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SPECTRAL THEORY OF MONOTONE
HAMMERSTEIN OPERATORS

CHARLES V. COFFMAN

Consider the linear integral equation,
%) u(b) = 1 SQK(t, 9)p(&)y(s) ds ,
where K(s,t) is a real-valued symmetric positive definite
kernel and p(s) is a positive function. Let L denote the in-
verse of the integral operator u — S K(-,s)u(s)ds, and
Q2

for a function y in the domain of L, y # 0, (all functions
are assumed to be real valued) define the Rayleigh quotient
J(y) for (1) by,

T =| voun@a| sovod.
If ¥y, + 0 and y; is in the domain of L and if
m=| K., 9@ u@ds,
then several applications of the Schwarz inequality show
that,

J () = J (),

with equality only if %; is an eigenfunction of (1). On the
basis of this fact, when the integral operator in (1) is com-
pact, one can develop the complete spectral theory of (1),

In this paper it is shown that the approach indicated
above for the study of (1) has a simple and natural exten-
sion for the study of the nonlinear integral equation,

@ w0 =r| Kt 9f v ds,

where K (¢, s) is as above and f(¢, y) is an odd function of y,
f(t’ ?/) =—f(t9_y) ’

and satisfies,
yfE y) >0, y#0,

and
S@ ) = fE&, v, Yz = Y1 .

The problem of minimizing fhe Rayleigh quotient J(y) for (1)
can be generalized to either of the dual variational problemis,
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S y®[Lyl(t)dt = min. , u“” £(t, 7)dndt = const. ,
n 0

[ s mnat = max. .| vo)IZui®dt = const.

By studying the first of these two variational problems, we shall prove
here a variant of a theorem of Sobolev, [17], concerning (2); Sobolev’s
work treats the second of the above variational problems. For a dis-
cussion of Sobolev’s theorem and related results see [8].

The Lyusternik-Schnirelman theory upon which the theorem of
Sobolev is based has undergone considerable development in recent
years, see [14], [16], with fruitful applications to the theory of non-
linear elliptic boundary value problems, see [1], [2]. The methods
employed here differ substantially and in several respects from the
standard methods of the Lyusternik-Schnirelman theory. We believe
that for the problem at hand these methods are simpler and more
natural, and therefore should be of interest. The central idea of using
an iteration operator in the variational study of a nonlinear problem
was suggested by the work in Moore and Nehari [11], and Nehari
[12], [13]. The notion of “genus” which we use was introduced by
Krasnosel’skii, and is treated in [8]: see also [4].

2. Let X be a real infinite dimensional Banach space, X* its
dual space, and let the value of a linear functional ye¢ X* on an
element € X be denoted (y, x). Let A: X— X* be a compact linear
operator, take

@) Y =4AX,

and assume that A is symmetric,

4) (Ax,, @) = (A, ) . x, e X,
and positive definite,

®) (Az,2) > 0, xe X\{0} .

Note that if X is reflexive then (5) implies that ¥ = X*.

Let @: Y— X be a continuous nonlinear mapping and assume
that @ is the gradient (Fréchet derivative) of a real valued even
functional ¥(y) on Y satisfying v(C) = 0. (The gradient of a functional
on Y is actually an operator from Y to Y*, however, X is canonically
isometric to a subspace of Y* so that @ determines in an obvious
way a mapping of Y into Y*, it is this mapping which, properly
speaking, is the gradient of ~; clearly this problem does not arise when
2 is reflexive.) The fact that v is even implies that @ is odd,
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(6) P(y) =—-2(-v),

we assume also that @ is positive definite,

O (v, () >0, ye Y\{0},
and monotone,

{8) % — vy, 2¥) — 2(y)) =0, Yo ¥:€ Y.

This last is equivalent to assuming that v is convex, [19].
The result which we shall prove is the following.

THEOREM 1. Under the above assumptions concerning A and O,
the etgenvalue problem,

)] y = pAO(y) ,
has infinitely many eigenvectors satisfying,
(10) YY) =c,

for every ¢ > 0.

3. We begin the proof of the theorem stated above by establish-
ing several results concerning the linear operator A. If we let #Z
denote the range of A then, by (8), <2 is dense in Y, and by (5),
A has an inverse L: &2 — X. From (4), (5) and the Schwarz inequality
there follows

) (A, 2,)* < (Ax,, ) (A, ) ©
and thus, since
| A% ||x- = sup {(Az, 2): [| 2" ||x = 1},
we have
Az [[% = || Al (A=, @) ,
and for yc .22, we have,
(10) lyle-=I114ll(@ Ly) .

