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INTEGRAL DOMAINS THAT ARE NOT
EMBEDDABLE IN DIVISION RINGS

JOHN DAUNS

A class of totally ordered rings V is constructed having
the property 1 < ae F=>l/αe F, but such that V cannot be
embedded in any division ring.

1* Inverses in semigroup power series rings* This note has only one
objective—to construct the above class of counterexamples (see [6]).

NOTATION 1.1. Throughout Γ will be a totally ordered cancell-
ative semigroup with identity e; R will denote any totally ordered
division ring. If a: Γ => R is any function, then the support of a
is the set suppα: = {seΓ \a(s) Φ 0}. The set F = V(Γ, R) of all
functions a such that suppα satisfies the a.c.c. (ascending chain
condition) form a totally ordered abelian group. If Γ is cancellative,
then under the usual power series multiplication (see [3]), V is a
totally ordered ring.

1.2. Any 1 < a e V with a(s) = 0 for s > e may be written as
a — a{e)(l — λ), where 1 ^ a{e) and λ = Σ{X(a) a | a < β}. It will be
shown that

(1 _ λ)-i = i + λ + λ * + . . . = i + Σ , Σ ' λ(α(l)λ(α(2)) \(a(n)) ,

where the finite sum Σf is over all integers and over all distinct n-
tuples of Γn satisfying s = α(l)α(2) a(n) with each a(i) < e; the
sum Σ is over all s < e. To prove that I/a e V it suffices to establish
conditions (α) and (b) below.

(a) For each seΓf there are only a finite number of n with
Xn(s) Φ 0;

(b) supp (1 — λ)-1 satisfies the a.c.c.

Assuming (a) and (b), the main theorem follows at once. By
adjoining an identity as in [8; p 158] to the semigroup in [2] a
semigroup that actually satisfies the hypothesis in (ii) below can be
constructed.

MAIN THEOREM 1.3. If Γ is a totally ordered cancellative semi-
group with identity e and R any totally ordered division ring, then
the power series ring V = V(Γ, R) has the following properties:

( i ) 1 < a e V and a(s) = 0 for s > e = > I/a e F.
(ii) If in addition Γ cannot be embedded in a group, then V
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cannot be embedded in a division ring.

An already known result ([8; p. 135]) follows immediately from
1.3 (i).

COROLLARY 1.4. If in addition Γ is a group, then V(Γ, R) is a
division ring.

2* Proof of the main theorem* Assume 1.2 (a) or (b) fails.
Then a lengthy but elementary argument shows there exists a doubly
indexed matrix {a(i, j) e suppλ | l ^ i < o o ; l < ^ # < ; n(i)} such that the
products u(i) — a(i, ϊ)a(i, 2) a(i, n(i)) of the rows form an infinite
properly ascending chain. Eventually a contradiction will be derived
from this. Without loss of generality assume Γ ^ e.

DEFINITION 2.1. For any totally ordered semigroup Γ with identity
e and any element a e Γ with a ^ e, define a semigroup by

Γ(a) = {q e Γ | 3 an integer m > 0, qm <̂  α} .

LEMMA 2.2. With Γ as above, for any α(l), , a{m) e Γ with
each a(j) ^ e, set n — α(l)α(2) a(m) and define

a* = min {α(l), , a(m)} .

Then Γ(u) = Γ(a*).

2.3. Consider a fixed subset L£Γ all of whose elements satisfy
L ^ e and where L satisfies the a.c.c, e.g., L = suppλ < e. Consider
an array of elements A = \\a(i, j) \\ with {a(i, j) \ 1 ^ i < oo, 1 <g j <̂
n(i)} S L, where repetitions in the a(i, j) are allowed. Assume all
n(i) ^ 2. Define u(i) = u(i, A) by

u{i) = u(i, A) = a(i, ί)a(i, 2) a(i, n(i)) .

Let 3ίΓ be the set of all such A = \\a{ί, j)\\ for which u(l) < u(2) <
• < u(i) < is strictly ascending at each i. With each member
A = \\a(i, j)\\e 3ίΓ, we next associate three objects

{a(i)* 11 ^ i < oo}, m = m(A), and (? - G(A) .

Define α(ΐ)* = min {α(i, j)\l^j^ n(i)}. Note that u(l) < u(2) < •
implies that Γ(α(l)*) SΓ(α(2)*) S Γ(α(i)*) S . Thus since L satisfies
the a.c.c, there is a unique smallest integer m = m(A) such that the
semigroups G = Γ(α(m)*) = Γ(a(m + 1)*)=••• are all equal. The
following schematic diagram of all these quantities may be helpful.
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Γ(a( 1 )*) - Γ(u( 1)) u(l) = a(l, l ) α ( l , 2 ) . . α( l )* . . α ( l ,
mi

Γ ( α ( 2 ) * ) - Γ ( u ( 2 ) ) u ( 2 ) = α ( 2 , l ) α ( 2 , 2) . . . α ( 2 ) * ••• α ( 2 ,
mi

jΓ(α(m)*) = Γ(u(m)) u(m) — α(m, l)α(m, 2) α(m)* a(m, n{m))
II

<? = Γ(u(m + 1)) .

