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ON ALGEBRA ACTIONS ON A GROUP ALGEBRA

J. E. KERLIN, J R .

A complete description of all algebra actions of the group
algebra Lι(K) on the group algebra Lι(G)[M(G)} for locally
compact Abelian groups K and G is presented. A fundamental
algebra action of Lι(K) on Lι(G) is that induced by a con-
tinuous homomorphism θ: K->G via a generalized convolution;
such actions have been considered by Gelbaum in characteriz-
ing topological tensor products of group algebras. It is
shown in this paper that conversely every algebra action of
LX{K) on Lι(G)[M(G)~\ is induced by a necessarily continuous
homomorphism of K into the quotient of G by a compact
subgroup. The analysis is based on a representation theorem
for algebra actions on &(€*•) for general locally compact group
G. Namely, every algebra action of a Banach algebra C on
Lι(G) is the composition of a necessarily continuous cetral
homomorphism Ψ of C into M(G) and convolution in M(G)ι
c-a — Ψ(c)*a for all ceC and aeLι(G). Applications to topo-
logical tensor products of group algebras are announced.

Let G and K be locally compact Abelian groups, and, let θ be a
continuous homomorphism of K into G. Gelbaum [3] has observed
that θ induces a module action of the group algebra Lι(K) on the
group algebra Lι{G) via a "generalized convolution": if ce&(K) and
aeLι{G), then c*θaeL\G) is given by

c*oa(g) = i c(k)a(g - θ(k))dk, (geG).
JK

Moreover, this module action is associative in the sense that

(c*0<z)*α' = c*θ(a*a') ( = a*(c*θa')

by commutativity of Lι{G)), and, the action satisfies the inequality
||c*βα||i ^ Ik Hi II αHi- Hence Lι(G) is an algebra over Lι{K) and the
action is continuous, i.e., L\G) is an (isometric) Banach L\K)-algebra.

The question we pose is "Does the converse hold, i.e., if &{G)
is an algebra over U{K) such that Hc-αlU ̂  Helix llal^ for all ceLι{K)
and ae Lι(G), is the action of &{K) on Lι{G) induced by a continuous
homomorphism of K into G?" We answer this question in full, the
main result culminating in Corollary 3.2.

I would like to take this opportunity to thank Professor Bernard
Gelbaum, who suggested the above problem, for his kind encourage-
ment and stimulating discussions during the preparation of part of
this work. The author also thanks the referee for his numerous
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constructive comments and suggestions in an earlier version of this paper.

l Preliminaries* Let G be a locally compact group. M(G) will
denote the Banach algebra of all finite, complex-valued, regular
Borel measures on G with convolution as multiplication. The convolu-
tion of two measures, μ and v, in M(G) will be written as μ*v. L\G)
will denote the Banach algebra of (equivalence classes of) complex-
valued measurable functions on G summable with respect to left Haar
measure with multiplication given by convolution. We will from
time to time also regard &(G) as the closed two-sided ideal of M(G)
consisting of those measures absolutely continuous with respect to
(left) Haar measure on G; the details of this identification can be
found in [5]. Finally, if G is Abelian, then G will denote the Pon-
tryagin dual group of G, i.e., the group of continuous characters on
G. If aeG, then the value of α at geG will be denoted by (g,a).
The Fourier [-Stieltjes] transform of a e Lι{G) [μ e M(G)\ is given by

a(a) =

for all aeG.

DEFINITION 1.1. Let C be a Banach algebra. A Banach algebra A,
is a C-algebra if there is a complex bilinear mapping CxAs(c,a)—+
c ae A such that

( i ) (cc') α = c (c' α')
(ii) c (αα') = (c α)α' = a(c a')

for all c, c' e C and α, α' e A. We call A & Banach C-algebra if in
addition there is a nonnegative constant χ such that

(iii) \\ca\\A^χ\\c\\c\\a\\A

for all c e C and ae A. We will refer to the least such nonnegative
constant χ satisfying (iii) as the norm of the action of C on A (this
"norm" is the bilinear norm of the complex bilinear map (c, a)—>ca).
If χ can be chosen to be 0 in (iii), then we say: A is a degenerate
C-algebra, i.e., c a = 0 for all c e C and αe A. If we can take χ == 1
in (iii) then we say A is an isometric Banach C-algebra (following
[11]). (Note that if A is a commutative Banach algebra, then the
last equality in (ii) follows from the first equality in (ii).)

