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ON THE OPEN CONTINUOUS IMAGES OF
PARACOMPACT CECH COMPLETE SPACES

EL H. WICKE AND J. M. WORRELL, J R .

This article characterizes the completely regular To open
continuous images of paracompact Cech complete spaces. The
characterization involves three conditions equivalent to being
such an image. The first is an intrinsic condition concern-
ing the position of the space in any of its Hausdorff bicom-
pactiίications. This condition weakens the condition of Cech
completeness by replacing the concept of Gs-set by that of
set of interior condensation. This replacement yields a notion
of topological completeness which has certain advantages over
Cech completeness and uniform completeness but which re-
duces to Cech completeness in the case of metrizable spaces.
The second condition (Condition J3O is intrinsically defined
with the use of a sequence of collections of open sets. It is
an analogue of the notion of a regular TΌ-space having a
monotonically complete base of countable order. The third
condition is that of being an open continuous image of a
space which is the sum of open Cech complete suhspaces. The
main theorem thus displays four equivalent forms of a topolo-
gical completeness property invariant under open continuous
mappings between Tychonoff spaces.

The characterization mentioned (Theorem 4) complements the
characterization [15] of the Hausdorff open continuous images of T2

paracompact p-spaces as Hausdorff spaces of point-countable type in
a way analogous to that in which the characterization [14] of regular
To open continuous images of complete metric spaces as regular To-
spaces having monotonically complete bases of countable order com-
plements Ponomarev's characterization [11] of the To open continuous
images of metrizable spaces as the To first countable spaces. It is
relevant to recall in this connection some results of Frolίk [7] and
ArhangeΓskiΐ [4], respectively: The class of T2 paracompact Cech
complete spaces (T2 paracompact p-spaces) is the class of T2 perfect
preimages of complete metric spaces (metric spaces).

In [13] it was shown that a Tychonoff open continuous image of
a paracompact Cech complete space (in fact, of a metrically topologic-
ally complete space) is not necessarily Cech complete. This affords
interesting contrast with the behavior guaranteed by Theorem 5: A
Tychonoff open continuous image of a Tychonoff space complete in the
sense of Condition j%Γ is also complete in the same sense.

Some results of the paper have antecedents in the classical theory
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of metrically topologically complete spaces (i.e., spaces which are
homeomorphic to complete metric spaces). Particularly relevant is the
theorem of Cech [6] that a metrizable space is topologically complete
if and only if it is a G^-subset of its Stone-Cech bicompactification.
Theorem 4 provides an analogue of this in which the concept of metric
topological completeness is replaced by Condition 3Γ and the concept of
Gδ-set is replaced by that of a set of interior condensation. Certain re-
sults on the invariance of Gδ-sets in Euclidean space under open contin-
uous mappings also are relevant; they are referred to after Theorem 2.

The plan of exposition is to introduce appropriate concepts and
prove three theorems concerning these concepts from which Theorem
4 readily follows. The first of these theorems gives a sufficient condi-
tion that a regular TVspace be an open continuous image of a para-
compact Cech complete space. The second theorem concerns the
behavior of certain sets of interior condensation under open continuous
mappings and the third one shows that the extrinsic condition men-
tioned implies the intrinsic condition.

2* Terminology* The terminology generally used here is much
like that of [8] except that the null set convention is not used, i.e.,
all sets herein have elements. If A and B are sets, A B denotes
the intersection of A and B and A + B denotes the sum or union of
A and B. Spaces called compact in [8] are here called bicompact
following the usage of [1]. The usage of compact space here is that
of Frechet, namely, that there exists no infinite subset of the space
which does not have a limit point. If K is a collection of sets, ϋΓ*
denotes the sum of the members of K. The term inner limiting set
is synonymous with Gδ-set. A Tychonoίϊ space S (= completely re-
gular ΪVspace) is said to be Cech complete [6] if and only if it is an
inner limiting set in its Stone-Cech bicompactification. A space is
said to be metrically topologically complete if and only if it has a
topology-preserving metric in which it is complete. The letters i, j , k,
and n are used to signify positive integers.

3* Condition J^Γ A subset M of a topological space (S, T) is
said to be of countable character in S [5] if and only if there exists a
sequence Dl9 D2, of elements of τ including M such that any member
of τ which includes M also includes some Dn.

A space S is said to be of point-countable type [5] if and only if S
is covered by a collection of bicompact sets of countable character in S.