2.4. Among the elements of ^ let Λ~ c ^ be all those A =
||α(i, i ) | | such that this associated G = G(A) is as big as possible and
call this particular G = M. If J%" Φ 0 , also Λf* Φ 0 . Define a =
max {α(m)* | -4 e ^%/", m = m(A)}. Pick and element B — \\b(i, j)\\e *sfc
Then by our choice of ΛΓ, Γ(ά) = M. Thus Jf = 6?(JB) = Γ(b(ί)*) =
Γ(δ(i, i)) = Γ(%(i)) - Γ(α) for ί ^ m(J5) = m. Finally, with each element
B of ^Y\ we associate an integer r = r(JB). Since α e Γ(u(nή), there is a
unique smallest integer r = r(B) ^ 1 such that ar <Z u(m) < cΓ""1.

2.5. By omitting some of the rows of B and renumbering the
remaining ones, it may be assumed as a consequence of the a.c.c.
without loss of generality that m = 1, and also that 6(1)* ^ 6(2)* ^ - -
is not ascending. Each w(i) is of one of the following three forms:

( 1 ) Φ) - q(i)b(i)* ,

( 2 ) u(i) = δ(ΐ)*w(i) ,

( 3 ) M(i) - q{ϊ)b{iYw{ί) ,

where the g(i), w(ΐ) are certain products of the 6(i, i ) . If there are
an infinite number of %(i) of the forms (1) or (2), then since

+ 1)* > u(i) - q(i)b(i)*, b(i + 1)* ^ δ(i)*

it follows (after omitting some rows and renumbering) that there is
a properly infinite ascending chain:

Case 1. q(ί) < q(2) < •••;

Case 2. w(l) < w(2) < .

If neither Case 1 nor Case 2 applies, then

and b(i + 1)* g b(i)*

implies that one of the inequalities q(i + 1) > q(i) or w{i + 1) >
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must necessarily hold. It is asserted that there is a subsequence
{i(k) I k = 1, 2, •} such that

Case 3. either (a): q(i(l)) < q(i(2)) < •

or (b): w(i(ΐ))< w(i(2))< ••-.

For if not, then the a.e.e. must hold in both the sets {q(i)} and
{w(ί)}. Then by omitting some rows and renumbering the remaining
ones it may be assumed that we have an element B in ^/K with
q(ϊ) >̂ q(2) ̂  and w(l) ^ w{2) ^ - . However, then

q(l)b(l)*w(l) ^ g(2)6(2)*w(2) ^ •

gives a contradiction.

2.6. We may assume q(ϊ) < q(2) < « « or w(ϊ) < w(2) are
properly ascending, depending on which of the Cases 1, 2, 3(a) or 3(b)
is applicable. Set t = r(i?), so that α* ̂  u(m) =

2.7. It is next shown that either q(ϊ) ^ aι~x or w(i) ^ α*"1 holds
for all i. Suppose that the following holds.

Case 1. g(l)δ(l)* < q(2)b{2)* < 5

9 ( 1 ) < ? ( 2 ) < • • • ;
6 ( 1 ) * ^ 6 ( 2 ) * ^ . . .

Then αf ^ 1̂ (1) ^ π(ί) = q{ί)b(ϊ)*, and α ^ δ(ΐ)* implies that

(For if a1-1 > ?(i), then α ^ 6(i)* implies that α* > q(i)b(i)*.) (If t =
1, then α° = β.) Similarly, in Case 2 also α*"1 <£ w(l) ^ w(i)

Only Case 3(b) will be proved, since 3(a) is entirely parallel.

Case 3(b). q(l)b(l)*w(l) < q(2)b(2)*w(2) < •;

w(l) < w(2) < •••;

6 ( 1 ) * ^ 6 ( 2 ) * ^ . . .

Then again ά* ̂  w(l) ^ w(i) = q(ί)b(i)*w(ί) and α ^ δ(i)* ^ ?(i)6(i)*
imply that α4"1 ^ w(l) ^ w(i). (Otherwise, if α ί - 1 > w(i), then α* >

The basic idea motivating the proof is that for Be^K & new
C e ^Ϋ" can be constructed with r(C) ^ r(i?) — 1.
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2.8. Thus either g(l) < g(2) < and all q(i) ^ α*-1; or w(T) <
w(2) < and all w(i) ^ α*"1. Assume the latter. Let

C=

be defined by taking as its i-th row all the b(ί, j) appearing in w(i).
(In view of w(l) < w(2) < , there does not exist an infinite number
of rows of C containing only one element. By omitting a finite number
of rows it may be assumed that all rows of C contain two or more
elements of L.) Define e(i)* = inf {c(i, j) \ j ^ 1}. Since b(i)* ̂  c(i)* ̂  α,
it follows that

M =

Consequently, G(C) = ikί and C e ^ Since w(l) ^ a*-1, r(C) ^ ί - 1.
By repetition of this process, we may reduce the r to one so that
finally ar = α <̂  w(l) < ιι;(2) . Since all c(i, j) e L satisfy c(i, j) ^ e
and since w(ί) is a product of these, it follows that a ^ c(i)* ̂  w(ί).
Thus α = w(l) = w(2) = gives a contradiction. Thus 3tΓ = 0 and
the main theorem has been proved.
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