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AN ANALOGUE OF PTOLEMY'S THEOREM AND ITS
CONVERSE IN HYPERBOLIC GEOMETRY

JOSEPH E. VALENTINE

The purpose of this paper is to give a complete answer
to the question: what relations between the mutual distances
of n (n ^ 3) points in the hyperbolic plane are necessary and
sufficient to insure that those points lie on a line, circle,
horocycle, or one branch of an equidistant curve, res-
pectively ?

In 1912 Kubota [6] proved an analogue of Ptolemy's Theorem in
the hyperbolic plane and recently Kurnick and Volenic [7] obtained
another analogue. In 1947 Haantjes [4] gave a proof of the hyper-
bolic analogue of the ptolemaic inequality, and in [5] he developed
techniques which give a new proof of Ptolemy's Theorem and its
converse in the euclidean plane. In the latter paper it is further
stated that these techniques give proofs of an analogue of Ptolemy's
Theorem and its converse in the hyperbolic plane. However, Haantjes'
analogue of the converse of Ptolemy's Theorem is false, since Kubota
[6] has shown that the determinant | smh\PiPs/2) |, where i, j = 1,
2, 3, 4, vanishes for four points P19 P2, P3, P4 on a horocycle in the
hyperbolic plane. So far as the author knows, Haantjes is the only
person who has mentioned an analogue of the converse of Ptolemy's
Theorem in the hyperbolic plane.

Relations between the mutual distances of three points are ob-
tained which are necessary and sufficient to insure that those points
determine a line, circle, horocycle, or equidistant curve, respectively.

It will be recalled that Ptolemy's Theorem and its converse for
the euclidean plane may be stated as follows.

THEOREM (Ptolemy). Four points P19 P2, P3, P4 of the euclidean
plane lie on a circle or line if and only if the determinant

C(Plf P2, P3, P4) = I PiPj21 vanishes, where PiPά = P^ denotes the
distance of the points Piy P3, (i, j = 1, 2, 3, 4).

The analogous theorem which will be proved in this paper is the
following.

THEOREM. Four points Plf P2, P3, P4 of the hyperbolic plane lie
on a circle, line, horocycle, or one branch of an equidistant curve if
and only if the determinant
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I sinh2 (PiPj/2) \ vanishes (i, j = 1, 2, 3, 4) .

Moreover, the techniques used in this paper provide an easy ex-
tension of this analogue of Ptolemy's Theorem and its converse to
give necessary and sufficient conditions for n, (n ^ 4), points to lie
on a line, circle, horocycle, or equidistant curve.

2* Preliminary remarks* It is well known [1, pp. 273-274] that
the determinants

A4(P,, P2, P3, P4) - ( cosh (PtPj) I, (i, j = 1, 2, 3, 4)

and

A5(Ply P2, P3, P4, P5) = I cosh (PtPj) I, (i, j = 1, 2, 3, 4, 5)

vanish for each quadruple and each quintuple of points in the hyper-
bolic plane. Moreover, A,(Pίy P2, P3) = | cosh (P^) | ^ 0, (i, i = 1,2, 3)
for each triple of points and vanishes if and only if the triple is
collinear. These determinants play an important part in this paper.

Poincare's circular model of the hyperbolic plane will be used.

3* Analogue of Ptolemy's Theorem and its converse* As was
indicated in the § 2, we will use Poincare's model of the hyperbolic
plane. In order to prove the analogue of Ptolemy's Theorem and its
converse, the "cross ratio" of four points is defined and shown to be
an inversive invariant. Since lines, circles, horocycles, and equidistant
curves are all equivalent under the group generated by hyperbolic
inversions, this reduces Ptolemy's Theorem and its converse to that
of considering four points on a line.

DEFINITION 3.1. If A, B, C, D are four distinct points, then the
cross ratio {AB, CD) is defined by:

{AB, CD) = [sinh AC/2 sinh BD/2] / [sinh AD/2 sinh BC/2] .

THEOREM 3.1. The cross ratio {AB, CD) is an inversive invariant.