If we complete 2 with respect to the inner product <y, y) =
(v, Ly) we obtain a Hilbert space H & Y with

11 =11 A7,

where 7 denotes the inclusion mapping H & X*. It is clear that for
,7'eH and ) = Ave 2,
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(12) =@, ) .
Hence if we define B: X — H by tBx = Ax, then
| Bz [[i = {Bw, Bxy = (Az, 2) = [| Al |,

so that B is a continuous linear mapping of X into H. Moreover,
upon taking 7 = Bx in (12) we get

1y Bxy = (i1, %) ,
from which it follows that
(13) B*=1.

We next show that the compactness of A imples the compactness
of both B and 1.

LemMA 2. The mapping B: X — H is compact.

Proof. Let {x,} be a bounded sequence in X. There is no loss of
generality in assuming that {A4x,} converges strongly in X*, since A
is compact, but then,

| B, — %) [P = <B@, — @), B(@, — %)),

as n, m — o, and thus B is compact.
By standard results, the compactness of B implies the compactness
of 1 = B*, thus we have the following.

LEMMA 3. The imbedding ©: H S X™* is compact.

4. We turn our attention now to the nonlinear operator @, and
observe that, for y,, y.€ Y we have

YY) — 7(y) = S: W2 — Y0 @ (y, + t(y. — yu))dt,

(see [18]), but by (8),
(¥ — Y @y + ¢ — ¥))) = (¥ — ¥ 2(¥))
so that
(14) (W) — YW = (¥ — ¥ P(U) -
Next we define ¢: H— R, ¥: H— H, by
(15) P =71, U=B-0-1;
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then the continuity of v and @ and the compactness of 4 imply the
following result.

LemMA 4. The functional @ is weakly continuous and ¥ 1is
completely continuous. ,
From (7), (15), (14) and (13) we get

(16) <, Ty >0, | ne H\{0} ,
and
17 Ky =0, Ty <o) — o), 7,meH.

LemMMA 5. Let ¢ >0, then for ne H\{0}, there exists a unique
a > 0 such that @(an) = ¢. Moreover, « is a continuous function of
7 on H\{0}.

Proof. By hypothesis, 7(0) = 0, thus, from (15) it follows that
®(0) = 0. By taking ' = an in (17) we get

(18) plan) z e +(@—1) < ¥@ >,

hence (16) implies that @(an) — « as a — «, for 7 # 0. The existence
of « then follows from the continuity of ®; uniqueness follows from
(16) and (18). The continuity follows from the continuity of ¢ and
the uniqueness of .

Let ¢ > 0 be fixed, put

19 Z=2={neH: p(n =},
and define o: H\{0} — X, by
(20) o(y) = a¥(y),

where a > 0 is chosen so that o(np) e 2.

LEMMA 6. The mapping o: H\{0} —» 2 s odd and strongly con-
ttnuous (in the sense of [18], i.e. ¢ maps weakly convergent sequences
in H\{0} to strongly convergent sequences). If neZX, then

(21) e e = 17l -
with equality only if n is an eigenvector of
(22) n= ¥ .

Proof. The oddness and strong continuity of ¢ follow respectively
from (6), and the definition of ¥, and Lemmas 4 and 5. If 7' = o(7),
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then since @(7') = ®(y), (17) implies

7 =nT0y=0,
but by (20), this is equivalent to

<y -n7>20,

or

9> =D =Ly, iy, >,

which implies (21). From the way in which the Schwarz inequality
was used, it is clear that equality can hold in (21) only if 7’ and 7
are proportional, i.e. only if » is an eigenvector of (22).

5. Let S denote the class of closed subsets of H\{0} which are
symmetric through the origin. For a non-empty set F'e S, the genus
of F, p(F), is the supremum of the set of nonnegative integers n
such that every odd continuous map of F' into R has a zero in F;
here we understand R° = {0}. The genus of the empty set is zero.

Below, the letter 'F’, with or without subscript, will always
denote a set in the class S. The genus has the following properties.