Introductory properties and examples of Banach modules are
discussed [6]. Further discussions, relevent to this paper, appear in
[3], [4], and [11].

The following example provides a basis for our discussions. Let
K and G be (not necessarily Abelian) locally compact groups. Let
θ: K—>G be a continuous homomorphism. Then L\G) becomes an
isometric Banach Z/(UL)-module via "^-convolution" in the following



J. E. KERLIN, JR. 671

manner. If ceLι{K) and aeLι(G), then c*θaeLι(G) is defined by

(1) c*θa(g) = \ c(k) a{θ{k)~ιg)dk (geG);

that is, the right hand side of (1) is finite dg-a.e. and defines a
(^-measurable function and element in U{G) and is defined indepen-
dent of the choice of representatives c(k) and a(g) in the equivalence
classes (modulo null functions) determined by ceU(K) and aeLι{G).
Moreover, we have ||c*βα||i ^ I ML ll^lli This Banach module action
of &{K) on Lι{G) becomes an algebra action if and only if θ is central,
i.e., θ maps K into the center of G.

In general now, if θ: K-+G is a continuous homomorphism, then
θ* will denote the canonical norm decreasing homomorphism of &(K)
into M(G) such that

</, θ*(φ = \ f(g) dθ*(c)(g) = \ f(θ(k))c{b)dk - ζfoθ, c>

for all ceLι(K) and feC0(G), the Banach algebra of complex-valued
continuous functions vanishing at infinity on G with the sup-norm.
It is easy to check that c*ea — θ*(c)*a, ceLι{K), αe !/(£), and also
that θ is central if and only if θ* is central. Finally, if K and G
are Abelian and if θ: G —• K is the dual homomorphism of θ: ([5],
p. 392) (k, S(ct)) = (θ(k), a),keK,ae Gy then (θ*(c)Γ = ooθ for all
ceLι{K).

1* Algebra actions on L^G). Let K and G be LC groups. We
have observed that a continuous central homomorphism θ of K into
G induces a canonical continuous central homomorphism θ* of &{K)
into M(G) such that the action c α = <9*(c)*α ( = c*θa,), ceLι(K),
aeL\G), makes Lι{G) into a Banach L1(iί)-algebra. More generally,
if Ψ is any complex homomorphism of a Banach algebra C into the
center of M(G), then the action c a = ¥(c)*a, ceC, ae Lι{G), makes
&{G) into a Banach C-algebra. (The striking fact that the module
action is necessarily continuous will become clear later.) The main
purpose now is to show the converse holds.

If C is a commutative Banach algebra, we denote by Wc and -3Jlc

the spaces of all and all nonzero multiplicative linear functionals on
C, respectively. Give each space the weak*, topology. The Gelfand
transform of c e C is denoted by c: c(φ) = φ(c), φ e Wc.

The following is a straightforward generalization of Lemmas 1,2
[3], p. 134.

PROPOSITION 2.1. Let A and C be commutative Banach algebras.
Suppose A is a C-algebra. Then there is a continuous map μ: ΈlA —>
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Ti°c such that

for all ceC and aeA.

We are now prepared to present the main theorem in this section.

THEOREM 2.2. Let C be a Banach algebra and let G be a locally
compact group. Suppose U(G) is a C-algebra. Then the module action
is necessarily continuous and there is a continuous unique central
homomorphism ¥: C —> M(G) such that:

1i ) c a = Ψ{c)*a for all ceC and a e U{G))
(ii) H5PΊI is the norm of the action of C on Lι(G).
Finally, if C is commutative and G is abelian, and, if μ: G—*<3Jl°c

is the adjoint map induced by the action of C on Lι{G) (as in Pro-
position 2.1), then

(iii) (ΨcΓ = coμ on G for all ceC.

