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ON THE OPEN CONTINUOUS IMAGES OF
PARACOMPACT CECH COMPLETE SPACES

H. H. Wicke AND J. M. WORRELL, JR.

This article characterizes the completely regular T, open
continuous images of paracompact Cech complete spaces, The
characterization involves three conditions equivalent to being
such an image. The first is an intrinsic condition concern-
ing the position of the space in any of its Hausdorff bigom—
pactifications, This condition weakens the condition of Cech
completeness by replacing the comncept of Gs-set by that of
set of wnterior condensation. This replacement yields a notion
gf topological completeness which has certain advantages over
Cech completeness and uniform completeness but which re-
duces to Cech completeness in the case of metrizable spaces.
The second condition (Condition .°¢7) is intrinsically defined
with the use of a sequence of collections of open sets., It is
an analogue of the notion of a regular T,-space having a
monotonically complete base of countable order, The third
condition is that of being an .open continuous image of a
space which is the sum of open Cech complete subspaces. The
main theorem thus displays four equivalent forms of a topolo-
gical completeness property invariant under open continuous
mappings between Tychonoff spaces,

The characterization mentioned (Theorem 4) complements the
characterization [15] of the Hausdor{ open continuous images of T,
paracompact p-spaces as Hausdorff spaces of point-countable type in
a way analogous to that in which the characterization [14] of regular
T, open continuous images of complete metric spaces as regular T,
spaces having monotonically complete bases of countable order com-
plements Ponomarev’s characterization [11] of the T, open continuous
images of metrizable spaces as the T, first countable spaces. It is
relevant to recall in this connection some results of Frolik [7] and
Arhangel’skil [4], respectively: The class of 7T, paracompact Cech
complete spaces (7, paracompact p-spaces) is the class of T, perfect
preimages of complete metric spaces (metric spaces).

In [13] it was shown that a Tychonoff open continuous image of
a paracompact Cech complete space (in fact, of a metrically topologic-
ally complete space) is not necessarily Cech complete. This affords
interesting contrast with the behavior guaranteed by Theorem 5: A
Tychonoff open continuous image of a Tychonoff space complete in the
sense of Condition .2¥" is also complete in the same sense.

Some results of the paper have antecedents in the classical theory
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of metrically topologically complete spaces (i.e., spaces which are
homeomorphic to complete metric spaces). Particularly relevant is the
theorem of Cech [6] that a metrizable space is topologically complete
if and only if it is a G;-subset of its Stone-Cech bicompactification.
Theorem 4 provides an analogue of this in which the concept of metric
topological completeness is replaced by Condition .2#” and the concept of
G,;-set is replaced by that of a set of interior condensation. Certain re-
sults on the invariance of G;-sets in Euclidean space under open contin-
uous mappings also are relevant; they are referred to after Theorem 2.

The plan of exposition is to introduce appropriate concepts and
prove three theorems concerning these concepts from which Theorem
4 readily follows. The first of these theorems gives a sufficient condi-
tion that a regular T,-space be an open continuous image of a para-
compact Cech complete space. The second theorem concerns the
behavior of certain sets of interior condensation under open continuous
mappings and the third one shows that the extrinsic condition men-
tioned implies the intrinsic condition.

2. Terminology. The terminology generally used here is much
like that of [8] except that the null set convention is not used, i.e.,
all sets herein have elements. If A and B are sets, A-B denotes
the intersection of A and B and A + B denotes the sum or union of
A and B. Spaces called compact in [8] are here called bicompact
following the usage of [1]. The usage of compacst space here is that
of Fréchet, namely, that there exists no infinite subset of the space
which does not have a limit point. If K is a collection of sets, K*
denotes the sum of the members of K. The term inner limiting set
is synonymous with G;-set. A Tychonoff space S (= completely re-
gular T-space) is said to be Cech complete [6] if and only if it is an
inner limiting set in its Stone-Cech bicompactification. A space is
said to be metrically topologically complete if and only if it has a
topology-preserving metric in which it is complete. The letters 1, 7, &,
and » are used to signify positive integers.

3. Condition .7 A subset M of a topological space (S, 7) is
said to be of countable character in S [5] if and only if there exists a
sequence D,, D,, - -+ of elements of 7 including M such that any member
of 7 which includes M also includes some D,.

