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LOCAL BEHAVIOUR OF AREA FUNCTIONS
OF CONVEX BODIES

WILLIAM J. FIREY

The area function of a convex body K in Euclidean w-space
is a particular measure over the field έ@ of Borel sets of the
unit spherical surface. The value of such a function at a
Borel set ω is the area of that part of the boundary of K
touched by support planes whose outer normal directions fall
in a). In particular the area function of the vector sum
K + tE, where t is nonnegative and E is the unit ball, is a
polynomial of degree n — 1 in t whose coefficients are also
measures over έ%. To within a binomial coefficient, the
coefficient of t71-^1 in this polynomial is called the area func-
tion of order p. For p = 1 and p = n — 1 necessary and suf-
ficient conditions for a measure over έ%f to be an area func-
tion of order p are known, but for intermediate values of p
only certain necessary conditions are known. Here a new
necessary condition is established. It is a bound on those
functional values of an area function of order p which corre-
spond to special sets of &'. These special sets are closed,
small circles of geodesic radius a less than π/2; the bound
depends on a, p and the diameter of K. This necessary con-
dition amplifies an old observation: area functions of order
less than n — 1 vanish at Borel sets consisting of single
points.

To examine area functions in detail, we write Π(u) for the sup-
port plane to K whose outer normal direction corresponds to the
point u on the unit spherical surface Ω. For ω in & set

B(ω) = \J(Π(u)f]K) .
U 6 (O

The area function of K at ω is the (n — l)-dimensional measure of
B(ω); we denote this by S(K, ω). S(K + tE,ω) is a polynomial of
degree n — 1 in t; the coefficient of

n ~ V-'-S where (n ~ *) = (n ~ 1 ) !
V- '-S where (

V

is the area function of order p at ω and is written SP(K, ω). In
particular

Sn^(K9 ω) = S(K, ω), S0(K, ω) = S(E, ω) .

If at each boundary point of K there is a unique outer normal
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u and principal radii of curvature R^u), , Rn^(u) and if {R19 , Rp}
signifies the pth elementary symmetric function of these radii, then

SP(K, ω) = \jtRlf ,R9}dω/(^

For general convex bodies the total area of order p is a special
mixed volume; in detail

SP(K, Ω) = nV(K, , K, E, . . . , E) .

Let v be any fixed point on Ω and let coa be the set of u on Ω
for which

(u, v) :> cos a, 0 < a < π/2 ,

where (u, v) denotes the inner product of u and v. We shall prove
that

(1) SP(K, ωa) ^ ADP sin^-^-1 a sec a = ADpfp(a) ,

for p = 1, 2, , n — 1, where D is the diameter of K and A depends
neither on a nor on if.

A. D. Aleksandrov [1] and W. Fenchel and B. Jessen [3] introduced
such area functions. They showed that for a measure Φ over & to
be an area function of order n — 1, it is necessary and sufficient
that, for any vl

(2) ( (u', u)Φ(dω(u)) = 0, ( I (u'f u)\Φ(dω(u)) > 0 ,
JO JΩ

where these are Radon integrals. Aleksandrov showed also that
(2), while necessary for Φ to be a pth order area function when
p < n — 1, are not sufficient. In part this depended on the observa-
tion that

(3) Sp(K,{v}) = 0

for each v on Ω and p < n — 1. By letting a tend to zero, we see
that (3) is a consequence of (1).

Necessary and sufficient conditions for Φ to be an area function
of order one are given in [4] and [5]. Inequality (1) for p = 1 was
proved in the latter paper and plays a significant part. Items of
background are in these papers and [2] and [3].

!• We first show that if (1) holds for convex polyhedra, then
it is true for all convex bodies.

Given any convex body K we can find convex polyhedra Km, m =
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1,2, •••, which approximate K to within 1/m in the sense of the
metric

δ(K, Km) = max I H{u) - Hm(u) | ,
ueΩ

where H and Hm are the support functions of K and Km. For the
diameters D and Dm of these bodies we have

UmDm = D .