1. If there exists an odd continuous map h: F,— F,, then
O(F,) < p(F,), in particular, if F, & F,, then po(F,) < p(F>).

2. p(F,UF) < p(F) + o(F).

3. If F is compact then o(F') < - and F has a neighborhood U
such that Ue S and p(U) = po(F).

4, If {F,} is a decreasing sequence of compact sets and if F =
N;-, F, then FeS and

o(F) = lim p(F,) .

5. If there exists an odd homeomorphism of F onto the n-sphere
then o(F) =n + 1.
For a proof of the above assertions see [4].

6. In this section we complete the proof of Theorem 1. Let the
number ¢ > 0 be fixed, and let ¥ be defined by (19). We shall call a
set F' admissible if F is compact, F'eS, and F & 2. The class of
admissible sets will be denoted by £, and we shall take, for
n=1 y 2, ees,

F.={Fe 7 :0[F)=n}.

LEMMA 7. For any positive integer m, the class &, is non-
empty.
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Proof. Let M be a subspace of H of dimension n, then it fol-
lows from Lemma 5 that the mapping 7 —||9|lz'n on TN M is a
homeomorphism onto the unit sphere in M. It thus follows from
property 5 of the genus that o(X N M) = n, and thus ¥ N Me #,.

We now define the numbers X\, = \,.(c) by,

__1 . :
= J?ﬁ,ﬂ’?i‘ 7 1%

(23)
=1 inf [diam FJ,

C Fes,

for » = 1, and for convenience we define A, = 0. Since Y is closed
and does not contain zero, and because of the definition (23), it is
clear that sequence A, \;, ++-, is a nondecreasing sequence of positive
numbers. We say that A, has multiplicity m if,

Nt <N = Ny = 200 = Ny < Nk

for some k=1, where k <n =%k +m —1. We also make the de-
finitions, for A = 0,

2N ={neX: 7k = 2eM,
20 = o (2N,

and note that because of the weak continuity of ® (Lemma 4), J(\)
is weakly closed and hence since it is bounded it is weakly compact.
It follows then from Lemma 6 that 3'(A) is compact in the strong
topology and,

(24) 2N I,
clearly 3'(\) is symmetric and thus
(25) 'V e 7, (diam 3'(\))® < 8\c .

On the other hand, by property 1 of the genus, since ¢ is odd, and
because of (24),

PE'N) = p(EMN) .

Since X'(\) is compact, it follows from property 3 that o(Z(\)) <
for any N > 0.
If we introduce the “spectral function”

T\ = p(Z'(\V)
then z(\) is a monotone integer valued function of A for A = 0,

T\ =0, 0= A<\,
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and since,
2D = N2,
“>2

it follows from property 4 fhat z'()x) is right contihuous. Finally ffom
(23) and (24) and the right continuity of 7 it follows that,

(26) T\ =n, M SN < Ny

Thus the discontinuities of z(\) occur only at the numbers A, given
by (23) and

27 T(\) —T(\, — 0) = multiplicity of X, .

It follows from (26) that no finite \-interval can contain more than
finitely many of the numbers \,, thus

(28) lim\, = o .

n—s00

Now let £, denote the set of solutions n in ¥ = 3, of (22) such
that ||7||% = 2¢\,, (clearly E, is admissible and E, & 2'(\,)), and
choose, by property 3, a neighborhood U of E, such that Ue S and
o(U) = p(E,). It then follows from Lemma 6 that

[diam (6(Z*(W\U)F < 8eh,
so that from the definition of ¢ and (27),

(@A )\U)) < 7(v — 0)
< 7(n,) — mult. of A, .

Using this last inequality, property 1 of the genus, and the definition
of 7, we obtain,

e A )\U) = p(2'(\,)) — mult. of X, .
It then follows from property 2 of the genus that
o(E,) = o(U) = mult. of N, ,

in particular, E, is not empty. We have thus proved the following.

(*) The eigenvalue problem (22) has infinitely many eigenvectors
7 satisfying

(29) P(m) =c.
The set E,(c) of etgenvectors 7 of (22) satisfying (29) and
17115 = 2en, ,
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where \, ts given by (23), is a set of genus = multiplicity of \,.

It is clear from (15) and the definition of B that if 7 is an eigen-
vector of (22) satisfying (29) then y = 77 is an eigenvector of (9) and
satisfies (10). Thus (*) implies Theorem 1. Moreover, the following
is valid.