A space S is said to be of point-countable type [5] if and only if S
is covered by a collection of bicompact sets of countable character in S.

In [15] it is shown that a Hausdorff space is of point-countable
type if and only if it is an open continuous image of a Hausdorff
paracompact p-space. All first-countable spaces and all Tychonoff p-
spaces are of point-countable type and the property of being of point-



ON THE OPEN CONTINUOUS IMAGES OF PARACOMPACT CECH 267

countable type is preserved by open continuous mappings [5].

LEMMA 1 [15]. In a Hausdorff spacze S the following properties
are equivalent:

(i) S is of point-countable type.

(ii) If D s open in S and P is in D there ewxists a bicompact
set B of countable character which contains P and is a subset of D.

DEFINITION. A topological space (S, 7) is said to satisfy Condition
22 if and only if there exists a sequence G, G,, --- of subcollections
of ¢ covering S such that: (1) For each =, if P belongs to an element
g of G,, there exists a member ¢’ of G,., containing P such that ¢
includes g’. (2) If g,, ¢., --+ is a sequence such that, for each =,g¢,
is a member of G, including g¢,.,, then there exists a (nonempty)
bicompact set @ which is the common part of the terms of g, g, -+
such that any member of = which includes g also includes some g,.

Spaces satisfying Condition .7 are of point-countable type. Thus
in the Hausdor{f case Lemma 1 applies to such spaces. This remark
is used in the proof of Theorem 1.

Theorem 1 is a major component of Theorem 4. It is related to
the theorem of [15] stated above and also to other theorems regard-
ing the existence of open mappings [2, 11, 14, 16]. Recall that the
weight of a topological space is the smallest cardinal number m such
that the space has a base of cardinal m [1].

THEOREM 1. Suppose S is a regular Ty-space. If S satisfies
Condition .75~ then S is an open continuous image of a paracompact
Cech complete space of the same weight as S.

Proof. Let 7 denote the topology of S. Since S satisfies Condi-
tion .27, it may be seen that there exists a sequence H, H,, ---
of well-ordered subcollections of 7 covering S such that these con-
ditions are satisfied: (1) For each =, each & in H, contains a point
X,.» belonging to no preceding element of H,. (2) If n<kand P is a
point of S, the closure of the first element of H, containing P is a
subset of the first element of H, containing P. (3) If h, h,, -+ is a
sequence such that each %, belongs to H, and each A, is the first
element of H, containing X, .., ,,, then there exists a bicompact point
set B such that (a) @ is the common part of the terms of Ay, ks, ++-
and (b) every element of r which includes 8 also includes some #,.

Let " denote the collection of all bicompact point sets v of (S, 7)
such that for some decreasingly monotonic sequence D,,,, D,,, <+ of
elements of 7 including v it is true that every element of ¢ in which
v lies includes some D,,. Let L; denote the weight of S. Let ¢’
denote a base for S such that 7 = Lg.
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There exists a meaning for the notation U, , for positive integers
n and certain ordered pairs ®, such that with respect to some sequ-
ences 2, £2,, -+ and @,, Q,, --- of transformations these conditions are
satisfied: (1) For each n, the range of 2, is a subcollection of ¢ covering
S. (2) For each n>1, 2, and 2,_, are, respectively, the domain and
range of Q,. (3) If for each # and w in 2,, B, denotes the second term
of w, then for each #» > 1 and w in 2,_,, P belongs to B, if and only
if P belongs to the second term of some member of Q;'(w). (4) For each
n, 2, < Lg + N,. (5) For each » and w in 2,, U, , is a finite sub-collec-
tion of 7 covering B, such that each % in U, , contains a point Y, ...
such that # is a subset of the first element of H, that contains Y, ,, .
(6) For each » > 1 and ® in 2,_,, if ®’ belongs to @, (®w) and % belongs
to U,., then there exists an element ' of U,_,, such that B,-u'
includes %. (7) If v belongs to I there exists some w in 2, such that
B, includes v and D, ; includes B,. Moreover, if #>1, and @ belongs
to 2,_,, and v is a subset of B, belonging to /" there exists some ®’ in
Q. (®) such that B, includes v and D, , includes U},. (This con-
struction may be carried out using (7) as a starting point.)