Let ε > 0 be such that a + ε < ττ/2; denote by ηε the open set
of u on Ω for which

(u, v) > cos (a + ε) .

Clearly

(4)

By Theorem IX of [3], Sp(Km, ω) converges weakly to SP(K, ώ) as
m tends to infinity. This implies [3, p. 8] that

(5 ) lim inf Sp(Km, τjt) ^ SP(K, ηt) ^ SP(K, ωa)

since ηt is open. We have used (4) and the monotonicity of SP(K, oή
in ω for the final inequality.

Also from (4), the monotonicity of Sp, and the assumption of (1)
for polyhedra, we get

(6) Sp(Km, η.) ^ ADlfp(a + e) .

Hence, because Dm tends to D, (5) and (6) yield

SP(K, ωa) ^ ADpfp(a + ε) .

The left side does not depend on ε and so inequality (1) holds for K.

2. To prove (1) for convex polyhedra K we form, from a given
if, four convex bodies Kiy K2, K3, K4 for which

(7) Sp(Ki9 ωa) ^ Sp(Ki+ι, ωa), j = 1, 2, 3 ,

and

( 8 ) Sp(Klfωa) = Sp{K,ωa) ,

(9 ) SP(K<, ωa) = AD*fp{a) .

As a matter of notation Π'5{u) signifies the support plane to K5

with outer unit normal u. We write dP for the boundary of any
set P.
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The body Kx is to be the convex closure of B{ωa). Since

U (K1ΠΠ1(u))

(8) holds. Also Kx is polyhedral.
Let φi(w) signify the half-space with outer normal u which is

bounded by Π^u). Of course, for u in coa, SQ^U) is the half-space
with outer normal u bounded by Π{v). Since a < π/2, the intersec-
tion of those £>i(V) for which

(u, v) <̂  cos a

is a convex polyhedron K2 Ξ2 ϋΓlβ Here v, as before, is the centre
of o)a; we write o)'a for those u on Ω which satisfy the last inequality.
Clearly

\J (K^Πάu))^ U (K2ΠΠ2(u))
ueω'a ueωf

a

and so

(10) Sp(Klf ω'a) = SP(K2, ω'a) .

On the other hand Kγ g K2 implies that

SP(K19 Ω) ^ SP(K2, Ω) .

This is a consequence of the representation of these total area func-
tions as mixed volumes and the known monotonicity of mixed volumes
V(K, •• ,K,E, ,E)inK,cf. [2]. The additinity of area functions,
our last inequality and (10) yield (7) for j = 1.

The rest of the proof is treated in separate sections. In §3 we
describe a plane Πo normal to v, which cuts K so that i?(ωα), and
hence K2, lies in one of the half-spaces determined by /70. Call this
half-space φ0. We take K3 to be the intersection of £>0 with

n £(u) = π £i(u)

where these intersections are taken over those u in the common
boundary of ωa and ωr

a, i.e., those u for which

(u, v) = cos a .

The body Kz contains K2. To determine Πo it is necessary to consider
circular cones of the form

(11) (v, x — xQ) + ||α? — a?0II sinα: ^ 0 .

The norm is Euclidean. The vertex of such a cone is xo; the axial
ray within the cone has the direction — v; these cones are translates
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of one another. We choose xQ so that the resulting cone contains K
and the distance from K to the plane

(v, x — x0) = 0

is as small as possible. We call this tangent cone C.
In §4 (7) is proved for j = 2.
K4 is C n & This intersection is clearly a convex body which

contains Kz. In §5 we prove (7) for j — 3. Finally (9) follows from
a direct calculation sketched in §6.

3* Let us introduce a Cartesian coordinate system with origin
at the vertex x0 of C and such that v = ( —1,0, , 0). The descrip-
tion of C takes the form

xx ^ tan a{x\ + . . . + xl)1'2

and the distance from K, which is in C, to the plane xγ = 0 is minimal.
This means that each half-space

(12) u2x2 + + unxn i> 0

must contain a point of B((ϋa)ΠdC for the following reason. If
dKΠdC had no points in (12), a small translation of K in the direction
u would cause 3Kf)dC to be empty; a subsequent small translation
in the direction v would reduce the distance from K to xί = 0. Hence
(12) contains a point x of dCndK. The tangent plane to dC at x
is a support plane of dK and the outer normal to this support plane
makes an angle of measure a with v, i.e., falls in ωa. Thus x is
also in B(coa) as asserted.

