂ P(r)f(u). Let

dx\ dxl dx\

denote the ^-dimensional Laplace operator and let Dr and Sr stand
for the open sphere x\ + x\ + + x\ < r2 and its boundary

/ y 2 _ 1 _ / y . 2 I . . . I / y . 2 ^ 2

respectively. We are concerned here with functions

ω - ω(Q)(Q e DrJ 0 < r < R)

which are of class C2 in Dr and satisfy the differential equation

Aω = P(r)F(ω)

or, more generally, the differential inequality

(4.1) Aω ^ P(r)F(ω) .



128 VINOD B. GOYAL

Nehari [6] found explicit bounds for the solutions of the differential
equation Δu — F(u) or, more generally the differential inequality
Δu ^ F(u) which are regular in a disk. We shall obtain here a more
general result, which also applies to certain equations of the form
(4.1).

LEMMA 4.1. Let F(t) and G(t) be positive and differentiate
functions for — oo < t < °o and such that the integrals

\~ dt f
3. Fit) ' )

dt
F(t) ' J. G(t)

exist, and let a) = ω(xlf x2, , xn) and v = i>(#i, #2> *χn) be two
functions related by the identity

dt Γ~ dt
( 4 ' 2 ) )~F(t) \ G(t)'

Then

(4-3) # T ^ T̂ V
F(ω) G(v)

provided F'(ω) ^ Gr(v).

Proof. We write x for one of the variables x19 x2, •••,#* and
differentiate (4.2) twice with respect to x. This yields

vx ωx

G(v) F(ω)

vxx vlG'jv) _ ωxx vlF'jω)

G(v) G\v) F(ω) G\v)

Summing over all xn and using the fact that Fr{ω) ^ G'(v), we get (4.3).
We derive the following corollary.

COROLLARY 5.1. If v — v{xx, x2, , xn) is a function satisfying
the differential inequality

(4.4) Δv ^ Pvk , k > 1

where P = P(xly x2, , xn) is positive, and if F(u) is such that

(4.5) F'(u)[°° d t < k

Ίu F(t) ~ k - 1

then, the function u defined by

(4.6)
(

(k- l)v"-1 J. F(t)
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is subject to the inequality

(4.7) Δu ^ PF(u) .

Setting G(v) = vk in Lemma 4.1, the proof of the Corollary 4.1
is immediate.

As an application of Corollary 4.1, we prove the following result.

THEOREM 4.1. // the function ω — ω(xly x2, , xn) satisfies the
inequality

(4.8) Δω ^ τ2F(ω)

where F{ω) is such that F'(ω)[°°dt/F(t) S 9/8 and F'{ω) ^ 0 then the

function u defined by

(r2 - P

2)\R2 ~
20R* )u F(t)

is such that

0) ^ U .

Proof. Consider the function v defined by

o<p<r<R

(4.9) v =

(r2 - p2)a(R2 - r2)a

where a is a constant to be determined later. Differentiating (4.9)
twice with respect to one of the variables x = xkJ we obtain

__ _ 2xa , 2xa

(r2 - p2)a+ί(R2 - r*)a (r2 - p2)a(Rz - rz)«+ι

= 2a 4x*a(a + 1)

(R2 - r*)"{7* - ρψ+1 (R* - r^Πr2 - pψ+2

2a Sx2a2

(γt - p*)«(R* - r

2)a+1 (r2 - pY+ι(R2 - rψ+1

( r 2 - ,02)α(.β2 - r 2 ) α + 2 '

Summing over all x — xk and choosing a ^ 1/4 we get,

~ 2

Now let v = (21/82/)/(5I/2i22)1/4 then we have

(4.10) Ay ^ r V
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where y is given by

jg251/22-1/2 V/4

)
V

_ / jg2

" \(R2 -(R2 -r2)(r2 -

Now applying Corollary 4.1 to (4.10), we obtain,

An ^ r2F(u)

when u is defined by

(r2 - p2)2(R2 - r 2 ) 2

 = Γ°° dt

20i24 )

Clearly, u'(0) — 0 and u —> oo as r—>R or p—»r. The fact that
ω ^ u now follows from Osserman's lemma [8]. This proves our
assertion.