Proof. From the hyperbolic formula for inversion [8, p. 242],
points X, X' are inverse points with respect to a circle with center
0 and radius 2 tanh"1 τ/ΊΓ if and only if tanh OX/2 tanh OX'/2 = k.

If X', Y' are the inverse points of X, Y, respectively, then the
two triangles OXY and 0XrYf have the same angle at 0. It follows
from the hyperbolic law of cosines that

[cosh OX cosh OΓ - cosh 1 7 ] / [sinh OX sinh 0 7 ] -

[cosh OX' cosh OF' - cosh X' Y'} / [sinh OX' sinh OY'\ . (*)
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Let x = tanh OX/2 and y = tanh OY/2. Then tanh OX'/2 = k/x,
and consequently,

cosh OX - (1 + x2)/(l - α;2), sinhOX - 2a?/(I - £2) ,

cosh OX' = (x2 + k2)/(x2 - k2), sinh OX' - 2xk/(x2 - k2) (*, *)

1 + 2 s inh 2 17/2 = cosh XY .

Substituting the values of (*, *), together with the same identities
when x9 X are replaced by y, Y, respectively, in (*) and solving the
new equation for sinh X ' Y'/2, we obtain:

sinh X ' Γ'/2 - k[(l-x2)/(x2 - k2)]1'2 [(l-y2)/(y2 - k2)]112 sinh 17/2 . (r)

Application of (τ) to all pairs of any four points A, J5, C, D yields,

{A'B', CD'} = {AB, CD} ,

which completes the proof of the theorem.

THEOREM 3.2. If P19 P2, P3, P4 are four points then the deter-
minant K(Plf P2, P3, P4) = I sinh2(PiPj/2) | is ίβss ίΛα^ or equal to 0,

i ί (P19 P 2, P 3 , P4) vanishes if P17 P 2 , P 3, P 4 Zΐe oτt α

Proo/. Since Λ4(P1? P2, P3, P4) = 0, it follows that the determinant
H obtained from Λ4(P1? P2, Pz, P4), by bordering it with a first row
and a first column with a common element — 1, and the rest of the
elements in the first column all ones and the rest of the elements in
the first row all zeroes, also vanishes.

The result of subtracting the first column of this bordered deter-
minant from the second, third, fourth, and fifth columns, respectively,
and making use of the fact that cosh(β) — 1 = 2 sinh2(#/2) is

(1) I (P19 Pi9 P3, P4) =

2sinh2(P,Pi/2)

- 0, (i, j - 1, 2, 3, 4) .

If the four points contain a nonlinear triple, assume the labeling
so that Λ3(P2, P3, P4) Φ 0. Letting [1, 2] denote the cofactor of the
element in the first row and second column, an expansion theorem
from determinants yields

- 2 4 K (P1? P2, P8, P4) Λ3(P2, P3, P4) - [1, 2]2 = 0 .

Since Λ3(P2, P3, P4) > 0, it follows that K(P:, P2, P3, P4) ^ 0 . If every
triple is linear, then the rank of Λ4(PX, P2, P3, P4) is two and, conse-
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quently, the rank of the determinant in (1) is three. Therefore,
K(P1,P2,Ps,Pi) = 0.

COROLLARY. If P, Q, R, S is a quadruple of distinct points, then
the three products, sinh (PQ/2) sinh(i2S/2), sinh (PR/2) sinh (QS/2),
sinh (PS/2) sinh (QR/2), of the hyperbolic sines of half the "opposite"
distances satisfy the triangle inequality.

Proof. By Theorem 3.2, K(P, Q, R, S) ̂  0. However, expansion
of K(P,Q,R,S) and routine but tedious computations yield K
(P,Q,R,S) = A-B-C D, where

A = — [ sinh λ sinh δ + sinh ε sinh Θ + sin a sinh β]
B = [ sinh λ sinh δ + sinh ε sinh Θ — sin a sinh β]
C = [ sinh λ sinh δ — sinh ε sinh θ + sin a sinh β]
D = [ — sinh λ sinh δ + sinh ε sinh θ + sin α: sinh /3]

and λ - PQ/2, δ = JδS/2, e - P.ff/2, 0 - QS/2, α - PS/2 and β = QR/2.
Since K (P, Q, R, S) <£ 0 and no two of JB, C, D can be negative

(consider their sum), it follows that B, C, D are all nonnegative.