In [15] it is shown that a Hausdorίf space is of point-countable
type if and only if it is an open continuous image of a Hausdorff
paracompact p-space. All first-countable spaces and all Tychonoff p-
spaces are of point-countable type and the property of being of point-
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countable type is preserved by open continuous mappings [5].

LEMMA 1 [15]. In a Hausdorff space S the following properties
are equivalent:

( i ) S is of point-countable type.
(ii) If D is open in S and P is in D there exists a bicompact

set β of countable character which contains P and is a subset of D.

DEFINITION. A topological space (S, τ) is said to satisfy Condition
J%Γ if and only if there exists a sequence G19 G2, of subcollections
of τ covering S such that: (1) For each n, if P belongs to an element
g of Gn1 there exists a member gf of Gn+1 containing P such that g
includes g'. (2) If glf g2, is a sequence such that, for each n, gn

is a member of Gn including gn+1, then there exists a (nonempty)
bicompact set β which is the common part of the terms of gu g2,
such that any member of r which includes β also includes some gn.

Spaces satisfying Condition 3ίΓ are of point-countable type. Thus
in the Hausdorff case Lemma 1 applies to such spaces. This remark
is used in the proof of Theorem 1.

Theorem 1 is a major component of Theorem 4. It is related to
the theorem of [15] stated above and also to other theorems regard-
ing the existence of open mappings [2, 11, 14, 16]. Recall that the
weight of a topological space is the smallest cardinal number m such
that the space has a base of cardinal m [1].

THEOREM 1. Suppose S is a regular T0-space. If S satisfies
Condition *f%Γ then S is an open continuous image of a paracompact
Cech complete space of the same weight as S.

Proof. Let τ denote the topology of S. Since S satisfies Condi-
tion J%7 it may be seen that there exists a sequence Hu H2,
of well-ordered subcollections of τ covering S such that these con-
ditions are satisfied: (1) For each n, each k in Hn contains a point
XnΛ belonging to no preceding element of Hn. (2) If n<k and P is a
point of S, the closure of the first element of Hk containing P is a
subset of the first element of Hn containing P. (3) If hi, h2, is a
sequence such that each hn belongs to Hn and each hn is the first
element of Hn containing Xn+uhn+ι, then there exists a bicompact point
set β such that (a) β is the common part of the terms of hu h2,
and (b) every element of τ which includes β also includes some hn.

Let Γ denote the collection of all bicompact point sets 7 of (S, τ)
such that for some decreasingly monotonic sequence Dur, D2)T1 of
elements of τ including 7 it is true that every element of r in which
7 lies includes some Dn>r. Let Ls denote the weight of S. Let τ'
denote a base for S such that ψ = Ls.
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There exists a meaning for the notation Un>ω for positive integers
n and certain ordered pairs α>, such that with respect to some sequ-
ences Ωu Ω2, and Q2, Q3, of transformations these conditions are
satisfied: (1) For each n, the range of Ωn is a subcollection of τ covering
S. (2) For each n>l, Ωn and Ωn_x are, respectively, the domain and
range of Qn. (3) If for each n and ω in Ωn, Bω denotes the second term
of ω, then for each n > 1 and ω in Ωn_19 P belongs to Bω if and only
if P_belongs to the second term of some member of Qn\ω). (4) For each
n, Ωn <̂  Ls + V̂o (5) For each n and ω in Ωn, Un>ω is a finite sub-collec-
tion of τ covering Bω such that each u in Un,ω contains a point Yn>ω,u

such that ΰ is a subset of the first element of Hn that contains Yn>ω,u.
(6) For each n > 1 and ω in Ωn_L1 if ri/ belongs to Q~ι{ω) and w belongs
to Un,ω>, then there exists an element vl of Z7n_lfβ, such that Bω ur

includes ΰ. (7) If 7 belongs to i"1 there exists some ω in Ωx such that
ί?ω includes 7 and A,r includes 5 ω . Moreover, if n>l, and ω belongs
to Ωn_19 and 7 is a subset of Bω belonging to Γ there exists some ωr in
Q~ι{ω) such that Ŝ ^ includes 7 and Dn>r includes U£ω,. (This con-
struction may be carried out using (7) as a starting point.)