THEOREM 4.2. Lei f(ω) be positive, nondecreasing, differentiate
function in (— °°, °°) /or which

-£r <β>>-oo)
Jω J(t)

exists and

(4.11) f'(ω)\~-£L <ς i + x (λ > 0) .
Jω tit)

(G) w(r) = sup ω(Q)

where ω(Q) ranges over all functions of class C2 in Dr which satisfy
(4.1). Then

, m C(X)a(R>-r2)2

 < f- dt
X ' ' R2 Un

in case P(r) = a (a > 0).

,, 1 3 ) C(X)/3r/1+^(ie2 - r 2 ) 2

Λ2 ~

P ( r ) = /SrM/1+;i (/3 > 0)

r 2 ) 2 ^ f" dt

J.(r)/(ί)

P(r) = γr 1 1 - 2 " (7 > 0)
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where

(4.15) C(X) = — (4λ ^ n - 2)
4π

(4.16) C(X) = ^ L - ^ <4λ > » - 2) .

T/̂ β inequalities (4.12), (4.13) αwcϊ (4.14) are sharp.

The case λ = 0 had been considered by the author in [2]

Proof. Consider the function g = g(r) defined by

(A γi\ C(λ)(fl2 - r 2 ) 2

 = 1 Γ
1 ' ' i22 P ( r ) J .

where p(r) is positive, monotonically increasing and twice continuously
differentiable and C is a positive constant to be chosen later. De-
noting by x one of the variables xk and differentiating twice with
respect to x we have

(A 18) 4ca(fl - r2) =

p\r))s f{t)

- r2) _ _8cx^ _ gxx + 4xpjr)gx _,_ glf'jg)
R2 R2 P(r)f(g) p\r)fig) p(r)f*(g)

dt 4tx2p(r) f00 dt
(4.19)

where dot denotes differentiation with respect to r2. With the help
of (4.17) and (4.18), (4.19) becomes

fit) P\r) hf(t)
8xψ(r)(°° dt

p\r) I

gxx = _8ω?_ Ac(R2 ~ r2) , 16cx2p(r)(R* - r2)
R2 R2()p(r)f(g) R* R2 R'pir) R?

p(r)(R2 - r)2Ύ

p(r))

p{r)

dt
p\rγ i V

Summing over all xk and using (4.11) it reduces to
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P(r)/ϊflr)
- J^n - 2 - 4λ)| -

2c(R2 - r2)2 /2r2j?(r) + np(r) _ 2rψ(r) (1

R2 I p(r) ?)2(r)
^ ' _ 2c(R - r) /2rj?(r) + np(r) _

I ?)2(r)

We now consider the following cases:

Case I. Choose p(r) such that p(r)/p(r)((2r*p(r)/p(r)) - n/(l + λ)) = 0.
( i ) If^ = 0 o r ί ? = α where α is an arbitrary positive constant

then (4.20) becomes

(4 21) ^ k a 4H* - - έ ( " -2 -
If, 4λ <̂  π — 2 it follows that Ag ^ 4wcα/(̂ r) and if C is given by
(4.15), we have

(4.22) Ag g af(g) .

If 4λ > n — 2 the right hand of (4.21) attains maximum for R = r
and the value of (4.16) for C again leads to (4.22). Since £(0) = 0
and increases to oo as r-+R the proof of (4.12) will follow from
Osserman's lemma [8].

REMARK. If a = 1 the left hand inequality (9) of Theorem 1 of
Nehari [6] becomes a particular case of this result.

(ii) If 2r2p(r)/p(r) — (n/1 + λ) = 0 or p = rnli+λβ where β is an
arbitrary positive constant then (4.20) gives

Δg - -^(n - 2 - 4λ)l .
R JβrnI1+λf(g) " I R2

If C is given by the values (4.15) and (4.16), we have

Ag ^ βrnlί+λf(g) .

Now the proof of (4.13) will follow from Osserman's lemma [8].

