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LOCAL BEHAVIOUR OF AREA FUNCTIONS
OF CONVEX BODIES

WiLLIAM J. FIREY

The area function of a convex body K in Euclidean n-space
is a particular measure over the field <% of Borel sets of the
unit spherical surface, The value of such a function at a
Borel set o is the area of that part of the boundary of K
touched by support planes whose outer normal directions fall
in w. In particular the area function of the vector sum
K + tE, where t is nonnegative and £ is the unit ball, is a
polynomial of degree n — 1 in ¢ whose coefficients are also
measures over <Z. To within a binomial coefficient, the
ccefficient of ¢*—?-! in this polynomial is called the area func-
tion of order p. For p =1 and p = n — 1 necessary and suf-
ficient conditions for a measure over <% to be an area func-
tion of order p are known, but for intermediate values of p
only certain necessary conditions are known., Here a new
necessary condition is established. It is a bound on those
functional values of an area function of order p which corre-
spond to special sets of <Z°. These special sets are closed,
small circles of geodesic radius « less than n/2; the bound
depends on «, p and the diameter of K. This necessary con-
dition amplifies an old observation: area functions of order
less than n — 1 vanish at Borel sets consisting of single
points,

To examine area functions in detail, we write /1(u) for the sup-
port plane to K whose outer normal direction corresponds to the
point % on the unit spherical surface 2. For w in <& set

Blw) = uLer(H(u)ﬂK) .
The area function of K at @ is the (n — 1)-dimensional measure of
B(w); we denote this by S(K, w). S(K + tE, w) is a polynomial of
degree # — 1 in t; the coefficient of

<n ; 1>t"—ﬁ—1, where (n ; 1) = p!(yin~_plf ik

is the area function of order p at w and is written S,(K, w). In
particular

S,—(K, w) = S(K, w), S(K, ) = S(E, ») .
If at each boundary point of K there is a unique outer normal
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» and principal radii of curvature R (%), +--, RB,_,(%) and if {R,, ---, R,}
signifies the »™ elementary symmetric function of these radii, then

S,(K, 0) = SM{RL, R,,}da)/(”' ) 1) .

For general convex bodies the total area of order p is a special
mixed volume; in detail

Sp(Kr 2)=nV(K, -, K, E’ oo, B

g
p n—p

Let v be any fixed point on 2 and let w, be the set of w on 2
for which

(wyv) Zcosa, 0 <a<7m?2,

where (u, v) denotes the inner product of % and v. We shall prove
that

(1) S,(K, w,) < AD?sin"?*aseca = ADf,(«) ,

for p=1,2, .-+, » — 1, where D is the diameter of K and A depends
neither on « nor on K.

A. D. Aleksandrov [1] and W. Fenchel and B. Jessen [3] introduced
such area functions. They showed that for a measure @ over <% to
be an area function of order # — 1, it is necessary and sufficient
that, for any «’

(2) [ @, woaow) = o, | |, wlo@ow) > o,

where these are Radon integrals. Aleksandrov showed also that
(2), while necessary for @ to be a p™ order area function when
» < n — 1, are not sufficient. In part this depended on the observa-
tion that

(3) S,(K, {v}) = 0

for each v on 2 and p < n — 1. By letting « tend to zero, we see
that (3) is a consequence of (1).

Necessary and sufficient conditions for @ to be an area function
of order one are given in [4] and [5]. Inequality (1) for p = 1 was
proved in the latter paper and plays a significant part. Items of
background are in these papers and [2] and [3].