Proof. (1) For each ceC, define the linear operator Tc on Lι(G)
by Te(a) = c a, aeL\G). Since Lι{G) is an algebra over C, c.f.,
condition (ii) in Def. 1.1, Tc is a centralizer of Lι{G):

Tc(α*α') = Tc(a)*a' = α*Γc(α')

for all a, a'€&(G). It is well known (e.g., [7, Theorem 2.1]) that
every centralizer on Lι{G) is a bounded linear operator and therefore
Tc is a bounded linear operator on &{G). Since Tc is a (right)
centralizer, by Wendel [13, Theorem 1] there is a measure Ψ(c) e M(G)
such that Tc(a) = Ψ(c)*a for all aeL\G)\ moreover, | |Γ β | | - !)^(c)||.
Clearly we have c α = Φ(c)*a, ceLι(K), aeLι{G).

(2) We show Ψ is a central homomorphism, i.e., Ψ is a homo-
morphism of C into the center of M(G). First, observe that Ψ{c)*a —
a*Ψ{c) for all ceC and azLι{G). Indeed, for every a'eU{G)

(Φ(c)*a)*af = (c α)*α' = α*(c α') = a*(Φ(c)*a') = (a*Φ(c))*a'

and hence Ψ{c)*a = a*Ψ{c) since &{G) has a right approximate identity.
Using the fact that Lι(G) is an ideal in M(G) and We commutes with
Lι(G), we have

a*{v*Ψ{c)) = (α*v)*r(c) - f(φ(α*v)

= {Ψ(c)*a)*v = (a*¥(c))*v

= a*(Ψ(c)*v)

for all aeLι(G), i.e., the mapping a—*a*(v*Ψ(c) — Ψc*v) is the zero
operator on Lι(G). By Wendel [13, Theorem 1], the norm of this
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operator is \\v*W(c) — Ψ(c)*v\\, which consequently is 0. Thus,

v*Ψ{c) = Ψ(c)*v

for all v e M(G) and ceC, and, Ψ is central. Finally, to show Ψ is
a homomorphism we again use WendePs result that the norm of the
operator a—+μ*a on Lι{G) for μeM(G) is \\μ\\, e.g., if c,c'eC, then

ψ(cc')*a = (cc')>a = c-(c' a) = Ψ{c)*Ψ{cr)*a

for all aeL'iG) and hence \\Ψ{cc') - Ψ(c)*Ψ{c')\\ = 0, i.e. Ψ is multi-
plicative; the linearity of Ψ can be similarly shown.

( 3 ) To show Ψ is continuous and \\Ψ\\ is identical to the norm
χ of the action of C on Lί(G)f we first need the following lemma.

LEMMA 2.3. Let G be a locally compact group. Then the center
of M(G) is a semisimple commutative Banach algebra.

Proof. It is clear that the center of M(G) is a commutative
Banach algebra. To see that it is semisimple, consider the left regular
representation £f of M{G) on the Hubert space L2(G): Sfμ(d) — μ*a,
aeL2(G), μeM(G). It is well known that £? is a faithful ^repre-
sentation of M(G) into the algebra of all bounded linear operators on
L2(G). Consequently, M(G) is an A*-algebra and hence any *-subal-
gebra of M(G) is semisimple [10, Theorem 4.1.19]. In particular,
the center of M(G) must be semisimple.