REMARK. The above corollary is the hyperbolic analogue of the
ptolemaic inequality. It has been shown [3] that the ptolemaic in-
equality itself is valid in the hyperbolic plane.

Theorem 3.2. shows that K(P,Q,R,S) vanishes if P,Q,R, S
are points on a line. Moreover, in view of Definition 3.1, we have
shown for any four distinct points P, Q, R, S

{PS, QR} + {PQ, RS} ̂  1 .

Since sinh(x + y) = sinh a; cosh y + sinh y coshα;, it can be seen
that if P, Q, R, S lie on a line and occur in some cyclic permutation
of the order PQRS, then

{PS, QR} + {PQ, RS} = 1 .

Let PR//QS denote the fact that P, Q, R, S lie on a cycle and
occur in some cyclic permutation of the order PQRS.

THEOREM 3.3. // P, Q, R, S are distinct points and if PR//QS
then {PS, QR} + {PQ, RS} = 1.

Proof. Theorem 3.2 and the above remarks show the validity of
the theorem in case the cycle is a line. Suppose, then, that the four
points lie on a horocycle, circle or equidistant curve. There exists an
inversion which maps such a cycle onto a line. Thus, if P', Sr, Qr,Rf
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are the inverse points of P, Q, R, S then P'R'HQ'S' and {P'S'9 Q'R'}
+ {P'Q', R'S'} = 1. Since cross ratio is an inversive invariant,
{PS, QR} + {PQ, RS} = 1.

THEOREM 3.4. // P, Q, iϋ, £ are four distinct points such that
{PS, QR} + {PQ, RS} = 1 then PR//QS.

Proof. Three points of the hyperbolic plane lie on a line, circle,
horocycle, or equidistant curve. We first suppose three of the points,
say, Q, R, S are collinear. Since Q, R, S are collinear, Λ3 (Q, R, S) —
0, K(Q, R,S)^0 and with the notation of Theorem 3.2, I(Q, R, S) = 0.
By hypothesis K (P, Q, R, S) = 0, and I(P, Q, R, S) = 0. It now
follows that the rank of I (P, Q, R, S) is three. Consequently, the
rank of Λ4 (P, Q, R, S) is two. Therefore, Λ3 (P, Q, S) = 0 and P, Q, S
are collinear. It now follows that P, Q, i?, S are collinear and
PR//QS.

If Q, R, S lie on any cycle, this cycle may be mapped onto a line
by an inversion. If P',ζ>', R', S' are inverse points of P, Q, i2, S then
by the above, P'R'UQ'S'. If the line of P', Q', i2', S' is mapped back
onto the cycle of Q, R, S by the same inversion, it follows that
PR//QS.

The following theorem, which is a hyperbolic analogue of Ptolemy's
Theorem and its converse, has now been obtained.

THEOREM 3.5. Four distinct points P19 P2, P3, P4 of the hyperbolic
plane lie on a line, circle, horocycle, or one branch of an equidistant
curve if and only if the determinant

K{Pt, P2, P3, P4) = I sinWiPiPj/Z) | vanishes (i, j - 1, 2, 3, 4) .

In order to obtain the generalization of this analogue of Ptolemy's
Theorem and its converse, we need the following lemma.

LEMMA 3.6. If P19 P2, P3, P4, P5 are five points then the deter-
minant K{Pt, P2, P3, P4, P5) = I smh^PiPj'β) \ vanishes (i, j^ = 1,2,3,4,5).