Let E denote the set of all sequences (ωu P), (ω2, P), such that
(1) each ωn belongs to Ωn, (2) each ωn is Qn+I(a)n+1), and (3) each BWn

contains P. Let ψ denote the collection to which an element belongs
if and only if it is the sum of some sets D, such that for some n,
some co in Ωn, and some subset U of Bω belonging to τ, D is the set
of all sequences (colf P), (ω2, P), in E such that ω = ωn and U
contains P. Let φ denote the transformation of E such that for each
sequence (ωlf P), (ω2, P), belonging to E, φ[{ωly P), (ω2, P), . . . ] = P.

It may be shown that (E, Ψ) is a regular To topological space,
that φ maps (E, ψ) onto (S, τ) continuously, and that ςp(D) belongs
to τ for each D in π/r. If it can be shown that (E, ψ) has a metric-
ally topologically complete upper semicontinuous decomposition into
bicompact sets, it follows from Frolίk's theorem [7] that (E, ψ) is a
paracompact Cech complete space.

For each n and ω in Ωn, let tn>ω denote the set of all sequences
(ωl9 P), (ω2, P), in E1 such that ω = ωw and i?ω contains P. Let
Fw denote the collection of all these sets tn,ω. Let G denote the col-
lection to which g belongs if and only if there exists a decreasingly
monotonic sequence vu v2i of sets such that each Vn contains vn

and g is the common part of the sets vn. It may be shown that
there exists a transformation θ of G such that if (1) ωl9 ω2, is a
sequence such that each ωn belongs to Ωn and each ωn is Qn+1(ωn+1)
and (2) if g is the common part of the sets tn,ωn, then θ{g) is Bωi Bωz

Moreover, it may be seen that if g belongs to G, θ(g) = φ(g) and φ \ g
is reversibly continuous.

Suppose that ω19 co2, is a sequence such that each ωn belongs
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to Ωn and each ωn is QΛ+1(ωn+1). (A) If ul9 u2, is a sequence such
that each un belongs to Un>0)n and each un includes un+1 then for each
n there exists a first element hn of Hn that includes some term of
u19 u2, . If n < fc there exists some i > k such that w< is a subset
of ΛΛ and of hk. Moreover, u{ is a subset of the first element h of
jf4 containing Yifω.fU.. So Λ does not precede hn. Since ft* contains
Yi,ωituii h does not follow hn. Hence h = Λ,Λ. Similarly, Λ,A is the first
element of Hk containing Yi}0).}U.. So hn includes hk. Thus hn is the
first element of Hn containing Xk,hje. So each hn includes hn+ί and
there exists a bicompact point set β such that /9 is the common part
of the sets hn and every element of τ in which β lies includes some
hn. Hence each ΰn intersects β. Moreover, u^u^ ••• is a bicompact
subset β' of β. If D is a member of τ in which /3' lies but which
includes none of the sets un, there exists a sequence Ply P2, of
distinct points of S such that each [un — (D un)] hn contains Pn. But
a contradiction is involved, for {PJ + {P2} + has a limit point X
belonging to β, and each ΰn contains X, and each un includes un+1.
(B) Since each Bω%_ί includes U*tWn, the terms of the sequence BWί1

Bω2, have a common part M. Since each Bωn includes Bωn+1, M
is closed. If J is an infinite subset of M then, since each of the
finite collections Un,ωn covers Bωr>, each of the collections has an ele-
ment having an infinite intersection with J. With application of
Konig's lemma it may be seen that there exists a sequence ult u2,
as in (A) such that each un contains infinitely many points of J. Since
every member of τ in which the bicompact set u^u2* lies includes
some un, J h a s a limit point belonging to M Λ . . (C) Let B denote
the collection of all sets βr as in (A). If W is a subcollection of ψ
covering M then for each β in B there exists a finite subcollection
Tβ of W covering β. For each β there exists some positive integer
n such that some element u of Un,ωn including β is a subset of 77.
Since UUωι + L^,^ + is countable, there exists a sequence βlf β29

of elements of J5 such that T^ + Tβ2+ covers ikf. Thus M is
Lindelofian. Since ikf is 2\ and compact, M is bicompact. For reasons
similar to some involved in (A), every member of τ in which M lies
includes some Bω%. (D) Let # denote tuωιt2,ω2. . Since ςp | ̂  is re-
versibly continuous, and φ(g) = M, g is a T2 bicompact point set.
With the use of (C) it may be shown that every element of >r in
which g lies includes some tn>a)n. Moreover, for each n every member
of Vn includes every element of G that it intersects. Thus G is upper
semicontinuous. (E) With straightforward application of the condi-
tions on Ωλ1 Ω2, and Q2, Qs, it may be seen that if 7 belongs
to Γ there exists a sequence ωl9 ω2, as above such that 7 is a
point set M as in (B). Moreover, for each n and ω in Ωn, if 7 is a
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subset of Bω belonging to Γ then there exists such a sequence ω19