We define conical bodies Cι and C2 to be the intersection of C
with the half-spaces

x, ^ D tan α, x1 <; 2D tan α

respectively.
We first prove that

(13) ^ ( O n δ C s C , .

Suppose to the contrary that there is a y in B(coa) Π dC for which
yλ> D tan α. Since the radius of the intersection of C with

xx — D tan α

is D, a ball of radius A centred at y, lies in a half-space of the form

(14) u2x2 + + unxn < 0

for some u. As noted in the previous paragraph, there is a point x
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in the complement of (14) which is in B(ωa)f]dC. This would give
two points x and y in K separated by a distance greater than the
diameter D of K. The contradiction establishes (13).

Next we demonstrate

(15) B(ωa) £ C 2 .

Again the proof is by contradiction. Imagine z to be a point in
B(o)a) for which zλ > 2D tan a. z cannot be on the #x-axis for the
following reason. Let Π be a support plane to K which contains z.
There must be a half-space of the form (12) in which the points of
Πf]dC lie in the half-space

x1 > 2D tan a .

This implies that the points of dKndC which lie in (12) are at a
distance exceeding 2D from z which, again, contradicts the fact that
D is the diameter of K.

Let zf be the point nearest to z on the α^-axis. Set

w — yz — z)/11 z z \\ ,

u is orthogonal to v and zf and so

0 < (u, zf — z) = — (u, z) .

Thus z satisfies

u2z2 + + unzn < 0 .

There is also a point x of

B(ωa)f]dC1 = B(ωa)f]dC2

in t h e complementary half-space. Therefore t h e distance \\z — x\\
must exceed t h e distance between (2Z)tanα:, 0, « ,0) and the inter-
section of dCt with t h e plane

xι = D tan a .

That is to say

II* - α H > (D2 + D2 tan2a)1'2 > D .

This is impossible for x and z in K which completes the proof of (15).
The plane

xt = 2D tan a

is the cutting plane Πo of §2; the conical convex body C2 is K4.
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4* From the definitions of K2 and K3 we see that their support
planes Π2(u) and Πz(u) coincide whenever their outer normal directions
u are in ωa. Hence for such u, since K2 gΞ JKΓ3,

κ2nπ2(u) sκ3nπ,(u)

there is certainly equality when u is in the interior of ωa. Inequality
(7) for j = 2 follows from the next lemma, to the proof of which
this section is devoted.

LEMMA. Let K and Kr be two convex polyhedral bodies whose
support planes with outer normal direction u are denoted by Π(u)
and Π'{u). If

(16)

for each u in some Borel set co of Ω, then

SP(K, ω) ^ S9(K', ω), for p = 1, 2, . . , n - 1 .

We first require a description of SP(K, co) where K is polyhedral.
In this we follow work, as yet unpublished, of J. Zelver.

Consider a set of the form KΓ\Π(u); this is a p-face ep when ep

lies in a ^-dimensional flat but not in a (p — I)-dimensional flat. The
outer unit normals to support planes of K which contain ep sweep
out a closed, geodesically convex set co(ep) on Ω which is in έ@ and
is (n — p — l)-dimensional. Throughout Q)(ep) we distribute mass
with constant density Xp(ep) equal to the p-dimensional volume of ep.
Thus if ω is any subset of ω(ep) which is in & and if μn_v_γ{ω) is
its (n — p — l)-dimensional volume, then the mass falling in ω is
^p(eP)fJtn-p-ι(ω)- The representation we seek is

(18) SP(K, ω) = Σ \(eP)μn-Uω Π ω(e,))/(

where the starred summation is taken over all ep in dK.
Consider the vector sum K + tE and let Π*(u) signify its support

plane with outer normal u. If xr is a point of

(K+ tE)ΠΠ*(u) ,

then there is a unique point x in KΓ[Π(u) such that

(19) x' - x = tu .