1. We first show that if (1) holds for convex polyhedra, then
it is true for all convex bodies.
Given any convex body K we can find convex polyhedra K,, m =
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1,2, ..., which approximate K to within 1/m in the sense of the
metric

o(K, K,) = max |H(u) — H,(w)| ,
ueR
where H and H, are the support functions of X and K,. For the

diameters D and D,, of these bodies we have

limD, = D.

m-—rco

Let ¢ > 0 be such that a + ¢ < 7/2; denote by 7. the open set
of v on 2 for which

(uy v) > cos (@ + ¢€) .
Clearly

(4) @ C.C Dy, -

By Theorem IX of [3], S,(K,,®) converges weakly to S, (K, w) as
m tends to infinity. This implies [3, p. 8] that

(5) lim ll'lf Sp(Km’ 775) 2 Sp(Ky 775) _Z Sp(K7 wa)

since 7, is open. We have used (4) and the monotonicity of S,(K, »)
in w for the final inequality.

Also from (4), the monotonicity of S,, and the assumption of (1)
for polyhedra, we get

(6) Sp(Kny 7.) = AD7 fo(a + ¢) .
Hence, because D, tends to D, (5) and (6) yield
Sy(K, ®,) = AD*fy(a + ¢) .
The left side does not depend on € and so inequality (1) holds for K.

2. To prove (1) for convex polyhedra K we form, from a given
K, four convex bodies K,, K,, K;, K, for which

(7) Sy (K @) < (Ko 0,5 = 1,2, 3,
and

(8) S, (K, o) = Sy(K, @) ,

(9) Sy(K,, w) = AD*f () .

As a matter of notation I7;(u) signifies the support plane to K;
with outer unit normal . We write 0P for the boundary of any
set P.
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The body K, is to be the convex closure of B(w,). Since

U (KN 11,(w)) = B(w.)

‘ME(I)a

(8) holds. Also K, is polyhedral.

Let §.(u) signify the half-space with outer normal % which is
bounded by I7,(u). Of course, for u in w,, §,(u) is the half-space
with outer normal » bounded by II(w). Since a < /2, the intersec-
tion of those 9,(u) for which

(u, v) £ cosa

is a convex polyhedron K, 2 K,. Here v, as before, is the centre
of w,; we write w, for those  on 2 which satisfy the last inequality.
Clearly

U’ <K1 N Hl(’“’)) = U , (Kz n H2(’Lb))

uewa uewa

and so
(10) Sy(K, w7) = Sy(Kyy 007) .
On the other hand K, & K, implies that
S, (K., ) < S,(K,, 2) .

This is a consequence of the representation of these total area func-
tions as mixed volumes and the known monotonicity of mixed volumes
VK,---,K,E, -+, E)in K, cf. [2]. The additinity of area functions,
our last inequality and (10) yield (7) for j = 1.

The rest of the proof is treated in separate sections. In §3 we
describe a plane /I, normal to v, which cuts K so that B(w,), and
hence K,, lies in one of the half-spaces determined by /7,. Call this
half-space §,. We take K, to be the intersection of §, with

N9w) = NYu(w)

where these intersections are taken over those % in the common
boundary of w, and ., i.e., those u for which

(#, v) = cos .

The body K, contains K,. To determine I/, it is necessary to consider
circular cones of the form

11) W, 2 —x) + ||z — 2]|sina < 0.

The norm is Euclidean. The vertex of such a cone is z, the axial
ray within the cone has the direction —v; these cones are translates
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of one another. We choose z, so that the resulting cone contains K
and the distance from K to the plane

vy — ) =0

is as small as possible. We call this tangent cone C.

In §4 (7) is proved for j = 2.

K, is CN$, This intersection is clearly a convex body which
contains K,. In §5 we prove (7) for j = 3. Finally (9) follows from
a direct calculation sketched in §6.

3. Let us introduce a Cartesian coordinate system with origin
at the vertex z, of C and such that v = (—1,0, ---,0). The descrip-
tion of C takes the form

%, = tan a(x? + -+ .- + %)Y

and the distance from K, which is in C, to the plane x, = 0 is minimal.
This means that each half-space

(12) gy + ooo + U, =0

must contain a point of B(w,) NoC for the following reason. If
0K NoC had no points in (12), a small translation of K in the direction
% would cause 0KNoC to be empty; a subsequent small translation
in the direction v would reduce the distance from K to z, = 0. Hence
(12) contains a point x of dCNJK. The tangent plane to oC at
is a support plane of 0K and the outer normal to this support plane
makes an angle of measure «a with v, i.e., falls in w,. Thus « is
also in B(w,) as asserted.

