INTEGRAL DOMAINS THAT ARE NOT EMBEDDABLE IN DIVISION RINGS

JOHN DAUNS

A class of totally ordered rings V is constructed having the property $1 < \alpha \in V \Longrightarrow 1/\alpha \in V$, but such that V cannot be embedded in any division ring.

1. Inverses in semigroup power series rings. This note has only one objective—to construct the above class of counterexamples (see [6]).

NOTATION 1.1. Throughout Γ will be a totally ordered cancellative semigroup with identity e; R will denote any totally ordered division ring. If $\alpha: \Gamma \Longrightarrow R$ is any function, then the *support* of α is the set $supp \alpha = \{s \in \Gamma \mid \alpha(s) \neq 0\}$. The set $V = V(\Gamma, R)$ of all functions α such that $supp \alpha$ satisfies the a.c.c. (ascending chain condition) form a totally ordered abelian group. If Γ is cancellative, then under the usual power series multiplication (see [3]), V is a totally ordered ring.

1.2. Any $1 < \alpha \in V$ with $\alpha(s) = 0$ for s > e may be written as $\alpha = \alpha(e)(1 - \lambda)$, where $1 \leq \alpha(e)$ and $\lambda = \Sigma\{\lambda(a) \mid a < e\}$. It will be shown that

$$(1-\lambda)^{-1}=1+\lambda+\lambda^2+\cdots=1+\sum_s\sum'\lambda(a(1)\lambda(a(2))\cdots\lambda(a(n))),$$

where the finite sum Σ' is over all integers and over all distinct *n*tuples of Γ^n satisfying $s = a(1)a(2) \cdots a(n)$ with each a(i) < e; the sum Σ is over all s < e. To prove that $1/\alpha \in V$ it suffices to establish conditions (a) and (b) below.

(a) For each $s \in \Gamma$, there are only a finite number of n with $\lambda^{n}(s) \neq 0$;

(b) supp $(1 - \lambda)^{-1}$ satisfies the a.c.c.

Assuming (a) and (b), the main theorem follows at once. By adjoining an identity as in [8; p. 158] to the semigroup in [2] a semigroup that actually satisfies the hypothesis in (ii) below can be constructed.

MAIN THEOREM 1.3. If Γ is a totally ordered cancellative semigroup with identity e and R any totally ordered division ring, then the power series ring $V = V(\Gamma, R)$ has the following properties:

(i) $1 < \alpha \in V$ and $\alpha(s) = 0$ for $s > e \implies 1/\alpha \in V$.

(ii) If in addition Γ cannot be embedded in a group, then V

cannot be embedded in a division ring.

An already known result ([8; p. 135]) follows immediately from 1.3 (i).

COROLLARY 1.4. If in addition Γ is a group, then $V(\Gamma, R)$ is a division ring.

2. Proof of the main theorem. Assume 1.2 (a) or (b) fails. Then a lengthy but elementary argument shows there exists a doubly indexed matrix $\{a(i, j) \in \operatorname{supp} \lambda \mid 1 \leq i < \infty; 1 \leq j \leq n(i)\}$ such that the products $u(i) = a(i, 1)a(i, 2) \cdots a(i, n(i))$ of the rows form an infinite properly ascending chain. Eventually a contradiction will be derived from this. Without loss of generality assume $\Gamma \leq e$.

DEFINITION 2.1. For any totally ordered semigroup Γ with identity e and any element $a \in \Gamma$ with $a \leq e$, define a semigroup by

 $\Gamma(a) = \{q \in \Gamma \mid \exists \text{ an integer } m > 0, q^m \leq a\}.$

LEMMA 2.2. With Γ as above, for any $a(1), \dots, a(m) \in \Gamma$ with each $a(j) \leq e$, set $u = a(1)a(2) \cdots a(m)$ and define

$$a^* = \min \{a(1), \cdots, a(m)\}.$$

Then $\Gamma(u) = \Gamma(a^*)$.

2.3. Consider a fixed subset $L \subseteq \Gamma$ all of whose elements satisfy $L \leq e$ and where L satisfies the a.c.c., e.g., $L = \operatorname{supp} \lambda < e$. Consider an array of elements A = ||a(i, j)|| with $\{a(i, j) | 1 \leq i < \infty, 1 \leq j \leq n(i)\} \subseteq L$, where repetitions in the a(i, j) are allowed. Assume all $n(i) \geq 2$. Define u(i) = u(i, A) by

$$u(i) = u(i, A) = a(i, 1)a(i, 2) \cdots a(i, n(i))$$
.