(xx) The set of eigenvectors y of (9) which satisfy (10) and
(30) ('Z/, Ly) = 207\'7;(0) ’

s a set of genus = multiplicity of \,. The numbers \,(c) can be
determined as follows

(31) Aa(e) = —— inf sup (v, Ly) ,

2¢ Ges, yed
where <&, is the class of symmetric subsets G of F\{0} which are
closed im Y, have genus = n and satisfy

GS{yeY:v(y) =c}.

Here the genus is to be understood to be relative to the Y-topology.

Proof. First we observe that the H and Y topologies coincide on
compact subsets of H. Thus the genus of E, relative to the H
topology and the genus of 4(E,) relative to the Y topology are the
same. Since the set of eigenvectors of (9) satisfying (10) and (30) is
just ¢(E,), the first assertion above is proved. To prove the second
assertion, let Ge <, and let A = 1/2¢ sup,.q (¥, Ly) < o, then G =
1(F), where F is a closed symmetric subset of H and F < J(\).
From (15) and (20), and the continuity of « in (20) it follows that
o(F') is the image, under an odd completely continuous transformation,
of G. Thus o(F) is compact and has genus = n. However, we clearly
have [diam (¢(F"))]* < 8ch and thus it follows from (23) that

M < —— inf sup (y, Ly) .

C Gez, vye@

Making use of the observation at the beginnig of the proof we con-
clude that <(c(2'(\,))) € &,, and this, together with the above ine-
quality, implies (31).

REMARK. The existence of an infinity of eigenfunctions y of the
problem (9) satisfying

(v, Ly) = ¢,
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for an arbitrary ¢ > 0, follows by applying Theorem 4.3 of [8] to the
operator ¥, provided that ¥ is uniformly differentiable on bounded
sets; it is not required that @ satisfy (8). The theorem of sobolev,
[17], quoted earlier, follows from this result. For a discussion of the
multiplicity of solutions in this case, when the associated critical
values are repeated, see [3].

7. It is of interest to show that the above results do include
the complete spectral theory of (9) in the linear case. Thus suppose
that @ is linear and observe that in this case,

1w = | 0, 0t = - (v, 0w)) -
Thus, for y, he Y,
Y(y+ h)
=L o0) + X how) + 2 @, 0m) + L0 00) ,
2 2 2 2

while on the other hand the definition of the gradient gives
Yy + k) =7 + (b, () + o(| 2 ]]),
= @ 0G) + (b 0@) + oI L) ,

as ||k||— 0. Comparison of these two formulas shows that @ is sym-
metric,
Y 2(W2) = (¥5, O(1) Y, Y€ Y.

Using this together with (7), (15) and Lemma 2 we conclude that ¥
is a compact self-adjoint positive definite operator and

P(n) = % <, ¥

see the discussion of the operator y, in § 8 below. Let 0 < f, < g+
denote the characteristic values of ¥ and let M, S M, < --- be the
corresponding sequence of invariant subspaces for ¥, i.e., M, is
spanned by those eigenvectors of ¥ corresponding to the first » charac-
teristic values. Suppose that z, < #¢,., and for some ¢ > 0 let 3,(\)
be defined as in § 6.

If p, <3< p,,, then for ne X.(\),

7% < 2ve = N, T())
< Mir 0, T -

Thus if P, denotes the orthogonal projection of H onto M, then
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P, =0 for ne X, (\), since
W71l = s 0 T
for 7 in the kernel of P,. It follows that the map
N —— (2c)'* Py, (1))~ Py

maps 2.(A) onto X, N M,. Since this mapping is odd and continuous
on Y,(\) it follows that = = o(Z.N M,) = o(Z,(A)). On the other
hand, for »e M,

U1l = pa 0, T))
and thus
ZNMc () & 2.0,
from which we conclude that
eE.N) =n, P EN< My
Combined with the results of § 6, this yields the following.
(xxx)  For the linear problem and for any c¢ > 0, the number

Ma(e) s Just the n'™ characteristic value, im imcreasing order, of the
operator V.

We require also the following result concerning the linear case.

LEMMA 8. Let F be a compact symmetric subset of H\{0}, with
O(F) = n, then

71l
may —E_ > pu,,
ver (), Unp

where , is the n'* characteristic value, in inereasing order, of the
linear operator V.