We define conical bodies C, and C, to be the intersection of C
with the half-spaces

v, < Dtana,x, < 2Dtana

respectively.
We first prove that

13) B(w,)NoC = C, .

Suppose to the contrary that there is a y in B(w,)NoC for which
y, > Dtana. Since the radius of the intersection of C with

x, = Dtana
is D, a ball of radius D, centred at y, lies in a half-space of the form
(14) Uslly + + o0 + Uy, <O

for some %. As noted in the previous paragraph, there is a point 2
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in the complement of (14) which is in B(w, NdC. This would give
two points « and y in K separated by a distance greater than the
diameter D of K. The contradiction establishes (13).

Next we demonstrate

(15) Bw,) & C, .

Again the proof is by contradiction. Imagine z to be a point in
B(w,) for which z, > 2D tana. 2z cannot be on the x,-axis for the
following reason. Let /I be a support plane to K which contains z.
There must be a half-space of the form (12) in which the points of
I1 NoC lie in the half-space

x, >2Dtan« .

This implies that the points of 6KNoC which lie in (12) are at a
distance exceeding 2D from z which, again, contradicts the fact that
D is the diameter of K.

Let 2’ be the point nearest to z on the x,-axis. Set

u=(z—2)lle —2|;
% 1s orthogonal to » and 2’ and so
0< (U, 2 —2) = —(uy 2) .
Thus z satisfies
Uy + 200 + Uy, <0
There is also a point = of
B(w,)NdC, = B(w,)NC,

in the complementary half-space. Therefore the distance ||z — x|
must exceed the distance between (2D tana, 0, -+, 0) and the inter-
section of 0C, with the plane

x, = Dtana.
That is to say
|z — || > (D*+ D*tan*)'* > D .

This is impossible for « and z in K which completes the proof of (15).
The plane

x, = 2D tan «

is the cutting plane /I, of §2; the conical convex body C, is K,.
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4. From the definitions of K, and K, we see that their support
planes I7,(u) and II,(u) coincide whenever their outer normal directions
% are in w,. Hence for such %, since K, & K,,

K,N1l(u) & KyNITy(w) 5

there is certainly equality when « is in the interior of w,. Inequality
(7) for j = 2 follows from the next lemma, to the proof of which
this section is devoted.

LEMMA. Let K and K' be two convex polyhedral bodies whose
support planes with outer mormal direction v are denoted by II(u)
and II'(w). If

(16) Knll(w) & K'N1l'"(u)
for each w in some Borel set @ of 2, then

SyK, ®) < S,(K', ®), for p=1,2,++s,m — 1.

We first require a description of S,(K, ®) where K is polyhedral.
In this we follow work, as yet unpublished, of J. Zelver.

Consider a set of the form KN II(u); this is a p-face e, when e,
lies in a p-dimensional flat but not in a (p — 1)-dimensional flat. The
outer unit normals to support planes of K which contain e, sweep
out a closed, geodesically convex set w(e,) on 2 which is in <& and
is (n — p — 1)-dimensional. Throughout w(e,) we distribute mass
with constant density \,(e,) equal to the p-dimensional volume of e,.
Thus if w is any subset of w(e,) which is in <% and if p,_, (®) is
its (n — » — 1)-dimensional volume, then the mass falling in ® is
No(€p) tl_p_(®). The representation we seek is

(18) SP(K’ (0) = Z;; )‘p(ep)#n_p._l(a) m w(@p))/<n 2—) 1) ,

where the starred summation is taken over all ¢, in oK.
Consider the vector sum K + ¢E and let /7*(u) signify its support
plane with outer normal . If 2’ is a point of

(K + tEynIl*(u) ,
then there is a unique point x in KN //(u) such that
(19) o —x=tu.