Let \mathscr{K} be the set of all such A = ||a(i, j)|| for which $u(1) < u(2) < \cdots < u(i) < \cdots$ is strictly ascending at each *i*. With each member $A = ||a(i, j)|| \in \mathscr{K}$, we next associate three objects

$$\{a(i)^* | 1 \leq i < \infty\}, m = m(A), \text{ and } G = G(A)$$
.

Define $a(i)^* \equiv \min \{a(i, j) \mid 1 \leq j \leq n(i)\}$. Note that $u(1) < u(2) < \cdots$ implies that $\Gamma(a(1)^*) \subseteq \Gamma(a(2)^*) \subseteq \Gamma(a(i)^*) \subseteq \cdots$. Thus since L satisfies the a.c.c., there is a unique smallest integer $m \equiv m(A)$ such that the semigroups $G \equiv \Gamma(a(m)^*) = \Gamma(a(m+1)^*) = \cdots$ are all equal. The following schematic diagram of all these quantities may be helpful.

$$\begin{split} \Gamma(a(1)^*) &= \Gamma(u(1)) & u(1) = a(1, 1)a(1, 2) \cdots a(1)^* \cdots a(1, n(1)) \\ & & \text{and} \\ \Gamma(a(2)^*) &= \Gamma(u(2)) & u(2) = a(2, 1)a(2, 2) \cdots a(2)^* \cdots a(2, n(2)) \\ & & \text{and} \\ \Gamma(a(m)^*) &= \Gamma(u(m)) & u(m) = a(m, 1)a(m, 2) \cdots a(m)^* \cdots a(m, n(m)) \\ & & \text{and} \\ & & & \text{and} \\ & & \text{and} \\ & & \text{and} \\ & & \text{and} \\ & & & \text{and}$$

2.4. Among the elements of \mathscr{K} , let $\mathscr{N} \subset \mathscr{K}$ be all those A = ||a(i, j)|| such that this associated G = G(A) is as big as possible and call this particular $G \equiv M$. If $\mathscr{K} \neq \emptyset$, also $\mathscr{N} \neq \emptyset$. Define $\bar{a} = \max \{a(m)^* | A \in \mathscr{K}, m = m(A)\}$. Pick and element $B = ||b(i, j)|| \in \mathscr{N}$. Then by our choice of M, $\Gamma(\bar{a}) = M$. Thus $M = G(B) = \Gamma(b(i)^*) = \Gamma(b(i, j)) = \Gamma(u(i)) = \Gamma(\bar{a})$ for $i \geq m(B) \equiv m$. Finally, with each element B of \mathscr{N} , we associate an integer r = r(B). Since $\bar{a} \in \Gamma(u(m))$, there is a unique smallest integer $r \equiv r(B) \geq 1$ such that $\bar{a}^r \leq u(m) < \bar{a}^{r-1}$.

2.5. By omitting some of the rows of B and renumbering the remaining ones, it may be assumed as a consequence of the a.c.c. without loss of generality that m = 1, and also that $b(1)^* \ge b(2)^* \ge \cdots$ is not ascending. Each u(i) is of one of the following three forms:

$$(1) u(i) = q(i)b(i)^*$$

(2)
$$u(i) = b(i)^* w(i)$$
,

(3)
$$u(i) = q(i)b(i)^*w(i)$$
,

where the q(i), w(i) are certain products of the b(i, j). If there are an infinite number of u(i) of the forms (1) or (2), then since

$$egin{aligned} u(i+1) &= q(i+1)b(i+1)^* > u(i) = q(i)b(i)^*, \ b(i+1)^* &\leq b(i)^* \ &\longrightarrow q(i+1) > q(i) \ ; \end{aligned}$$

it follows (after omitting some rows and renumbering) that there is a properly infinite ascending chain:

```
Case 1. q(1) < q(2) < \cdots;
Case 2. w(1) < w(2) < \cdots.
```

If neither Case 1 nor Case 2 applies, then

$$u(i+1) = q(i+1)b(i+1)^*w(i+1) > q(i)b(i)^*w(i)$$

and $b(i+1)^* \le b(i)^*$

implies that one of the inequalities q(i + 1) > q(i) or w(i + 1) > w(i)

must necessarily hold. It is asserted that there is a subsequence $\{i(k) \mid k = 1, 2, \dots\}$ such that

Case 3. either (a): $q(i(1)) < q(i(2)) < \cdots$ or (b): $w(i(1)) < w(i(2)) < \cdots$

For if not, then the a.c.c. must hold in both the sets $\{q(i)\}$ and $\{w(i)\}$. Then by omitting some rows and renumbering the remaining ones it may be assumed that we have an element B in \mathscr{N} with $q(1) \ge q(2) \ge \cdots$ and $w(1) \ge w(2) \ge \cdots$. However, then

 $q(1)b(1)^*w(1) \ge q(2)b(2)^*w(2) \ge \cdots$

gives a contradiction.