ω2, such that ωn = ω and 7 = M.
For each n, let An denote the collection to which δ belongs if and

only if for some v in Vnf δ is the collection of all elements of G that
intersect v. It may be seen that Ax + A2 + is a σ-discrete base
for G with respect to the (appropriate) quotient topology ξ. Thus,
since (G, ζ) is a regular TV-space, (G, ξ) is metrizable. With use of
the above paragraphs it may be seen that if Dly D21 is a decreas-
ingly monotonic sequence such that each Dn belongs to An + An+1 + ,
then {Dj} + {D2} + is a base for (G, ζ) at some point. It follows
that (G, ζ) is metrically topologically complete. With the use of
condition (4) on Ωίy Ω2, and Q2, Qz, , it may be shown that if y$ is
the weight of (E, ψ) then ^ + fct = Ls + No-

4* Sets of interior condensation* In this section we introduce
a concept which has been essential in the authors' discussions of to-
pological completeness in structures more general than metrizable spaces
[17, 18]. The concept plays a role in these more general settings
comparable to that played by inner limiting sets in the theory of Moore
spaces and metrizable spaces.

Suppose S is a subset of a set E. A sequence Gu G2, of col-
lections of subsets of E covering S is said to be a monotonically con-
tracting sequence of S in E if and only if, for each n, if P is an
element of S belonging to a member g of GΛ, there exists a subset
of g which contains P and belongs to Gn+1.

A subset S of a topological space E is said to be a set of interior
condensation in E if and only if there exists a monotonically contract-
ing sequence G1? G2, of S in E such that (1) each element of each
Gn is open in E, and (2) if P is a point belonging to each term of a
sequence gu g2, such that, for each n, gn belongs to Gn and includes
gn+1, then P belongs to S.

It is clear that inner limiting sets are sets of interior condensa-
tion. It may be shown that sets of interior condensation in Moore
spaces are inner limiting sets in these spaces.

The proof of the next theorem demonstrates the invariance of the
property of being an absolute set of interior condensation under open
mappings between Tychonoff spaces. This theorem shows the advantage
obtained by relaxing the condition of being an inner limiting set to
that of being a set of interior condensation, for there exists an open
mapping between Tychonoff spaces whose domain is an absolute inner
limiting set (Cech complete) and whose range is not. Such an example
may be obtained by applying Theorem 2 of [14] to any non-Cech-
complete subspace of the space Ω of countable ordinals with the order
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topology [13]. (Every subspace of Ω is regular, To, and has a mono-
tonically complete base of countable order and is therefore an open
continuous image of a complete metric space.)

Recall first that a mapping φ of a space S onto a space R is said
to be inductively open [3] if and only if there exists a subspace S' of
S such that φ\S' is open and φ(S') = R.

THEOREM 2. Suppose S is a set of interior condensation in a T2

bicompact space. Then any inductively open continuous image of S
is a set of interior condensation in any T2-space of which it is a
dense subspace.

Proof. Let (E, ψ) denote a T2 bicompact space of which (S, z) is
a subspace. Let G19 G2, denote a sequence of subcollections of ψ
covering S which satisfies the conditions of the definition of set of
interior condensation. Let ψ denote a continuous mapping of S onto
a space R and S' a subspace of S such that φ\S' is open and φ(S') =
R. Let (F, σ) denote a T2-space of which R is a dense subspace.
There exists a sequence Hl9 H2, of well-ordered subcollections of
ψ covering S such that these conditions are satisfied for each n: (SI)
Each h in Hn contains a point of S not in any predecessor of h. (S2)
If P is in S, n < k, and h and h' are the first elements of Hn and
Hk that contain P, respectively, then h includes h'. (S3) If P is in
E and hlf h2, is a sequence such that each hn is a member of Hn

which includes hn+1 and contains P, then P belongs to S. By using
a technique related to one used in the proof of the Lemma on page
261 of [16] it may be shown that there exists a sequence W19 W21

of well-ordered subcollections of σ covering R such that these condi-
tions are satisfied for each n: (Wl) Each w in Wn contains a point
of R not in any predecessor of w. (W2) If P is in R, n < k, and w
and wf are the first elements of Wn and Wk, respectively, that contain
P, then w includes wr. There also exists a function D such that for
each n: (Dl) If w is in Wn, Dn>w is an element of ψ such that

<P{DntW-S') = wR.

