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STRATIFIABLE SPACES, SEMI-STRATIFIABLE
SPACES, AND THEIR RELATION
THROUGH MAPPINGS

MicHAEL HENRY

It is shown that the image of a stratifiable space under
a pseudo-open compact mapping is semi-stratifiable., By
strengthening the mapping from compact to finite-to-one the
following results are also obtained. The image of a semi-
stratifiable (semi-metric) space under an open finite-to-one
mapping is semi-stratifiable (semi-metric).

Notation and terminology will follow that of Dugundji [6]. By
a neighborhood of a set A, we will mean an open set containing A,
and all mappings will be continuous and surjective.

DEFINITION 1.1. A topological space X is a stratifiable space if,
to each open set U C X, one can assign a sequence {U,};-, of open
subsets of X such that

(a) U,c U,

(b) U2 U, =1,

(¢) U,c V, whenever U C V.

DEFINITION 1.2. A topological space X is a semi-stratifiable
space if, to each open set U < X, one can assign a sequence {U,}o,
of closed subsets of X such that

(a) U2, U, =10,

(b) U,c V, whenever U C V.

Ceder [3] introduced M,spaces and Borges [2] renamed them
“stratifiable”, while Creede [4] studied semi-stratifiable spaces. A
correspondence U — {U,}7_, is a stratification (semi-stratification) for
the space X whenever it satisfies the conditions of Definition 1.1 (1.2).

LEMMA 1.3. A space X is stratifiable if and only if to each
closed subset F' C X one can assign a sequence {U,} of open subsets of
X such that

(a) Fc U, for each n,

( b) =1 (_]n - F,

(e) U, V, whenever U C V.

LEMMA 1.4. A space X s semi-stratifiable if and only if to
each closed set F' C X one can assign a sequence {U,} of open subsets
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of X such that
(a) F cU, for each n,
(b) N U, =F
(¢) U,cCV, whenever UC V.

A correspondence F'— {U, )}z, is a dual stratification (semi-strati-
fication) for the space X whenever it satisfies the three conditions of
Lemma 1.3 (1.4). For convenience in the proofs which will be
encountered, each member in the range of a correspondence will also
be called a dual stratification (semi-stratification) of the closed set to
which it is associated.

2. Mappings from stratifiable spaces. We now exhibit a natural
way in which semi-stratifiable spaces may arise.

DEFINITION 2.1. A mapping f: X — Y is pseudo-open if for each
ye Y and any neighborhood U of f~'(y), it follows that y € int [f(U)].

DEFINITION 2.2. A mapping f: X—Y is compact if f~'(y) is
compact for each ye Y.

THEOREM 2.3. If X s stratifiable and f: X — Y s a pseudo-open
compact mapping, then Y is semi-stratifiable.

Proof. Let FFC Y be a closed set. Then f~(F) is closed in X
and, hence, by Lemma 1.3, has a dual stratification {U,}. We will
show that the correspondence F' — {int[f(U,)]} is a dual semi-stratifica-
tion for Y by proving that the collections {int[f(U,)]} satisfy the
requirements of Lemma 1.4.

Part (c) of Lemma 1.4 is easily shown to be satisfied. For if F
and G are closed subsets of Y such that ¥ < G, then f~(F) C f4(G),
and denoting the dual stratifications of f~(F) and f~*(G) by {U,} and
{V,}, respectively, we must have by Lemma 1.3(c) that U, c V, for
each n. Therefore, int[f(U,)] < int[f(V,)].

With regard to part (a), it follows that F < int[f(U,)] for each
n. This is because each U, is a neighborhood of f~'(y) for every
ye F, and therefore y ¢ int[f(U,)] for every ye F by hypothesis of f
being a pseudo-open mapping.

All that remains to be shown is that N3, int[/(U,)] = F, and
this will verify (b). From the preceding paragraph we know that
F cng int[f(U,)]. To get inclusion in the reverse direction, assume
z€ Noo, int[f(U,)]. Then zeint[f(U,)] for every m; hence, there
exist points x, e U, such that f(x,) = 2. Since f is a compact mapping,
the sequence {z,} has an accumulation point x. Therefore, given any
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neighborhood V of «, there exist infinitely many integers =, such
that «,,€ V. Thus, V has a nonempty intersection with infinitely
many U,, and since we may assume that the collection {U,} is
descending, this implies that VN U, % ¢ for every n. That is,
re Ne, U, But {U,} was a dual stratification for f~(F) which
implies that N, U, = f(F). Thus, xef(F) and f(x)eF.
Furthermore, f(x) =z because xc{x,}] and {7} C Ff @) = f'(2).
Hence, z¢ F' and the proof is complete.

COROLLARY 2.4. If X is a stratifiable space and f: X— Y is an
open compact mapping, then Y s a metacompact semi-stratifiable
space.

Proof. The image of a paracompact space under an open compact
mapping is metacompact by Theorem 4 of [1]. Since open mappings
are pseudo-open, Y is also semi-stratifiable.

If the converse of Theorem 2.3 is true, then another characteri-
zation of semi-stratifiable spaces is available. Also, Corollary 2.4 is
an analogue of the well-known result that an open compact image of
a metric space is a space having a uniform base (metacompact and
developable).

3. Mappings from semi-stratifiable and semi-metrizable spaces.
Semi-stratifiable and semi-metrizable spaces are closely related in the
sense that a first countable semi-stratifiable space is semi-metrizable,
and conversely [4, Corollary 1.4]. Creede showed that semi-stratifiable
spaces are preserved under closed mappings, but a similar result is
not true for semi-metric spaces since there is no guarantee that the
image will be first countable, even if the domain is a separable
metric. Nor is the property of being semi-metrizable transmitted
under an open mapping, for in this case, Creede [5, Theorem 3.4] has
exhibited a non-semistratifiable Hausdorff space which is the open
image of a separable metric space. However, by placing a suitable
restriction on an open mapping, a class of open mappings can be
found in which members preserve both semi-stratifiable and semi-
metric spaces.

THEOREM 3.1. If X is semi-stratifiable and f: X — Y is a pseudo-
open finite-to-one mapping, then Y 1is semi-stratifiable.

Proof. Let F Y be an arbitrary closed set. Then f~'(F) is
closed in X and has a dual semi-stratification {U,}. We will use
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Lemma 1.4 to show that the correspondence F — {int[f(U,)]} is a dual
semi-stratification for Y.

Parts (a) and (c) are verified in the same manner as in the proof
of Theorem 2.3. To verify (b), assume ze N, int[f(U,)]. Then
there exist points z, e U, such that f(x,) = 2z for every n. Since f
is a finite-to-one mapping, there exists an integer m such that
Z,€ Ny, U,e But Ny, U, = f(F) which implies that z, e f'(F).
Hence, z¢ F and the proof is complete.

COROLLARY 3.2. The image of a semi-stratifiable space under an
open finite-to-one mapping is semi-stratifiable.

COROLLARY 3.3. The image of a semi-metric space under an
open finite-to-one mapping is semi-metrizable.
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