Let £ denote the set of all sequences (w,, P), (®,, P), --- such that
(1) each w, belongs to 2,, (2) each ®, is @, (®w,,), and (3) each B,
contains P. Let 4 denote the collection to which an element belongs
if and only if it is the sum of some sets D, such that for some #,
some @ in 2,, and some subset U of B, belonging to 7z, D is the set
of all sequences (w,, P), (w,, P), --- in K such that w = w, and U
contains P. Let @ denote the transformation of E such that for each
sequence (®,, P), (w,, P), - -+ belonging to E, ¢[(®,, P), (w,, P), ++-] = P.

It may be shown that (E, ) is a regular 7, topological space,
that @ maps (E, +) onto (S, ) continuously, and that (D) belongs
to 7 for each D in +. If it can be shown that (E, 4») has a metric-
ally topologically complete upper semicontinuous decomposition into
bicompact sets, it follows from Frolik’s theorem [7] that (&, ) is a
paracompact Cech complete space.

For each n and @ in 2,, let ¢t,, denote the set of all sequences
(w,, P), (w,, P), +-- in K such that w = w, and B, contains P. Let
V, denote the collection of all these sets ¢,,. Let G denote the col-
lection to which ¢ belongs if and only if there exists a decreasingly
monotonic sequence v, v,, --- of sets such that each V, contains v,
and g is the common part of the sets wv,. It may be shown that
there exists a transformation 6 of G such that if (1) w,, ,, --- is a
sequence such that each o, belongs to 2, and each w, is Q,.(®,.,)
and (2) if ¢ is the common part of the sets ¢, , then 6(g) is B, +B,,- -+ -.
Moreover, it may be seen that if g belongs to G, 6(9) = ®(g) and @|g
is reversibly continuous.

Suppose that w,, w,, --- is a sequence such that each w, belongs
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to 2, and each w, is Q.. (®,.,). (A) If u, u, --- is a sequence such
that each u, belongs to U,,, and each u, includes .+, then for each
n there exists a first element %, of H, that includes some term of
Uy, Uy, »++. If m < k there exists some 7 > k such that u; is a subset
of h, and of h,. Moreover, w; is a subset of the first element A of
H, containing Y;,,.,. So h does not precede h,. Since h, contains
Yi 0,0 b does not follow h,. Hence i = h,. Similarly, h, is the first
element of H, containing Y, .,. So A, includes ;. Thus h, is the
first element of H, containing X,,,. So each A, includes hms, and
there exists a bicompact point set B such that @ is the common part
of the sets %, and every element of ¢ in which B lies includes some
h,. Hence each %, intersects @. Moreover, u,-u,- «++ is a bicompact
subset 8" of B. If D is a member of = in which g’ lies but which
includes none of the sets u,, there exists a sequence P, P, --- of
distinct points of S such that each [u, — (D-u,)]+h, contains P,. But
a contradiction is involved, for {P} + {P,} + --- has a limit point X
belonging to B, and each #, contains X, and each u, includes U
(B) Since each B,  includes U, , the terms of the sequence B, ,
B,, -+ have a common part M. Since each B, includes B, ., M
is closed. If J is an infinite subset of M then, since each of the
finite collections U,,,, covers B, , each of the collections has an ele-
ment having an infinite intersection with J. With application of
Konig’s lemma it may be seen that there exists a sequence u,, u,, -+ -
as in (A) such that each u, contains infinitely many points of J. Since
every member of ¢ in which the bicompact set u,-u,- --- lies includes
some u,, J has a limit point belonging to %, %, ---. (C) Let B denote
the collection of all sets @' as in (A). If W is a subcollection of +
covering M then for each B in B there exists a finite subcollection
Ts; of W covering 8. For each 8 there exists some positive integer
n such that some element u of U,, including g is a subset of T7}.
Since U,,,, + U,., + +-- is countable, there exists a sequence g, 8, -+
of elements of B such that T, + T, + .-+ covers M. Thus M is
Lindelofian. Since M is T, and compact, M is bicompact. For reasons
similar to some involved in (A), every member of ¢ in which M lies
includes some B, . (D) Let g denote ¢, ts.,*""- ‘Since @lg is re-
versibly continuous, and @(¢9) = M, ¢ is a 7T, bicompact point set.
With the use of (C) it may be shown that every element of 4 in
which ¢ lies includes some ¢,, . Moreover, for each » every member
of V, includes every element of G that it intersects. Thus G is upper
semicontinuous. (&) With straightforward application of the condi-
tions on 2,9, --- and Q,, Q., --- it may be seen that if v belongs
to I” there exists a sequence w,, w,, --- as above such that v is a
point set M as in (B). Moreover, for each » and @ in 2,, if v is a
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subset of B, belonging to I" then there exists such a sequence w,,
@,, -++ such that w, = w and v = M.