Proof. Since the rank of A5(PX, P2, P3, P4, P5) is less than or equal
to three, it follows that the determinant, H, obtained from Λ5

(P19 P2, P3, P4, P5) by bordering it with a first column and a first row
with common element —1, and the rest of the elements of the first
column all ones and the rest of the element in the first row all zeroes
has rank less than or equal to four. The determinant, I, obtained
from H by substracting the first column from the second, third,
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fourth, fifth and sixth columns, respectively, and then substituting
2 sinh2(#/2) for cosh (x) — 1 also has rank less than or equal to four.
Hence K(Pl9 P2, P3, P4, P5) = 0.

THEOREM 3.7. If P19 P2, « , P W are w pairwίse distinct points
of the hyperbolic plane, (n ^ 4), ί/̂ ew necessary and sufficient condition
that P19 P2, , P Λ ϊie ow a iwβ, circle, horocycle, or one branch of
an equidistant curve is that the matrix

K (Plf P2, , P.) - I s i n h ' ί P ^ ) I (i,j = 1, 2, , n) ,

three.

Proof. Suppose P1? P2, , Pw are pair wise distinct points of
the hyperbolic plane which lie on a line, circle, horocycle, or one
branch of an equidistant curve. Then the leading principal minor of
order three of K (P19 P2, , Pn) is nonzero, while the determinants
obtained from this principal minor by adjoining one row and one
column or two rows and two columns vanish by Theorem 3.3 and
Lemma 3.6, respectively. It follows that the rank of K(P19P2,
• , Pn) is three.

Conversely, if the rank of K(P19 , Pn) is three then every principal
minor of K (P19 P2, « ,PΛ) of order four is zero. It follows from
Theorem 3.5 that each quadruple of the points and hence the n points
lie on a line, circle, horocycle, or one branch of an equidistant curve.

4* Circles, horocycles and equidistant curves* It is noted, in
the hyperbolic analogue of Ptolemy's Theorem and its converse, that
the relation satisfied by the mutual distances of four points is the same
for four points on a line, circle, horocycle, and one branch of an
equidistant curve. Since three points are collinear if and only if one
of the distances determined by the three points is equal to the sum
of the other two, the characterization of three collinear points is im-
mediate. The purpose of this section is to find metric conditions
which are necessary and sufficient to insure that three points lie on a
circle, horocycle, or one branch of an equidistant curve, respectively.
In this section the vertices of a triangle will be denoted A, B, C and
α, 6, c will denote the lengths of the sides opposite the vertices A,
B, C respectively.

THEOREM 4.1. Suppose A, B, C are vertices of a triangle. Then
A, B, C lie on a circle if and only if a real number R, the circum-
radius, exists such that 2R ^ max {α, δ, c} and the determinant
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a (A, B, C) =

1

coshc

coshδ

1

coshc
1

coshα

1

coshδ
coshα

1

1

= 0 .

Proof. Clearly, A, B, C are points on a circle if and only if a
point T exists such that TA = TB = TC = R and 2R ^ max {a, δ, c)
by the triangle inequality. Since A* (A, B, C, T) = 0, it follows, by
factoring coshi? from the last row and column of A* (A, B, C, T),
that a (A, B, C) = 0.

Conversely, suppose A, 5, C are vertices of a triangle and a real
number R exists such that α (A, J5, C) = 0 and 2R ^ max {α, 6, c}.
Then

1
coshc

cosh 6

cosh i?

cosh c
1

coshα

coshiϋ

cosh b
cosh a

1

coshϋJ

coshi?
coshi2

cosh R

1

(2)

T w o cases are to be considered.

= 0

Case 1. The distance AB is less than 2R.

Since the function AX, (X on the perpendicular bisector I, of the
segment joining A and B), is continuous, monotone increasing, and is
not bounded above as X recedes along either half-line of I determined
by the midpoint of the segment joining A and B, points S, S' of I
exist such that AS = AS' = R. Also, BS = AS = BSr. It follows
that CS Φ CS', for otherwise C would lie on the line joining A and
B, contrary to the fact that A, B, C are noncollinear points.