Suppose ¢, to be the face of lowest dimension which contains 2 and
let {ZI(w)} be the set of support planes of K which contain e, where
' ranges over w(e,). We form
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(20) UK + tE)nI*w)}

where the starred union is taken over those #’ in wNw(e,). If (20)
is not empty, it is made up of points 2z’ to each of which corresponds
a unique x on

U ENIW)) = e,

for which (19) holds. Thus (20) is the Cartesian product of e, with
that part of the boundary of ¢E which is swept out by rays whose
directions are in wNw(e,). Therefore, empty or not, the (n — 1)-
dimensional measure of (20) is

PN (8p) tha—p (@ N O(e,))

We add up all such contributions to S,_,(K + tE, ®) ard obtain
the sum

3 S () @ N 0ey)

On the other hand, from the generalized Steiner formula [3, p. 31],
we have

&4K+wmm=iﬂw%“53&mﬂm
=1
The comparison of coefficients of like powers of ¢ in these two re-
presentations of S,_ (K + tE, ) yields (18).

Choose % in ®; neither set in (16) is empty and so II(u) and
II'(v) share a common point, have the same normal direction and so
coincide. We have

K'nI(w) = e,

for some p. By (16) either KN I1(u) is a face ¢, of the same dimension
p or this intersection is a face of lower dimension. In the latter
case there is no contribution to the sum in (18), i.e., the left side
of (17), whereas there would be a positive contribution to the right
side of (17). In the former case, from (16) it follows that

(21) No(€5) = Ny(ep) -
Also
(22) ﬂn—p——i(w N 0)(6;)) = Aun-—-p—-l(w N w(ep)) .

To see this, we prove that the two argument sets in (22) coincide
by showing that, for any w in 2, we have KN/II(u) 2 ¢, if and only
it K'nll(w) 2 e,
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If K'NII(u) 2¢,, then ¢, S ¢, = I1(u) and e, also lies in 0K.
Hence e, lies in KNII(u). Suppose e, & KNII(u); then e, lies in
II(w). Since e, S ¢, by (16) and these two sets have the same di-
mensionality, any point # in ¢, is a linear combination of » + 1
suitable points in ¢,. But, being such a combination of points in
II(u), x must be in /T(u). Thus ¢, is in both I7(u) and K’ and so in
their intersection.

Substitution from (21) and (22) into the representation (18) as it
applies to K and K’ proves (17).

5. Our next step is to prove (7) for j = 8. We first settle the
simplest case: p = % — 1. It is clear from the construction of K,
and K, that, for 7 = 3, 4:

S, i(Kiy 2 — @) = S, (Kiy {—0})
S i(Kiy @) = S,1(K;, 00,) ,
and
S,_(K;, 0w,) cosa = S,_(K;, {—}) .
Consequently
S (K, 2) = 1 + cosa)S,_(K;, w,) .

Since K, S K, and S,_(K, 2) is increasing in K, it follows that (7)
holds for j =83, p=n —1. For the cases 1< p<n —1 a more
elaborate argument is needed.

We shall examine the behaviour of S,(K;, ®,) in K; by studying
that of

Q= _ @ wsE, dow),i=34.

—0y

These integrals will be reduced to iterated integrals. For this pur-
pose we let 2,_, denote the set of u on 2 which are orthogonal to
v and we form, for each # in 2,_,, the vectors

= [ = Mu+ M=0)/IIT = Nu + M=) .
As before, v is the centre of w,. We have
(U2, ) = =M (B0
where
d\) =1 — 20 + 2n%.