For each n, let 4, denote the collection to which ¢ belongs if and
only if for some v in V,, 0 is the collection of all elements of G that
intersect v. It may be seen that 4, + 4, + --- is a o-discrete base
for G with respect to the (appropriate) quotient topology &. Thus,
since (G, ¢) is a regular T,-space, (G, &) is metrizable. With use of
the above paragraphs it may be seen that if D, D,, --- is a decreas-
ingly monotonic sequence such that each D, belongs to 4, + 4,,, + -+,
then {D} + {D,} + --- is a base for (G, &) at some point. It follows
that (G, &) is metrically topologically complete. With the use of
condition (4) on 2, 2,, --- and @,, Q,, - - -, it may be shown that if W is
the weight of (&, v) then W + W, = Ls + W

4. Sets of interior condensation. In this section we introduce
a concept which has been essential in the authors’ discussions of to-
pological completeness in structures more general than metrizable spaces
[17, 18]. The concept plays a role in these more general settings
comparable to that played by inner limiting sets in the theory of Moore
spaces and metrizable spaces.

Suppose S is a subset of a set E. A sequence G, G, --- of col-
lections of subsets of E covering S is said to be a monotonically con-
trasting sequence of S im K if and only if, for each =, if P is an
element of S belonging to a member ¢ of G,, there exists a subset
of g which contains P and belongs to G,.,.

A subset S of a topological space K is said to be a set of interior
condensation in K if and only if there exists a monotonically contract-
ing sequence G,, G,, --- of S in E such that (1) each element of each
G, is open in E, and (2) if P is a point belonging to each term of a
sequence ¢,, ¢,, -+ such that, for each », g, belongs to G, and includes
0.1, then P belongs to S.

It is clear that inner limiting sets are sets of interior condensa-
tion. It may be shown that sets of interior condensation in Moore
spaces are inner limiting sets in these spaces.

The proof of the next theorem demonstrates the invariance of the
property of being an absolute set of interior condensation under open
mappings between Tychonoff spaces. This theorem shows the advantage
obtained by relaxing the condition of being an inner limiting set to
that of being a set of interior condensation, for there exists an open
mapping between Tychonoff spaces whose domain is an absolute inner
limiting set (éech complete) and whose range is not. Such an example
may be obtained by applying Theorem 2 of [14] to any non-Cech-
complete subspace of the space 2 of countable ordinals with the order
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topology [13]. (Every subspace of 2 is regular, T,, and has a mono-
tonically complete base of countable order and is therefore an open
continuous image of a complete metric space.)

Recall first that a mapping @ of a space S onto a space R is said
to be inductively open [3] if and only if there exists a subspace S’ of
S such that ®|S’ is open and @(S’) = R.

THEOREM 2. Suppose S is a set of interior condensation in a T,
bicompact space. Then any inductively open continuwous image of S
is a set of imterior condensation in any T,-space of which it is a
dense subspace.

Proof. Let (FE, ) denote a T, bicompact space of which (S, 7) is
a subspace. Let G, G,, --- denote a sequence of subcollections of
covering S which satisfies the conditions of the definition of set of
interior condensation. Let @ denote a continuous mapping of S onto
a space R and S’ a subspace of S such that @[S’ is open and @(S') =
R. Let (F,o0) denote a T,-space of which R is a dense subspace.
There exists a sequence H,, H,, --- of well-ordered subcollections of
4 covering S such that these conditions are satisfied for each n: (S1)
Each h in H, contains a point of S not in any predecessor of h. (S2)
If Pisin S, n <k, and % and ' are the first elements of H, and
H, that contain P, respectively, then % includes A’. (S8) If P is in
E and h, h, --- is a sequence such that each 4, is a member of H,
which includes #,., and contains P, then P belongs to S. By using
a technique related to one used in the proof of the Lemma on page
261 of [16] it may be shown that there exists a sequence W, W, ---
of well-ordered subcollections of ¢ covering R such that these condi-
tions are satisfied for each n: (W1) Each w in W, contains a point
of R not in any predecessor of w. (W2) If Pis in R, » <k, and w
and w’ are the first elements of W, and W,, respectively, that contain
P, then w includes w’. There also exists a function D such that for
each n: (D1) If w is in W,, D, , is an element of - such that

P(D,, e S) = w-E .