Returning to the proof of Theorem 2.2, the complex homomorphism
Ψ from C into the center of M(G) is necessarily continuous since the
center of M(G) is a semisimple commutative Banach algebra (c.f.,
[10], Theorem 2.5.17). Since \\ca\\, = ||?f(c)*α||1 ^ ||3Π| | | c | | \\a\\, for
all c e C, ae &{G), we have || Ψ\\ ^ χ. To prove the reverse inequality,
first recall that in (1) of the proof || Tc\\ = \\Wc\\. Since \\Tca\l =
l l c α l L ^ χ H c l l Hall,, we have ||?Γc|| ^ χ | | c | | . Thus, ||SΓ|| ^ χ and it
follows that \\Ψ\\ = %. Finally, the uniqueness of Ψ is clear since
c*a — Ψ{c)*a = Φ(c)*a for all ceC, aeLι(G), implies that

a—> (Ψc — Φc)*α

is the zero operator on U(G) and hence has zero norm, which is
\\Ψc - Φc\\ (by Wendel [3]). Thus Ψ = Φ.

( 4 ) If C is commutative and G is abelian, then for each c e C ,
a e L\G), coμ a = (coaΓ = (Ψ(e)*aΓ = {ΦeTa>- Therefore, coμ = (We)*,
proving (iii). The proof is complete.

REMARK. With a few minor modifications in the above proof,
we can weaken the hypotheses to obtain roughly the same conclusion.
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Namely, suppose Lι(G) is a left Lι{K)-algebra in the sense that U{G)
is a left C-module satisfying the additional associativity condition
c (a*a') == (c a)*af for all ceC and a£&(G). Then it can be shown
that there is a unique complex homomorphism Ψ: C —» ikf(G) such
that c α = W(c)*a for all ceC, αe !/((?); Ψ is continuous if and only
if the module action is continuous, in which case \\Ψ\\ — χ. The
proof is similar to the above proof. However, the continuity of the
linear operator Tc reqires a slightly more refined argument. We show
that if limw_coαw = 0, then lim^c* Tc{an) =• 0. By Hewitt's factoriza-
tion theorem ([6], (32.23)) there is a sequence (bn) in &{G) and an
a e L\G) such that \\mn^J)n = 0 and an — a*bn, n — 1, 2, . It
follows that limn^Tβ(α*6Λ) = l im^T^α*^) = limw^ββ2

7

β(α)*δΛ = 0.

3* Application of Cohen's theory of homomorphisms of group
algebras* It is easy to see that describing the algebra actions of
Lι(K) on Lι{G) for LCA groups K and G is. equivalent to suitably
identifying the adjoint maps μ: G —> K°. By Theorem 2.5 if &{G) is
an Lι(K)-algebra there is a continuous homomorphism ¥: U{K)—>M(G)
such that [Ψc]~ = c<>μ for all c e Lι(K), where μ: G-+ K° is the adjoint
map of the action. At this point the Cohen theory [2] of homomor-
phisms of commutative group algebras applies. Specific references to
the Cohen theory will be taken from the treatment in Rudin's book
[12], Chapter 4.

In general, if Ψ is a complex homomorphism of Lΐ{K) into M{G)r

then Ψ induces a continuous map μ:G—>K° such that Ψc = coμ for
all c 6 Lι(K). Cohen characterizes all homomorphisms Ψ by identifying
the respective adjoint maps μ. We turn this around to give an ex-
plicit description of Ψ in terms of its action on Lϊ(K).

Before presenting the alledged description of Ψ we set down a
few facts and notations. If H is a compact subgroup of the LCA
group G, then πH will denote the canonical homomorphism of G onto
G/H. Choose a Haar measure on G/H so that the Haar measures of
G, H, and G/H are canonically related [9] and so that the Haar
measure on H is normalized. Let T# denote the canonical norm
decreasing homomorphism of &{G) onto Lι(GIH) given by

THa(9/H) =\ a(g + h)dh (g/He G/H) ,
JGIH

for all a e &{G) ([6, p.91], or [9, p.69]) Note that by the compactness
of H, TH maps C0(G) onto C0(G/H) and in particular the unit ball of
Co(Cr) onto the unit ball of C0(G/H). This fact can be used to show
that πH induces an isometric isomorphism π% of M(G/H) into M{G)
such that

</,*£»> = <TBf,v>
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for all/eC 0(G) and veM(G/H). (The mapping f-+<THf, v> defines a
bounded linear functional on C0(G) and hence there is a unique
measure 7r*v e M(G) such that </, τr*i/> = <TBf9 v> for all / e C0(G)).