Also, if s signifies arc length along the circle through » and w,
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dsfdn = 1/6(\) .
Define \, < 0 by
—XNo = €08 a(p (M) *

As u passes over 2,_, and \ over the interval )\, < A < 1, u; sweeps
out

2—w, —{—v}.
For such »w and \:
H(uw)NK; = IL(w)NII,NK; = II,(w)Nk,;,
where we have set
ki = Kimﬂo ’

and we recall that /7, is the support plane of K; with outer normal
—v. If we view each k; as a nondegenerate convex body in the
(n — 1)-dimensional space II,, then the outer normals w to k; fall in
Q._, and k; has area functions

Sl(k,,;, 7])9 M) 3n—-2(ki’ 7])

defined over the Borel sets » of 2,_,.
We write Q; as an iterated integral

SZOW(S%_IS:’(’% dﬂ(u)))% = g8, ki, 2.-1)

where
_ S‘ —NdM
20(p(N))*

Here we have used the fact that the point —v can be deleted from
Q2 — w, without affecting @, in virtue of (3) and the assumption that
p<n—1. Since k; S k,

Sp(k37 ‘Qn—l) § Sp(ku ‘Qn—l)
and, from the negativity of g, it follows that
Q=Q,.

The first condition in (2), which is satisfied by any area function,
shows that

Q: + Sw W, u)S, (K, dous)) = 0 .

Hence, from our last inequality, we obtain
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29) Swa(”’ ) S,(Ky doo(uy)) < S%(v, ) S,(K.y do(wy)) .
Let z, signify the vertex of the cone K, and denote by ®9 the
interior of w,. Then for all u in 9
K.N1(u) = x,
and, because p =1,
S,(K,w5) =0.

Therefore on the right side of (23) the integration needs to be ex-
tended only over dw, throughout which (v, u;) is cosa. This yields
for the right side of (23)

cos aS,(K,, @,) .
Consider the left side of (23). For u; in @, we have
(v, w;) = cos

and so we may strengthen inequality (23) by replacing the left side
by
cos aS, (K, w,) .

After division by cos @ the strengthened inequality is just (7) ifor
j=31=p<m-—1

6. It remains to prove (9). In the Cartesian coordinate system
of section three, K, is the set of points a for which

tan (el + --- + 22) 2 < x, < 2Dtana .

Let tE* be the convex body formed by the intersection of the’ ball
tE with the reflected polar cone to C, i.e.,

Ty = —ctna(ag 4 eee + x2n)1/2 .

The vector sum K, + tE* is a convex body of revolution whose radial
distance 7(£) in the plane x, = £ has the representation

r@) =@ — &) —t<E< —teosa;
(29 = Eetna + tesca, —tcosa < £ < 2Dtana — tcosa ;
=2Dsec?a — &tana,2Dtana — tcosa < £ < 2Dtanc .

The volume V(K, + tE*) is

5) w,,_,gz_’:””w—l(s)ds/(n —1.
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Here w,_, is the area of the unit spherical surface in Euclidean
(n — 1)-dimensional space and is given by

@,y = 28"V ((n — 1)/2) ,

where I" is the usual gamma function.

We equate (25) with the Steiner polynomial

V(E, + tE*) = 3, (Z)t”"’ V, (K., E*),
where V,(K,, E*) is the mixed volume
V(Ku "‘yKu E*y "'!E*) .
N————— Sy —
P n—p

Substitution from (24) into (25) and a comparison of coefficients of
like powers of ¢ yields
(26) V(K E*) = w,_(2D)*(sin @)~**'sec a/n(n — 1) .

We consider next the brush set (Biirstenmenge) B,(K,, ®,) which
is formed from K, in the following manner. At each point z of

U (K. 1T (u)

UE Wy

we draw all segments z + fu, 0 < 6 < t, corresponding to % in ,.
The union of these segments is B,(K,, ®,). Clearly this is

(K, + tE*) — K,
and so the volume V,(K,, w,) of B,(K,, ®,) is

—1

V(K, + tE*) — V(K) = §=: <Z)t”*” VK, E*) .
On the other hand, cf. [3, p. 31],
V(K 0) = 5 ()6 S(Ko 0./ -

A comparison of coefficients of like powers of ¢ in these two repre-
sentations of V,(K,, w,) yields

S, (K,, w,) = nV,(K,, E*)
and this, together with (26), gives (9) with
A=20, /(n—1).
This completes the proof of (1).
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