(D2) If Pisin R, n <k, and w and w’ are the first elements of W,
and W,, respectively, that contain P, then D7, is a subset of D,,,.
(D3) If w is in W,, there exists a point X of D, ,-S" such that the
first element of H, that contains X includes D, ,.

Let V, denote W, and for each n > 1 let V, denote the collection
of all sets of the form v-w where w is in W, and » belongs to V,_,
and contains a point of w not in any predecessor of w in W,. Then
V., V, --- is a sequence of subcollections of ¢ covering R. If P is
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in the element v of V, and w is the first element of W,,, that contains
P, then v-w is a subset of v which contains P and belongs to V,.,.
Suppose P is a point belonging to each term of a sequence v, v,, +--
where each v, belongs to V, and includes v,.,. For each w there
exists a first w, in W, that includes a term of v, v,, -+-. For each
n there exists 7 > » + 1 such that »; is a subset of w, and w,.,.
The set v; is of the form v-w where v is in V;_,, w is in W, and v
contains a point X of w not in any predecessor of w. Let h denote
the first element of W, that contains X. Then % includes v-w. Hence
w, does not follow %. Since w, contains X it follows that w, = k.
Similarly w,., is the first element of W,., that contains X. Hence w,
includes w,., and, letting D, denote D, , it follows that DE., is a
subset of D,. Since E is bicompact, it follows that the sets D,, D,, -«
have a (nonempty) closed and bicompact common part K. By condi-
tion (D3) for each n there exists a first 4, in H, that includes a term
of D, D, ---. By (D3) and an argument similar to one used just
above it follows that, for each n, h, includes k,.,. Since K is a subset
of each 4, it follows from (83) that K is a subset of S. Suppose P
does not belong to ®(K). Since @(K) is bicompact and F is T,, 9(K)
is closed and there exists an open set D which includes ®(K) such
that P is not in D. Since R is dense in F, for each n, there exists
Y, in R such that Y, belongs to w, — D and there exists X, in D,-
S’ such that @(X,) = Y,. There exists a point Z such that Z is
either a limit point of the set of all X,’s or else X, = Z for infinitely
many %. In either case Z belongs to K so that @(Z) is in (K) and
thus @(Z) is in D. Since @ is continuous this implies that infinitely
many Y, belong to D which involves a contradiction. Therefore P
belongs to ®(K) and hence to R. Thus R is a set of interior con-
densation in F.

COMMENT. A classical theorem of Sierpifiski [12] on the invariance
of G;-sets in Euclidean n-space under open continuous mappings may
be derived from this theorem. An earlier result is by Mazurkiewicz
[10]. See [9, pp. 430-431] for further discussion.

THEOREM 3. Suppose S is a set of interior condensation in sone
T, bicompast spaze. Then S satisfies Condition 7