Suppose ep to be the face of lowest dimension which contains x and
let {Π(u')} be the set of support planes of K which contain ep where
ur ranges over co(ep). We form
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(20) \J{(K+tE)f] Π*{U')},

where the starred union is taken over those v! in ωnω(ep). If (20)
is not empty, it is made up of points xf to each of which corresponds
a unique x on

\J(KΓlΠ(u')) = ep

*
for which (19) holds. Thus (20) is the Cartesian product of ep with
that part of the boundary of tE which is swept out by rays whose
directions are in o)Γ\a)(ep). Therefore, empty or not, the (n — 1)-
dimensional measure of (20) is

We add up all such contributions to Sn^(K + tE, ω) and obtain
the sum

Σ ί-'-'Σ ^pieJμ^Λω Π ω(ep)) .

On the other hand, from the generalized Steiner formula [3, p. 31],
we have

SU(ίΓ + tE, ω) = ± ί —{n ~ ̂ (K, ω) .

The comparison of coefficients of like powers of t in these two re-
presentations of Sn^(K + tE, ω) yields (18).

Choose u m ω\ neither set in (16) is empty and so Π(u) and
Π'(u) share a common point, have the same normal direction and so
coincide. We have

K'Γ\Π{u) = ef

p

for some p. By (16) either Kf] Π(u) is a face ep of the same dimension
p or this intersection is a face of lower dimension. In the latter
case there is no contribution to the sum in (18), i.e., the left side
of (17), whereas there would be a positive contribution to the right
side of (17). In the former case, from (16) it follows that

(21) XM) ^ \(ep) .

Also

(22) j"- p -i(ω Π ω(e'p)) = μn^^(ω n ω(ep)) .

To see this, we prove that the two argument sets in (22) coincide
by showing that, for any u in Ω, we have KΓ)Π(u) 3 ep if and only
if K'ViΠ(v)Άep.
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If K'f)Π(u) 3 ep, then ePSePSΠ(u) and ep also lies in dK.
Hence ep lies in Kf)Π(u). Suppose ep £ KpιΠ(u); then ep lies in
/7(w). Since ep £ βp by (16) and these two sets have the same di-
mensionality, any point x in ep is a linear combination of p + 1
suitable points in ep. But, being such a combination of points in
Π(u), x must be in Π(u). Thus β£ is in both Π{u) and iΓ' and so in
their intersection.

Substitution from (21) and (22) into the representation (18) as it
applies to K and K' proves (17).

5* Our next step is to prove (7) for j — 3. We first settle the
simplest case: p = n — 1. It is clear from the construction of K3

and K± that, for i — 3, 4:

and

SUCSQ, 3α>α) cos α = S%^(Kif {-v}) .

Consequently

S^iKi, Ω) = (l + cos a)Sn^(Kif ωa) .

Since Kz £ iΓ4 and Sn^(K9 Ω) is increasing in ϋΓ, it follows that (7)
holds for j = 3, p = n — 1. For the cases 1 ^ p < n — 1 a more
elaborate argument is needed.

We shall examine the behaviour of Sp(Kif ωa) in Kι by studying
that of

= \ (v, u)Sp(Ki9 dω(u)), i = 3, 4 .

These integrals will be reduced to iterated integrals. For this pur-
pose we let Ωn_λ denote the set of u on Ω which are orthogonal to
v and we form, for each u in Ωn^19 the vectors

uλ - [(1 - X)u + X(-v)]/\\(l - X)u + λ(-v) | | .

As before, v is the centre of ωa. We have

(uλ, v) = -X/(Φ(W2 ,

where

φ(X) = 1 - 2λ + 2λ2 .

Also, if s signifies arc length along the circle through v and u,
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ds/dX = l/φ(X) .

Define λ0 < 0 by

As u passes over fln-1 and λ over the interval λ0 < λ < 1, uλ sweeps
out

Ω - ωa - {-v} .