Proof. Let F’ be the image of F under 7 — (2¢)*{n, ¥n)—'1*7n,
where ¢ > 0. Then F' & 2%, and o(F’) = n, thus by (x=x),

ver <, TNy 2c

max [ 7|7 = f. .
neF’

8. In this section we shall derive a “principle of linearization”
for the problem (9); ef. [Ch. VI, §2, 8]. What we shall prove is the
following.
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(f) Let @ have a Fréchet derivative x at y = 0, and suppose
that the continuous linear operator y¥: Y — X is symmetric,

(32) Yy Xyz) = (Y X%) ’ Y €Y,
and positive defininite,
(33) W xy) >0, ye Y\{0}.

Let k,, k,, K5y =+, be the characteristic values, arranged in tncreasing
order, of the limear operator AY, then the numbers \,(c), given by
(31) satisfy

(34) lim n,(c) = &, .
c¢—0
Moreover, given & > 0, there exists c¢,(e) > 0 such that for 0 <c¢ < ¢,

the characteristic mumbers pt corresponding to those eigenvectors n
of (9) which satisfy (10) and (30) all lie in the interval

(K, — & &, + ¢) .

Finally, if N, is the eigenspage of Ay corresponding to the cha-
racteristic number k,, and if E,(c) is the set of eigenvectors of (9)
satisfying (10) and (30), then

lim max M —

c—0 yeﬁn (c) HyH

0.

REMARK. The above assertion implies that, in the terminology of
[8], each characteristic value of Ay is a bifurcation point for the pro-
blem (9), compare Theorem 2.2, [8, p. 332].

Proof of (f). From the definition of the Fréchet derivative

DY) =y + o), yeY,
where

fo@) Il = o(ly 1D, as y—0.

Thus, for ye Y,
() = S (v, D(ty))dt,

0

=@ + oyl as y—0,

and consequently, from (15), (12) and (13), for »e H,
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(35) P(n) = —%-@, 27> + o(li7 1) » as 7— 0,

where
1= Byi.

If we make the natural identification of X with a subspace of Y*,
then (32) implies that y* 2 x. Since the range of ¢ is contained in
the domain of X it follows, using (13), that the operator y, = Byi is
self-adjoint. Since

<y = (@9, xi7)

it follows from (33) that y, is positive definite, and from Lemma 2 it
follows that y, is compact. Clearly the characteristic values {x,} of
Ay are also characteristic values of y,, thus, ¥, has an invariant sub-
space M of dimension % such that

(36) 1% < k.9, 00D, neM.

Let ¢ > 0 be given and, on the strength of (85), choose ¢, > 0 such
that

(37) P ) = < 17> | < el s
for
(39) 17l <21 — o ke, -
Form (36) and (37) we then have
E %ml —9lnlk, ne M, |7l < 2(L — &K,

from which, it follows, by the use of (18), that for 0 < ¢ < ¢/,

_é_ [diam (M N S < £.(1 — )¢ .

Hence, from (23) and since p(M N 2(c)) = n,
)"n(c) é Icn(l - 5)—_1 .
Letting ¢ tend to zero, we obtain finally,

(39) lim sup \,(¢) < k&, .

o0
Suppose now that

(40) lim inf N, (0) < £ < &, ,

c—0
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and then choose ¢ > 0 so that
(41) 1L—-e)'k<k,.

With this choice of ¢, let ¢/ > 0 be chosen as above so that (37) holds
when 7 satisfies (38). In view of the above supposition, there exists
a number ¢ and a set F' such that 0 < ¢ < ¢/, F is admissible for the
given choice of ¢, p(F) = n and

(42) L maxiiglh <«
2¢ qer
From (37), (42) and the fact that F* = X,, there follows, for ne F,
o zet -9,

Hence, by (42) and (41), (since £ < k&,),

Ul L
VK = 2= e Ml

In view of Lemma 8 this is impossible, we conclude therefore that
(40) cannot hold, and thus from (39) we have (34).

Since for an eigenvector 7 of (22) the corresponding characteristic
value ¢ is given by

— 7l
ey
we have, for 7e 2,
— P() 1 i
r= : IR/
— vy ¥
thus if 7 e E,(c),
3) pm PO
—;—<77, v,

By definition
[diam E,(¢)]* = 8en,(c) ,
so that from (35) and (34), for ne E,(c), the characteristic value g
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which is given by (43), satisfies
©=pm = k,1 + o)) , as ¢c— 0,
from which follows the second assertion of (f); notice that
Ey(e) = i(E.(c)) -

The final assertion of (1) follows from the second assertion of (1)
and a result from [8, pp. 194-195].