Denote by A (A, B, C, S; x) the function obtained from A4 (A, B,
C, S) by replacing CS by x. This function is not identically zero,
since the coefficient of cosh2# in the development of the determinant
is — A2(A, B) Φ 0. It follows that the function vanishes for at most
two values of x. Since AS = AS', BS = BS' and A4(A, B, C, S) = Λ4

(A, B, C, S') = 0, CS are CS' are the distinct roots of A(A,B,C,S; x)
= 0. From (2), R is also a root of A (A, B, C, S x) = 0. Therefore,
CS = R or CSr = R and A, B, C lie on a circle with circumradius R.

Case 2. The distance AB is equal to 2R.

Let S be the midpoint of the segment joining A and B. Then
AS = J5S = R. Again, denote by Λ(A, J5, C, S; x) the function obtained
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from Λ4 (A, B, C, S) by replacing CS by x. By an expansion theorem
for determinants

Λ(A, B, C, S;x) = [Λ3(A, B, C)Λ3(A, 5, S) - [coshα;]2]/Λ2(A, B) ,

where [coshcc] denotes the cofactor of the element coshα; in the de-
terminant Λ(A, B, C, S; x). Hence, since Λ3(A, B, S) = 0, the equation
Λ(A, B, C, S; x) = 0 has only one root. From (2), R is a root of this
equation, while Λ4 (A, B, C, S) = 0 by the Preliminary Remarks.
Therefore, CS = R and A, _B, C lie on a circle with circumradius R.

THEOREM 4.2. // A, B, C are vertices of a triangle, then A, B, C
lie on a horocycle if and only if

β(A,B,C) =

1

cosh c

coshδ

1

cosh c

1

coshα

1

cosh b

coshα.

1

1

1

1

1

0

= 0 .

Proof. Subtracting the first column of (A, J5, C) from the second,
third, and fourth columns, respectively, and making use of the fact
that cosh (x) — 1 = sinh2(x/2) we have:

β(A, B, C) = 4 λ δ ε θ where

λ = sinhα/2 — sinh6/2 — sinhc/2

δ = sinhα/2 — sinh6/2 + sinhc/2

ε = sinh α/2 + sinh 6/2 — sinh c/2

θ = sinh α/2 + sinh 6/2 + sinh c/2 .

Hence, β(A, B, C) = 0 if and only if one of the numbers sinh α/2,
sinh 6/2, sinh c/2 is the sum of the other two. It follows from the
formula for the length of arc of a horocycle that β(A, B, C) = 0 if
Ay B, C are points on a horocycle.

Conversely, if β (A, B, C) = 0, then no generality is lost if we
assume ε = 0. Then sinh α/2 + sinh 6/2 = sinh c/2, and c is the greatest
of α, 6, c. Since

sinh (α + 6)/2 = sinh α/2 cosh 6/2 + sinh 6/2 cosh α/2 > sinh c/2 ,

α + 6 > c. Thus, a triangle A, B, C exists such that C lies one of
the two horocyclic arcs that join A and B. Thus, if β(A, B, C) = 0
then A, B, C lie on a horocycle.

If a = 6 = c, then β(A, B, C) = - 3 (coshc-1)2, and it follows by
continuous variation that β (A, B, C) < 0 whenever A, B, C lie on a
circle, and β(A, B, C) > 0 whenever A, B, C lie on one branch of an
equidistant curve.



ANALOGUE OF PTOLEMY'S THEOREM 825

As a result of Theorems 4.1 and 4.2, the following theorem is
immediate.

THEOREM 4.3. If A, B, C are vertices of a triangle, then A, B, C
lie on one branch of an equidistant curve if and only if for each
real number R ^ 1/2 max {a, b,c},a (A, B, C) Φ 0 Φ β {A, B, C).

The author wishes to thank Professor L.M. Blumenthal for the
suggestion of the problem and for his helpful criticism. The author
also wishes to thank H. S. M. Coxeter for his suggestion to use
Poincare's model. The proofs of some of the theorems given here are
due to his helpful suggestions. Moreover, Theorem 3.1 is due to
him.
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