We now present our interpretation of the theorem of Paul Cohen
[2].

THEOREM 3.1. Let K and G be locally compact Abelian groups.
Suppose Ψ is a nonzero complex homomorphism of U(K) into M(G).
Then there are

( i ) compact subgroups H^ , iϊ% in G,
(ii) continuous homomorphisms θx, * ,θn (6^ K—^G/H^
(iii) pairwise orthogonal nonzero idempotents e19 * ,en in M(G),
(i v) elements y19 , 7n in K and al9 , an in G, such that

for all ceU{K), where-π^.: M(G/Hi)->M(G) andβf: U{K)->M{GIHX)
are the canonical maps.

If \\Ψ\\ ^ 1, then (*) simplifies to

W(c) = aπ*θ*(yc)

for all c e Lι(K) and the compact subgroup H and continuous homo-
morphism θ: K-+G/H are uniquely determined.

Proof. Let μ: G-> K° be the adjoint map of Ψ. Then by Cohen
μ is a piecewise aίϊine map of Y = μ-\K)aG into K ([12], p.78).
More explicitly, Y is in the open coset ring of G and there are (1)
pairwise disjoint sets S19 •• ,S Λ in the open coset ring of G; (2) open
cosets Ci in G such that Sidd; (3) for each i, affine maps μ{ of C;
into K, such that μ is the map of Y = Sx U U Sn into K which
coincides on Si with μ{. Arbitrarily choose at e Cif i — 1, 2, , nf

but once chosen we keep a{ fixed throughout. Now, for each i set

Ίi — —μi{a%) ( = μi((Xi) e K). Since μt is affine on C< to K> the map

(**) Ci - at 3 a -> ̂ (α: + α,) - μ^) e K

is a continuous homomorphism of the open subgroup Q{ — d — a{

into K (and moreover is independent of the choice of cXiβd). Let
Hi be the closed subgroup in G and annihilator of Q{ £ G: iί* = Ql
([12],p.35). It is well known ([12], Theorem 2.12) by duality theory
that the dual group of G/Ht can be identified with H\ = Q{: if
βe(G/Hi)~, then ^ α e f t in such a way that (g/H, β) = (#, α) for
g/HeG/H. Since Q̂  is an open subgroup, i ^ is a compact subgroup
in G. Using the identification, (G/JH Γ̂ = Q«, let ^ : K^G\H{ be the
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continuous homomorphism and dual of the continuous homomorphism
defined in (**). The ingredients listed in (i), (ii) and (iv) are now
defined. Since St is a member of the open coset ring in G, by Cohen
[1] the characteristic function of Si is the Fourier-Stieltjes transform
of a (nonzero) idempotent measure e{ in M(G). Since the S* are
pairwise disjoint, the idempotents ^ are pairwise orthogonal, and the
ingredients in (iii) are defined.

We need only show that ¥{c) has the desired representation for
each c£U(K). Let Φ(c) denote the element in M(G) given by the
right hand side of the equality in (*). Let aeG. If aeG\Y, then
since Y = μ~ι{K), (Ψ(c))~(a) = 0, and, since supp(βi) = S< and U S< = Γ,
we have (Φ(c))~(a) = 0. If a e S. c Y, then since St Π Sj = φy%Φ j ,
and since β< = χs.t

(Φ(c)Γ(α) = (a^J

<2 — <**•) (since α - ^ e Q<)

Since (J ̂  = Γ, we have (W(c))~ = (Φ(e))~ on G" and by the uniqueness
of the Fourier-Stieltjes transform, Ψ(c) = Φ(c) for all ceC.