Proof. Suppose S is a set of interior condensation in a 7, bicom-
pact space (K, v). Let G, G, --- denote a sequence of « which satis-
fies the conditions of the definition of set of interior condensation.
As in the proof of Theorem 2 there exists a sejuence H, H,, --- of
well-ordered subcollections of + satisfying conditions (S1)-(S3) for each
n. For each =, let V, denote the collection of all sets of the form
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h-S where & belongs to H,. Suppose %~ and h’ are in H, and h-S =
n'-S. Since h contains a point P of S not in any predecessor of &
and &' contains P it follows that % does not follow A’. Similarly 2’
does not follow 4, so that » = A’. Hence each V, may be well ordered
by the prescription that v precedes ¢’ if and only if h precedes 4/,
where % and 2’ are in H, and v = h-S, v' = }’'-S. Suppose P is in
S. Let & denote the first element of H, that contains P. Then A-S
is the first element of V, that contains P. Suppose P is in S, n < k,
and v and v’ are the first elements of V, and V,, respectively, that
contain P. Suppose v = k-S and v’ = &'-S where & is in H, and #’
is in H,. Then & and %’ are the first elements of H, and H,, re-
spectively, that contain P so that % includes 2. Hence v includes
v'° (the closure of v with respect to S). Suppose that v, v, +- is a
sequence such that, for each n, v, is an element of V, that includes
U5.,. For each m there exists a first 4, in H, that includes a term
of v, v, -+-. For each n there exists 5 > n + 1 such that »; is a
subset of A, and h,,,. There exists an # in H; such that v; = h-S.
Let X denote a point of %-S not in any predecessor of ~. By an
argument used in the proof of Theorem 2 it follows that %, and %,
are the first elements of H, and H,.,, respectively, that contain X.
It follows that %, includes k,.,. Hence there exists a bicompact point
set B which is the common part of the terms of A, &, --- and which
is a subset of S. Suppose for some %, v, does not meet B. Then
there exists a sequence P, P,, --- such that, for each k, P, is in v,.,
and is not in 8. For each k there exists n, > k such that P, 1is in
hi. If A denotes {P,} + {P,} + ---, then A meets g. For if it does
not, some %, does not meet A. Suppose P is in A.-B8. Then P is
not in A so that every open set containing P contains infinitely many
elements of A. But then P is in each #% and, therefore, in each v,
which is a contradiction. It follows that the common part g of the
terms of v, v, +-- exists and is a bicompact subset of 8. By an
argument used in the proof of Theorem 1 it follows that any open
set in £ which includes g’ also includes some v,.

Let G| denote V,. For each n > 1 let G, denote the collection of
all sets of the form g.v where g is an open set of S, » is'in V., ¢
contains a point P of v not in any predecessor of v in V,, and for
some ¢’ in G,_,, g5 is a subset of ¢’. We shall show that G, G;, ---
is a sequence enabling S to satisfy Condition .2 Suppose P is a
point of g in G,. There exist a first v in V,,, that contains P, and
an open set ¢’ of S containing P such that §’° is a subset of g¢.
Hence ¢’-v is a member of G’., which contains P and ¢’-v° is a subset
of g. Suppose ¢,, g,, -++ is a sequence such that, for each =, g, be-
longs to G, and includes g.,. For each » there exists a first v, in
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V, that includes a term of g, ¢, -++. By an argument used in the
proof of Theorem 2 it follows that, for each #, v, includes ¥5.,. Thus
a bicompact common part B of the terms of v,, v,, -+ exists. By an
argument similar to one used in the preceding paragraph it follows
that there exists a bicompact point set B’ which is the common part
of the terms of ¢,, g,, -+ such that any open set in which g’ lies
includes some g¢,.

5. The characterization theorem.

THEOREM 4. Suppose S is a Tychonoff space. Then the following
conditions on S are equivalent:

(a) S is a set of interior condensation in one (equivalently, n
each) of its Hausdorfl bicompactifications.

(b) S satisfies Condition 57

(¢) S is an open continuous image of a paracompact Cech com-
plete space.

(d) S is an open continuous image of & space which is a sum of
open Cech complete subspaces.

Proof. Condition (a) implies (b) by Theorem 3. Condition (b)
implies (¢) by Theorem 1. That (c) implies (d) is obvious. Any space
as in (d) is an open continuous image of a Cech complete space. Since
a Cech complete space is a set of interior condensation in its Stone-
Cech bicompactification a Tychonoff open continuous image of it is a
set of interior condensation in each of its 7, bicompactifications by
Theorem 2. Thus (d) implies (a).

CoMMENT. The reader is referred to the introduction for a com-
parison of part of Theorem 4 with a theorem of Cech.

THEOREM 5. Suppose S is a Tychonoff space which satisfies Condi-
tion %7 Then any Tychonoff inductively open continuous tmage of
S satisfies Condition 257

Proof. If S satisfies 9% then S is a set of interior condensation
in its Stone-Cech bicompactification by Theorem 4. By Theorem 2 any
Tychonoff inductively open continuous image of S is a set of interior
condensation in its Stone-Cech bicompactification. An application of
Theorem 4 completes the proof.
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