Case II. Assume p(r) to satisfy

2r2p(r)(pr) + np(r)p(r) - 2r2(l + X)p2(r) = 0

or p(r) = yrn~2lλ where 7 is an arbitrary positive constant. Then
(4.20) reduces to

Ag -jL(n - 2 - 4λ)} .
7rn-2'λf(g) ~

Now if C takes the values (4.15) and (4.16) respectively, we have
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Δg ^ Ύrn-2'λf(g)

and (4.14) is proved with the help of Osserman's lemma [8].
We derive the following corollary:

COROLLARY 4.2. If ω satisfies the equation

Δω = βτ

ni1+λω1+{llλ) (λ > 0, n ̂  2)

where β is an arbitrary constant, then

(4.23) ω<( —
v ~ \c(λ)βrnll+λ(R2 - r2)2

Also the behaviour of ω is such that

log 1/rJ ~ 1 + λ

Indeed, setting f(t) = t1+ilJ2) in (4.13), we have (4.23), where ω = u.
Taking logarithm on both sides, we have, from (4.23)

\ogω <λlog — + _ J ^ _ l o g - i .

8 βc(λ)(R2 - r2)2 1 + λ * r

Dividing by log 1/r and letting r —> 0

nXlog 1/r/ 1 + λ '

A similar result could also be proved about the solutions of the
equation

Aω = jT

n-2lλω1+{llλ) .

The next theorem concerns the lower bounds for the maximum
of the solutions of (4.1).

THEOREM 4.3. Let f(ω) satisfy the conditions of theorem 4.2
with (4.11) replaced by

(4.11)' / ' ( ω ) Γ - ^ - = 1 + λ , (λ > 0) .

If

(G)' v(r) = Sup ω(Q)
QeSr

where co(Q) ranges over all functions of class C2 in Dr and which
satisfy (4.1) then
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(4 24) Γ
f{t) ~ In

if p{r) = K where K is an arbitrary positive constant,

provided p(r) = 8rn~2lλ~ι (δ > 0).

(4.26)
6

m case p(r) = μrιlλ (μ > 0). However, in ^-dimensional case

< V r ' ( J ? 2 ~ r 2 )(4.27) Γ
/(t) ~ 4

where p(r) — vrι, v and I being arbitrary positive constants.

Proof. Consider the function h = h(r) defined by

(4.28)
2n P(r)hf(t) Kr

where p(r) is positive, monotonically increasing and twice continuously
diίferentiable. Clearly, h belongs to the class C2 in Dr. Differentiating
(5.28) twice with respect to x — xk we obtain

-Ά = - h* - 2a:p(r)f" dt
x f(h)p(r) p\r) J» f(t)

(4 29) 1 _ hm 4xhxp(r) • Kf'(h) 2p f
w /<A)p(r) /(/^)p2(r) f)(r)/2(A) p2 J fit)

Using (4.29) and summing over all xk, we obtain

j{rι)p(r) np(r) \~ n p nΛ

2r2p + np p2 — r2

x

Since / ' > 0 we obtain with the help of (4.11)'

(4.30) Ah ^ 1 - i ^ λ - P2-r*ϊnp + 2r2p __ ( 1 + λ ) 2rψU
f(h)p(r) np n L p p2 J

Now we consider the following cases.
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Case I. Choose p such that p = 0 or, p — it where K is an
arbitrary positive constant. Hence (4.30) reduces to

(4.31) Δh ^ κf(h) .

Consequently ((?)' implies

h(r) ^ v(r) .

Since we can take p arbitrarily close to R, we have

f" dt ^ fc(R2 - r2)
J /(ί) = 2™

Case II. Assume p(r) to be such that

np(r)p(r) + 2r2p(r)p(r) — 2λr2p2(r) = 0

or p = 8rn"2lx"1 where δ is an arbitrary positive constant, n > 2,
λ > 1 and such that n < (4λ/l + λ). Hence (4.30) becomes

- 1)

Using ((?)' and arguing as above, we obtain

[co_dt_< δτn~2lλ-\R2 - r2)
J /(ί) = 2n

Case III. Choose p to satisfy

np(r)p(r) + 2τ2p{r)p(r) - (1 + λ)2r2p2(r) = 0

or p — μrιlλ where μ is an arbitrary positive constant and n — 3.
Hence (4.30) gives

Ah ^ ^rllλf(h) .
o

Using the same argument as above, we have

dt < μrllλ{R2 - r2)
= 6

Case IV. Assume p to be such that 2r2p'p + npp — 2r2p2 — 0 or
p = vr^ where y and ϊ are arbitrary positive constants. Consequently

Δh ^ v(l - lX)rιf(h) .