Finally, if Ψ is norm decreasing then again by Cohen

is an open coset and μ is affine on F to K (c.f., [12], 4.6.3(b), p.88).
Choose ae Y, and set 7 = — μ(a). Let i ϊ be the compact subgroup
of G and annihilator of the open subgroup Y — a in G. Let θ:
K-+G/Hbe the dual homomorphism of the continuous homomorphism

(G/HΓ = Γ - α 3 α' -> M ^ + α) - μ(ά) e K.

Then with 7, α, fl" and β as defined, it can be shown (as above by
taking Fourier-Stieltjes transforms) that Ψc = ατrέ0*(τc) for a l l c e C
The uniqueness of H and 0 can be easily verified.

Theorems 2.2 and 3.1 provide the key to the characterization of
all nondegenerate algebra actions of Lι(K) on Lι(G).

COROLLARY 3.2. Let K and G be locally compact Abelian groups.
If &{G) is a nondegenrate U{K)-algebτa then there are compact
subgroups Hif continuous homomorphisms β^ K—*G/Hi9 pairwise
orthogonal nonzero idempotents e* in M(G), and elements a{ e G, 7; 6 K,
i — 1, . . . , n, such that
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c-a =

H.for all ceU(K), aeL\G), where πϊ.: M(G/H<)->M(G) and TH

L1(G) —> L^G/Hi) are the canonical maps, and, where *θ. is the algebra
action of &{K) on L^G/Ht) induced by θ^

If the action of Lι(K) on Lι(G) is isometric (χ ^ 1), then

c-a — aπ%(Ίc*θ TH{aa))

for all ce Lι(K),ae U(G), and the compact subgroup H and the
continuous homomorphism θ: K—+G/H are uniquely determined.

Proof. By Theorem 2.2 there is a homomorphism ¥ of Lι{K)
into M{G) such that c a = Ψc*a, ce L\K), ae U{G), and ||gr|| = χ.
Now Ψ has the form described in Theorem 3.1. It need only be
observed that

aiπ*i{yic*ΘiTH.(aia)) = a.πi.θ^yφa

to complete the proof.
We broaden our notation slightly for the following two corol-

laries. Namely, if 7€J ί a n d θe Hom(ϋΓ, G), then r*θ will denote the
isometric Banach &{K)-algebra action on &{G) given by

= \ Ύ(k)c(k)a(g - θ(k))dk .
JK

K

COROLLARY 3.3. The following are equivalent for a LCA group G.
( i ) G is connected.
(ii) For every LCA group K and each nondegenerate L\K)-

algebra action on L\G) there is a continuous homomorphism θ: K—*G
and yeK such that c a = c *$a for all ce Lι(K) and ae Lι{G).

Proof. Now, G has no nontrivial compact subgroups if and only
if G^ is connected [5, (24.19)] which implies the open coset ring G
is {G, φ). Thus if G is connected, H = {0} in Corollary 3.2, and
μ~~ι{K) = G; hence we can take a = 1, y = μ(l). π{0] and T{0} reduce
to the identity maps on L\G). Thus (i) implies (ii). If G is not
connected, then by choosing a nontrivial compact subgroup H in G
and setting K = G/H and c = identity on G/H, the action c-a =
7CH(C*I TH(a)) is not induced by a θe Hom(iΓ, G) and a 7 e ί .

COROLLARY. 3.4. Let K and G be LCA groups. Suppose U{G)
is a nondegererate Lι{K)-algebra, χ is the norm of the action, and
μ: G —* K° is the adjoint map. The following are equivalent.
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( i ) There is a (unique) continuous homomorphism θ: K-+G,
and, Ί e K such that e α = c * a for all c 6 U(K) and a e L\G).

(ii) G = μ-\K) and χ ^ l .
(iii) The linear span of U{K)-U{G) is dense in Lι(G) and χ^l.