(D2) If P is in R, n < k, and w and ^j' are the first elements of Wn

and Wk? respectively, that contain P, then DftW> is a subset of Z)w,w.
(D3) If w is in Wn, there exists a point X of Dn,w-S' such that the
first element of Hn that contains X includes DntW.

Let V1 denote Wλ and for each n > 1 let Fw denote the collection
of all sets of the form v w where w is in Wn and v belongs to Vn-γ

and contains a point of w not in any predecessor of w in WΛ. Then
V19 V2, is a sequence of subcollections of σ covering R. If P is
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in the element v of Vn and w is the first element of Wn+1 that contains
P, then vw is a subset of v which contains P and belongs to Vn+1.
Suppose P is a point belonging to each term of a sequence vu v2,
where each vn belongs to Vn and includes vn+1. For each n there
exists a first wn in Wn that includes a term of vu v2, . For each
n there exists j" > n + 1 such that v3- is a subset of wn and wΛ+1.
The set v, is of the form v w where v is in F,-^, w is in W3-, and v
contains a point X oί w not in any predecessor of w. Let A denote
the first element of Wn that contains X. Then h includes vw. Hence
wn does not follow h. Since wn contains X it follows that wn = Λ.
Similarly wΛ+1 is the first element of Wn+ι that contains X. Hence wn

includes wn+1 and, letting Dn denote Dn,Wn, it follows that Dξ+1 is a
subset of Dn. Since £7 is bicompact, it follows that the sets Dl9 D2i

have a (nonempty) closed and bicompact common part K. By condi-
tion (D3) for each n there exists a first /&„ in Hn that includes a term
of Dly D2y . By (D3) and an argument similar to one used just
above it follows that, for each n, hn includes hn+1. Since K is a subset
of each hn it follows from (S3) that K is a subset of S. Suppose P
does not belong to φ(K). Since φ(K) is bicompact and F is T2, φ{K)
is closed and there exists an open set D which includes φ{K) such
that P is not in D. Since R is dense in F, for each n, there exists
Yn in i2 such that Yn belongs to %ι\ — D and there exists Xn in Dn

S' such that φ{Xn) = Yn. There exists a point Z such that Z is
either a limit point of the set of all Xn's or else Xn — Z for infinitely
many n. In either case Z belongs to K so that φ(Z) is in φ(K) and
thus φ(Z) is in D. Since φ is continuous this implies that infinitely
many Yn belong to D which involves a contradiction. Therefore P
belongs to φ(K) and hence to R. Thus R is a set of interior con-
densation in F.

COMMENT. A classical theorem of Sierpiήski [12] on the in variance
of Gδ-sets in Euclidean π-space under open continuous mappings may
be derived from this theorem. An earlier result is by Mazurkiewicz
[10]. See [9, pp. 430-431] for further discussion.

THEOREM 3. Suppose S is α set of interior condensation in some
T2 bicompact space. Then S satisfies Condition Sί<"

Proof. Suppose S is a set of interior condensation in a T2 bicom-
pact space (E, ψ). Let Gu G2, denote a sequence of ψ which satis-
fies the conditions of the definition of set of interior condensation.
As in the proof of Theorem 2 there exists a sequence Hl9 H2, of
well-ordered subcollections of φ satisfying conditions (31)-(33) for each
n. For each n, let Vn denote the collection of all sets of the form