9. We conclude with several examples to which the above results
are applicable. First, for the verification of condition (5), the follow-
ing result will be useful.

LEMMA 9. The compact symmetric operator A: X — X* satisfies
condition (5) if and only if Y = AX is total for X and

(44) (Az, %) = 0, e X.

Proof. Condition (5) clearly implies (44), and if xe€ X and (y, ) = 0
for every ye Y, then in particular (Ax,x) = 0, and hence z = 0, so
that Y is indeed total for X. Conversely, suppose that (44) holds and
that Y is total for X. Then if e X, «© = 0, there exists ye Y such
that (y,%) = 0. Since AX is dense in Y it follows that there exists
2’ € X such that (Az’, ) = 0. But from the symmetry of A, (44) and
the Schwarz inequality there follows,

0 < (A2, 2)* = (A2, o) (Az, @) ,

and thus we conclude that (5) holds.

Now let 2 be a bounded region in Euclidean n-space, let K(t, s)
be a symmetric kernel defined for (¢, s) € 2 x 2, and let f(¢, y), defined
for (t, y) € 2 X R satisfy the Carathéodory conditions, [8]. Assume more-
over that f(t, y) satisfies the conditions set down in § 1, namely

(45) fy) = —fit.—v, te,yeR,
(46) yf@¢ y) >0, te2,yeR,y =0,
and

(47) SO y) =fCy) ey, heR =y .

With X and Y yet to be specified, we take A to be the integral
operator

Ay = SQK( <, s) u(s)ds ,
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and @ to be the Nemytsky operator
D) = f(-,u(-)),
finally we take

(48) Y(y) = SQ E:”’ £t w) du dt .

We consider first the case where K (¢, s) is continuous on 2 x 2
and f(t, ) is continuous on 2 x R. In this case we take X = L(Q),
and Y is then determined and will be a subspace of

C@) < L=() = (L'(2)* .

The complete continuity of A: L'(Q2) — C(2) and the continuity of
0: C(Q) — L'RQ) are easily verified; weaker conditions on f(¢, y) suffice
for the latter continuity. The symmetry of A follows from the sym-
metry of K(t,s). The operator @, which can be regarded as an
operator from C(2) into (C(2))*, since the latter contains a subspace
naturally isomorphic to L'(2), is the gradient of v, given by (48). The
properties (6), (7) and (8) for @ follow from (45), (46) and (47). If
K (t, s) is nonnegative definite in the ordinary sense, i.e. if A|L*Q)
is nonnegative definite, then A satisfies (44), thus the applicability of
Theorem 1 hinges on the totality of Y for L'(?). This depends on
more special properties of the kernel K(t¢,s). However, if Q is a
bounded interval and if K(¢, s) is the Green’s function for a regular
self-adjoint two-point boundary value problem on 2, then, provided
K (t, s) in positive definite, Y will contain all continuous functions which
vanish identically near the endpoints of 2 and consequently will be
total for L'(2). Thus Theorem 1 implies the following.

THEOREM 2. Let

m k
(49) /=3 d* w d

= det P”‘"‘k At ’ P; € C"“j([a, b]),j =1,---m ,

be a formally self-adjoint regular differential operator of order 2m
on la, b], let

2m—1 . .
(50) M) = X (@y?(@) + By?®) =0, k=1, 2m,

be self-adjoint boundary conditions for < and suppose that if ye C*™
([a, B), ¥ = 0 in [a, b], and y satisfies (50) then

S y®loyl@)dt > 0.
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Let f(t, y) by continuous on [a, b] X R and satisfy (45), (46), and (47).
Then if ¢ > 0, the problem

(51) /(y):ﬂf(t7y)! Mk(y)zoy kzly"':zm’

has infinitely many eigenfunctions y satisfying
b (y(t)
7@:8& Ft, wdudt = ¢ .
a 0

The principle of linearization derived in § 8 applies to the problem
(51), provided there exists a positive function ¢(¢) on [a, b] such that

lim ¥~ f(¢, v) = q(t) , uniformly with respect to t.
y—0

Y70

Substantially weaker conditions actually suffice for the Fréchet dif-
ferentiability at zero of the Nemytsky operator from C to L'.