Proof, (i) => (ii) is clear since μ — θ — 7. Conversely, if (ii) holds,
then since χ <; 1, μ is an affine map of μ~ι{K) = G into K. Set
y — — μ(ΐ)i θ — (μ — 7)^, and (i) follows. Now (i) => (iii) since an ap-
proximate identity for Lι{K) can be shown to be an approximate
identity for U(G). Finally, (iii) ==> (i) by Hewitt's factorization theorem
([6), Theorem 32.22). Specifically, given any aeG, choose an a e Lι{G)
such that d(a) ̂ 0. By the hypothesis in (iii), the factorization theorem
implies there is a ceLΐ(K) and a'e L^G) such that a = c α\ Then

• 0 Φ a{a) = c{μ{a))af{a) ,

and hence c(μ(a)) Φ 0 and therefore μ{a)eK. Since aeG was
arbitrary, μ(G) c K, i.e., μ~ι{K) = G, and (ii) follows, and therefore
(i).

REMARK 3.5. If G is a LC group and if C is a Banach algebra,
then every algebra action of C on M(G) is induced by continuous
central homomorphism Ψ: C~+M(G). Clearly, for each ceC, we
need only define Ψ(e) = c δ, where δ is the identity of M(G); the
continuity of Ψ follows as before. Therefore, any separate charac-
terization of the algebra actions of Lι(K) on M{G) for LCA groups
K and G is unnecessary. Analogues of Corollaries 3.2-3.4 are easily
formulated by merely replacing "lϊ{G)" by "M(G)" in their statements.

REMARK 3.6. In a forthcoming paper [14] we apply the charac-
terization of algebra actions of group algebras obtained in Corollary
3.2 to yield results to topological tensor products of group algebras.

In [11] Rieffel has discussed the tensor product of Banach spaces
that are Banach modules over a Banach algebra: if A and B are
Banach C-modules for a Banach algebra C, then the C-tensor product
of A and B, A(g)cB, is defined as the Banach space and quotient
A(&rB/J, where J is the closed linear subspace generated in the pro-
jective tensor product A(g)rB by all elements of the form

a c&b — a(g)c b,ae AybeBjCβC .

When A and B are commutative Banach C-algebras for a commuta-
tive Banach algebra C, then A(g)cJ5 is naturally a commutative
Banach C-algebra.

We briefly mention two main results obtained in [14].
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(1) The commutative Banach algebra &{G) ®L\K)L
ι(H) is

strongly semisimple in all instances of algebra actions of &{K) on
L\G) and L\H) for LCA groups G, H, and K. This can be viewed
as a generalization of the work of Gelbaum [3, Theorems 1, §3, §4]
and Natzitz [8].

(2) Suppose U(G) and Lι{H) are Z/(iΓ)-algebras for LCA groups
G, H, and K and assume the actions are isometric. Let

the commutative Banach Lι{K)-algebra and L^iΓ)-tensor product of
of Lι{G) and Lϊ(H). There are unique closed L ^ - i d e a l s N and E
in D such that

D = N®E

where E is the essential part [11, Def. 3.5] of D and Lι(K)-N= {0}.
Furthermore, there is a canonical LCA group G 0 ^ i ϊ and an isome-
tric ^(^-isomorphism

E = (U(G) ®LHκ) U{H))e ~ U{G ®κ H) .

Finally, there are compact subgroups g g G and h gΞ H such that if
Ig and Ih denote the kernels in Lι{G) and 1/(11), respectively, of the
canonical homomorphisms Tg: U(G)-*Lι{Glg) and Th: L\H)-+ Lι(Hjh),
then there is a continuous isomorphism

where lg (g)r lh is the projective tensor product of lg and lk.
The result above generalizes the work of Gelbaum [3], [4], and

Natzitz [8]. Furthermore, using Corollary 3.21 [11], we can obtain
a characterization of the space of L1(iΓ)-homomorphisms (or multi-
pliers) of Lι(G) into L°°(fί). For example, in the special case when
L\G) is an essential Lι(K)-algebra (and therefore E = D in 2) above),
we have

HomLi(I) (U(G), L~(H)) ~ L~(G ®κ H) ,

where the isomorphism is algebraic and isometric.
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