And, as above we conclude
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dt ^ vrι{R* - r
\: fit) ~ 4

This completes the proof of the theorem.

We derive the following corollaries:

COROLLARY 4.3. In case of a function co regular in Dr and
which satisfies the differential equation

Aω = δrn-2lλ-ι{l -
n(X + 1)

where δ is an arbitrary positive constant, n > 2, λ > 1 and such
that n < (4λ/l + λ) we have

?nλ V < ω m

- r2)/ ~~r2)

And also the behaviour of ω is such that

r-o Vlog 1/r/ ~ λ - 1

Indeed, setting f(t) = t1+{ill) in (4.25), where v = ω, we obtain

Taking logarithm on both sides, we get

+ f ^
— r2) λ —

Dividing by log 1/r and taking the limit

log 1/r/ ~ λ - 1

COROLLARY 4.4. If Δ — d2\d%\ + d2\d%\ + 32/^s ^s a ^-dimensional
Laplace operator and ω satisfies the equation

Aω = Rr

ιlλωι+[ιlλ)

3

we have

ω>( §
r1'^ - r2)
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and

COROLLARY 4.5. If the function ω is regular in Dr and satisfies
the differential equation

Aω = 8(1 - lX)rιωi+ωλ) (A = — + —)
V dxl dx\ J

we have

( i Y < ω
V δrHR2 - r2) I ~

and also the behaviour of ω is such that

r-*o \log 1/r/

The proof of Corollaries 4.4 and 4.5 is exactly the same as that of 4.3.

REFERENCES

1. L. Bieberbach, Δu = eu und die automorphen Funktionen, Math. Ann. 77 (1916),
173-212.
2. V. B. Goyal, Bounds for the solutions of Δu ^ p(r)f(u), Compositio Mathematica
18 (1967), 162-169.
3. E. K. Haviland, A note on unrestricted solutions of the differential equation Δu =
f{u), J. London Math. Soc. 26 (1951), 210-214.
4. E. Hopf, On non-linear partial differential equations, Berkeley Symposium on
Partial Differential Equations (Lecture series), 1957, 1-31.
5. J. D. Keller, On solutions of Δu = f(u), Comm. Pure Appl. Math. 10 (1957), 503-
510.
6. Z. Nehari, Bounds for the solutions of a class of non-linear partial differential
equations, Oroc. Math. Soc. (1963), 829-836.
7. J. Nitsche. Uber die isolierten Singular'itάten der Losungen von Δu = eu, Math.
Zeit. βS (1957-58), 316-324.
8. R. Osserman, On the inequality Δu ^f(u), Pacific J. Math 7 (1957), 1641-1647.
9. R. Redheffer, On entire solutions of non-linear equations (abstract), Bull. Amer.
Math. Soc. 62 (1956), 408.
10. , On the inequality Δu^fiu, | grad u |), J. Math. Anal. Appl. 1 (1960),
277-299.
11. W. Walter, ϋberganze Losungen der Differentialgleichung Δu = f(u), Jahresb. d.
Deutsch. Math. Ver. 57 (1955), 94-102.
12. H. Wittich, Ganze Losungen der Differentialgleichung Δu = eu, Math. Zeit. 49
(1943-44), 579-582.

Received January 20, 1966, in revised form January 27, 1967, and July 22, 1969.



138 VINOD B. GOYAL

This work is a portion of the author's doctoral dissertation written under the direc-
tion of Professor Z. Nehari at Carnegie Institute of Technology in 1963, and was
supported by the United States Air Force under contract No. AF20A.

KURUKSHETRA UNIVERSITY

KURUKSHETRA, HARYANA, INDIA