We next consider the case where the kernel K(t,s) is singular.
We are primarily interested in the particular case where K(¢,s) is
the Green’s function associated with an elliptic boundary value problem,
thus, of the various conditions on K implying complete continuity of
A we shall consider only the one which is satisfied by such a Green’s
function, namely,

(562) sup S | K(t,s)|*ds < o ,
teQ 2
for some a > 1. Concerning f(f, y) we then assume

(53) | fE& | =clyl+4d,

for some b such that

(54) 1<b<2 —1,
and we take X = LY(2), where,
(55) q > 2a/2a — 1) .

If 1/p + 1/qg = 1, we have by [7, Th. 95.6, p.658], that A: L*(2)— L*(Q)
is completely continuous, and by [18, Th. 19.1, p. 154] that @: L*(2)—
L) is continuous. Also, @ is the gradient of the functional v on
L*(Q); see [18, §6.3, p.63]. Assume that K(¢, s) is positive definite
in the ordinary sense, then since, (because of the reflexivity of L?(2)),
no proper subspace of L?(Q2) is total for L¢(2), the applicability of our
main result hinges in this case on the density of the range of A in
L?(Q). We note however that in any case, in the presence of con-
ditions (52), (53), (54) and (55) and when 1/p + 1/g = 1, any L,-eigen-
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function of (2) actually belongs to L>(2); see the proof of Theorem 83,

[5].
In order for the Nemytsky operator from L*(Q) to

L@p>2 1+ =1
p q

to be Fréchet differentiable at 0 it suffices that

ft,y) = y(PE) + q, v))

where Pe L'(2), » = p\(p—2), q(t, y) satisfies the Carathéodory con-
ditions, q(¢, 0) = 0, and

(56) lat, w) | = myly " + m,,

where m,, m, >0, 6 = (p — 2). If p(t) is positive almost everywhere
on 2, then the principle of linearization is applicable in this case. In
the presence of (52), (53), (54), the small Lr-solutions of (2), (p > 2a),
can be shown to be shall in the L* norm also, and thus the growth
condition (56) on ¢(¢, ¥) can be dropped when these conditions hold.

We will not state a general theorem concerning the equation (2)
with a singular kernel but rather we state the following result, which
is a principal application of such a theorem.

THEOREM 3. Let 2 be a bounded region of class C*™ im R", and
let

T=23 (=1)"D..)D",

lal,18l=m

where D* = alal/atixl cee atﬁn9 IC([ =& + *° + «,,
and for some p: 0 < p < 1,

Qs € CmextialiBh,e all a, B .

Moreover assume that T is formally self-adjoint and that there exists
k, > 0, such that

L te5(t) D*y() DPy(t)dt = 53 Sg | Doy dt

lal,|Bls=m

Sor all ye CP(Q).
Let f(t,y) be uniformly Holder continuous on 2 X R and satisfy
(45), (46), (47) and (53) with

(57) 150, b(n—2m) < n + 2m .
Then for any ¢ > o the eigenvalue problem

(88) ty=pfGy, Dilw=0, |ajsm-1,
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has infinitely many eigenfunctions ye C*™(R) N ¢ Q) and satisfying

YY) = SQ S:“’ £t wydu dt = ¢ .

Proof. It follows from results of [6] that (58) is equivalent to
an integral equation of the form (2), and where (52) is satisfied for
a(mn—2m) < m. The theorem then follows from the remarks above,
preceding its statement, and with the use of the arguments employed
in the proof of the main theorem in [6]. The sharpness of the con-
dition (53), (56) is shown by an example in [15].

For the special case where 7 = — 4, the hypothesis can be weaken-
ed slightly, compare Theorems 4 and 5 in [5].

We remark finally that X and Y in Theorem 1 can also be taken
to be Orlicz spaces other than L”. Continuity conditions for the
integral operator A and the Nemytsky operator @, when X and Y
are Orlicz spaces, are given in [9]. In particular, by taking X and
Y to be Orlicz spaces one can replace the growth condition (53), (57)
in Theorem 3 by an exponential growth condition when 7 =—4 and
n = 2; see for example the hypothesis of the main theorem of [10].
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