ON THE OPEN CONTINUOUS IMAGES OF PARACOMPACT CECH 273

h S where h belongs to Hn. Suppose h and h! are in Hn and h S =
h' S. Since h contains a point P of S not in any predecessor of h
and hf contains P it follows that h does not follow h'. Similarly hf

does not follow h, so that h = hr. Hence each Vn may be well ordered
by the prescription that v precedes vf if and only if h precedes hf,
where h and hf are in Hn and v = h S, vf — h' S. Suppose P is in
S. Let h denote the first element of Hn that contains P. Then h S
is the first element of Vn that contains P. Suppose P is in S, n < k,
and v and vr are the first elements of Vn and Vk, respectively, that
contain P. Suppose v = h S and v' = h' S where h is in Hn and &'
is in Hk. Then A and hf are the first elements of Hn and fl*, re-
spectively, that contain P so that h includes hr. Hence v includes
vfS (the closure of vf with respect to S). Suppose that vly v2y is a
sequence such that, for each n, vn is an element of Vn that includes
vl+1. For each n there exists a first hn in i7% that includes a term
of #!, v2, . For each ^ there exists j > ^ + 1 such that Vj is a
subset of feΛ and hn+1. There exists an h in iϊ, such that v3- = h S.
Let X denote a point of Λ S not in any predecessor of h. By an
argument used in the proof of Theorem 2 it follows that hn and hn+1

are the first elements of Hn and Hn+ι, respectively, that contain X.
It follows that hn includes hn+ί. Hence there exists a bicompact point
set β which is the common part of the terms of hL, h2, ••• and which
is a subset of S. Suppose for some n, vn does not meet β. Then
there exists a sequence Ply P2, such that, for each k, Pk is in vn+k

and is not in β. For each k there exists nk> k such that Pn]c is in
hk. If A denotes {Pni} + {Pn2} + , then A meets /5. For if it does
not, some hk does not meet A. Suppose P is in A β. Then P is
not in A so that every open set containing P contains infinitely many
elements of A. But then P is in each vi and, therefore, in each vn

which is a contradiction. It follows that the common part β' of the
terms of vl9 v2y ••• exists and is a bicompact subset of β. By an
argument used in the proof of Theorem 1 it follows that any open
set in E which includes βr also includes some vn.

Let G[ denote Fx. For each n > 1 let G'n denote the collection of
all sets of the form g v where g is an open set of S, v is in Vn, g
contains a point P of v not in any predecessor of v in Vn, and for
some g' in G'n-19 g

s is a subset of gr. We shall show that G[, G'2i

is a sequence enabling S to satisfy Condition ^%Γ Suppose P is a
point of g in G£. There exist a first v in Vn+1 that contains P, and
an open set gf of S containing P such that g's is a subset of g.
Hence g' v is a member of G«+1 which contains P and ^ ' - ^ is a subset
of #. Suppose g19 g2y is a sequence such that, for each n, gn be-
longs to G'n and includes gs

n+1. For each n there exists a first vΛ in
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Vn that includes a term of gl9 g2, . By an argument used in the
proof of Theorem 2 it follows that, for each n, vn includes vl+1. Thus
a bicompact common part β of the terms of vlf v2, exists. By an
argument similar to one used in the preceding paragraph it follows
that there exists a bicompact point set βr which is the common part
of the terms of gu g2, such that any open set in which βf lies
includes some gn.

5* The characterization theorem*

THEOREM 4. Suppose S is a Tychonoff space. Then the following
conditions on S are equivalent:

(a) S is a set of interior condensation in one (equivalently, in
each) of its Hausdorff bicompactifications.

(b) S satisfies Condition S£<
(c) S is an open continuous image of a paracompact Cech com-

plete space.
(d) S is an open continuous image of a space which is a sum of

open Cech complete subspaces.

Proof. Condition (a) implies (b) by Theorem 3. Condition (b)
implies (c) by Theorem 1. That (c) implies (d) is obvious. Any space
as in (d) is an open continuous image of a Cech complete space. Since
a Cech complete space is a set of interior condensation in its Stone-
Cech bicompactification a Tychonoff open continuous image of it is a
set of interior condensation in each of its T2 bicompactifications by
Theorem 2. Thus (d) implies (a).

COMMENT. The reader is referred to the introduction for a com-
parison of part of Theorem 4 with a theorem of Cech.

THEOREM 5. Suppose S is a Tychonoff space which satisfies Condi-
tion J5Γ. Then any Tychonoff inductively open continuous image of
S satisfies Condition J%7

Proof. If S satisfies 5ίΓ then S is a set of interior condensation
in its Stone-Cech bicompactification by Theorem 4. By Theorem 2 any
Tychonoff inductively open continuous image of S is a set of interior
condensation in its Stone-Cech bicompactification. An application of
Theorem 4 completes the proof.
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