For such u and λ:

n κ{ = πάu) n/̂ oΠ-KΓi = π^v) n h ,

where we have set

kt = Ki Π Πo ,

and we recall that ΠQ is the support plane of Ki with outer normal
— v. If we view each ki as a nondegenerate convex body in the
(n — l)-dimensional space /70, then the outer normals u to ki fall in
Ωn_x and k{ has area functions

defined over the Borel sets ΎJ of Ωn_γ.
We write ζ); as an iterated integral

where

Here we have used the fact that the point — v can be deleted from
Ω — ωa without affecting Qi in virtue of (3) and the assumption that
p < n — 1. Since fc3 g fc4

and, from the negativity of g, it follows that

The first condition in (2), which is satisfied by any area function,
shows that

(v, uλ)Sp(Ki9 dω(uλ)) = 0 .

a

Hence, from our last inequality, we obtain
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(23) ( (v, uλ)Sp(K3, dω{uλ)) £ \ (v, uλ)Sp{K^ dω{uλ)) .

Let x0 signify the vertex of the cone K4 and denote by ω°a the
interior of ωa. Then for all u in ω°a

K4 Π ΠA(u) = x0

and, because p ^ 1,

SP(K, < ) = 0 .

Therefore on the right side of (23) the integration needs to be ex-
tended only over dωa throughout which (v, ux) is cos a. This yields
for the right side of (23)

cos aSp(K4, ωa) .

Consider the left side of (23). For uλ in ωa we have

(v> Wχ) ^ cos a

and so we may strengthen inequality (23) by replacing the left side

by

cos aSp(K3, ωa) .

After division by cos a the strengthened inequality is just (7)"jfor
j = 3,1 ^ v < n - 1.

6* It remains to prove (9). In the Cartesian coordinate system
of section three, if4 is the set of points x for which

tan a{x\ + + xl)112 ^Lxί^2D tan a .

Let tΈ* be the convex body formed by the intersection of theHball
tE with the reflected polar cone to C, i.e.,

x, ^ -ctna(x\ + + xl)112 .

The vector sum iΓ4 + tE* is a convex body of revolution whose radial
distance r(ξ) in the plane xx = ζ has the representation

r(ξ) = (t2 - ξ2)112, - 1 ^ ξ S -1 cos a

(24) = ζetna + tcsca, —tcosa<^ξ<^ 2D tan a — t cos'a

= 2D sec2 a — ξ tan a, 2D tan a — t cos a ^ ζ ^ 2D tan a .

The volume V(K, + tE*) is

S 2D tan a
r-*(ξ)dξl(n - 1) .

— t
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Here ωn_γ is the area of the unit spherical surface in Euclidean
(n — 1)-dimensional space and is given by

where Γ is the usual gamma function.
We equate (25) with the Steiner polynomial

V(K4 + tE*) = ± (iy-»Vp(K4, E*) ,

where VP(K4, E*) is the mixed volume

Substitution from (24) into (25) and a comparison of coefficients of
like powers of t yields

(26) VP(K4, E*) = ωn^(2D)p(sin a)"-*-1 sec a/n(n - 1) .

We consider next the brush set (Bϋrstenmenge) Bt(K4, ωa) which
is formed from iΓ4 in the following manner. At each point x of

U (K<nn4(u))
ueωa

we draw all segments x + Θu, 0 < θ ^ t, corresponding to u in ωa.
The union of these segments is Bt(K4, ωa). Clearly this is

(K4 + tE*) - K4

and so the volume Vt(K4, ωa) of Bt(K4, ωa) is

V(K4 + tE*) - V(K4) = % (*})?-> VP(K4, E*) .
P=O \P/

On the other hand, cf. [3, p. 31],

Vt(K4, ωa) = n£(iy-»Sp(K4, ωa)/n .
p=0

A comparison of coefficients of like powers of t in these two repre-
sentations of Vt(K4, ωa) yields

SP(K4, ωa) = nVp(K<, E*)

and this, together with (26), gives (9) with

A - 2pωnJ(n - 1) .

This completes the proof of (1).
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