2.6. We may assume $q(1) < q(2) < \cdots$ or $w(1) < w(2) \cdots$ are properly ascending, depending on which of the Cases 1, 2, 3(a) or 3(b) is applicable. Set t = r(B), so that $\bar{a}^t \leq u(m) = u(1) \leq u(i)$.

2.7. It is next shown that either $q(i) \ge \bar{a}^{t-1}$ or $w(i) \ge \bar{a}^{t-1}$ holds for all *i*. Suppose that the following holds.

Then $\bar{a}^t \leq u(1) \leq u(i) = q(i)b(i)^*$, and $\bar{a} \geq b(i)^*$ implies that

 $ar{a}^{t-1} \leq q(1) \leq q(i)$.

(For if $\bar{a}^{t-1} > q(i)$, then $\bar{a} \ge b(i)^*$ implies that $\bar{a}^t > q(i)b(i)^*$.) (If t = 1, then $\bar{a}^0 = e$.) Similarly, in Case 2 also $\bar{a}^{t-1} \le w(1) \le w(i)$.

Only Case 3(b) will be proved, since 3(a) is entirely parallel.

Case 3(b). $q(1)b(1)^*w(1) < q(2)b(2)^*w(2) < \cdots;$ $w(1) < w(2) < \cdots;$ $b(1)^* \ge b(2)^* \ge \cdots.$

Then again $\bar{a}^t \leq u(1) \leq u(i) = q(i)b(i)^*w(i)$ and $\bar{a} \geq b(i)^* \geq q(i)b(i)^*$ imply that $\bar{a}^{t-1} \leq w(1) \leq w(i)$. (Otherwise, if $\bar{a}^{t-1} > w(i)$, then $\bar{a}^t > q(i)b(i)^*w(i)$.)

The basic idea motivating the proof is that for $B \in \mathcal{N}$, a new $C \in \mathcal{N}$ can be constructed with $r(C) \leq r(B) - 1$.

2.8. Thus either $q(1) < q(2) < \cdots$ and all $q(i) \ge \overline{a}^{t-1}$; or $w(1) < w(2) < \cdots$ and all $w(i) \ge \overline{a}^{t-1}$. Assume the latter. Let

$$C = || c(i, j) || \in \mathscr{K}$$

be defined by taking as its *i*-th row all the b(i, j) appearing in w(i). (In view of $w(1) < w(2) < \cdots$, there does not exist an infinite number of rows of *C* containing only one element. By omitting a finite number of rows it may be assumed that all rows of *C* contain two or more elements of *L*.) Define $c(i)^* \equiv \inf \{c(i, j) \mid j \ge 1\}$. Since $b(i)^* \le c(i)^* \le \bar{a}$, it follows that

$$M = \Gamma(b(i)^*) \subseteq \Gamma(c(i)^* \subseteq \Gamma(\bar{a}) = M$$
.

Consequently, G(C) = M and $C \in \mathcal{N}$. Since $w(1) \ge \bar{a}^{t-1}$, $r(C) \le t-1$. By repetition of this process, we may reduce the r to one so that finally $\bar{a}^r = \bar{a} \le w(1) < w(2) \cdots$. Since all $c(i, j) \in L$ satisfy $c(i, j) \le e$ and since w(i) is a product of these, it follows that $\bar{a} \ge c(i)^* \ge w(i)$. Thus $\bar{a} = w(1) = w(2) = \cdots$ gives a contradiction. Thus $\mathcal{K} = \emptyset$ and the main theorem has been proved.

References

- 1. A. J. Bowtell, On a question of Mal'cev, J. of Algebra 7 (1967), 126-139.
- 2. C. G. Chehata, On an ordered semigroup, J. London Math. Soc. 28 (1953), 353-356.
- 3. P. Conrad and J. Dauns, An embedding theorem for lattice ordered fields, Pacific J. Math. **30** (1969), 385-398.
- 4. J. Dauns, Representation of f-rings, Bull. Amer. Math. Soc. 74 (1968), 249-252.
- 5. _____, Representation of l-groups and f-rings, Pacific J. Math. 31 (1969), 629-654.

6. ____, Semigroup power series rings (to appear).

7. ____, Embeddings in division rings (to appear).

8. L. Fuchs, Partially ordered algebraic systems, Pergammon Press, 1963.

9. R. E. Johnson, Extended Mal'cev domains, Proc. Amer. Math. Soc. 21 (1969), 211-213.

10. A. A. Klein, Rings nonembeddable in fields with multiplicative semigroups embeddable in groups, J. of Algebra 7 (1967), 100-125.

11. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252.

Received September 3, 1969, and in revised form December 13, 1969.

TULANE UNIVERSITY NEW ORLEANS, LOUISIANA