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ON ALGEBRA ACTIONS ON A GROUP ALGEBRA

J. E. KERLIN, JR.

A complete description of all algebra actions of the group
algebra LY(K) on the group algebra LG)[M(G)] for locally
compact Abelian groups K and G is presented. A fundamental
algebra action of LK) on LYG) is that induced by a con-
tinuous homomorphism 4;: K — G via a generalized convolution;
such actions have been considered by Gelbaum in characteriz-
ing topological tensor products of group algebras. It is
shown in this paper that conversely every algebra action of
LY{K) on LY (G)[M(G)] is induced by a necessarily continuous
homomorphism of K into the quotient of G by a compact
subgroup. The analysis is based on a representation theorem
for algebra actions on L'(G) for general locally compact group
G. Namely, every algebra action of a Banach algebra C on
LY(G) is the composition of a necessarily continuous cetral
homomorphism ¥ of C into M(G) and convolution in M(G):
c-a = ¥(c)xa for all ce C and ac LY(G). Applications to topo-
logical tensor products of group algebras are announced.

Let G and K be locally compact Abelian groups, and, let 6 be a
continuous homomorphism of K into G. Gelbaum [3] has cbserved
that ¢ induces a module action of the group algebra LK) on the
group algebra L'(G) via a “generalized convolution”: if ¢e L*(K) and
a € L(G), then cx,a e LYG) is given by

crialg) = | clljalg — o)Ak, (€ G).

Moreover, this module action is associative in the sense that
(expa)xa’ = cxo(axa’) (=ax(cxqa’)

by commutativity of LYG)), and, the action satisfies the inequality
[lexoall, < lle]l, ||@],. Hence L'G) is an algebra over L'(K) and the
action is continuous, i.e., L'(G) is an (isometric) Banach L!(K)-algebra.

The question we pose is “Does the converse hold, i.e., if LY(G)
is an algebra over L'(K) such that ||¢c-al|, =< ||¢]];, ||a]], for all ce L'(K)

and a € LYG), is the action of L'(K) on L'(G) induced by a continuous
homomorphism of K into G?” We answer this question in full, the
main result culminating in Corollary 3.2.

I would like to take this opportunity to thank Professor Bernard
Gelbaum, who suggested the above problem, for his kind encourage-
ment and stimulating discussions during the preparation of part of
this work. The author also thanks the referee for his numerous
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constructive comments and suggestions in an earlier version of this paper.

1. Preliminaries. Let G be a locally compact group. M(G) will
denote the Banach algebra of all finite, complex-valued, regular
Borel measures on G with convolution as multiplication. The convolu-
tion of two measures, ¢ and v, in M(G) will be written as pxv. LY(G)
will denote the Banach algebra of (equivalence classes of) complex-
valued measurable functions on G summable with respect to left Haar
measure with multiplication given by convolution. We will from
time to time also regard L'(G) as the closed two-sided ideal of M(G)
consisting of those measures absolutely continuous with respect to
(left) Haar measure on G; the details of this identification can be
found in [5]. Finally, if G is Abelian, then G will denote the Pon-
tryagin dual group of G, i.e., the group of continuous characters on
G. If acG, then the value of a at g€ G will be denoted by (g, «).
The Fourier [-Stieltjes] transform of a e L'(G) [¢te M(G)] is given by

a@ = | T @ awds | a0 = @D o) |
for all aeG.

DEFINITION 1.1. Let C be a Banach algebra. A Banach algebra A,
is a C-algebra if there is a complex bilinear mapping Cx A>3 (¢, a) —
c-ac A such that

(i) (ec)-a=c-(c'-a)

(ii) e-(aa’) = (c-a)a’ = afc-a’)
for all ¢,¢’cC and a,a’c A. We call A a Banrach C-algebra if in
addition there is a nonnegative constant ) such that

(i) lle-alls = xllcllcllall
for all ceC and ac A. We will refer to the least such nonnegative
constant y satisfying (iii) as the norm of the action of C on A (this
“norm” is the bilinear norm of the complex bilinear map (¢, a) —c-a).
If ¥ can be chosen to be 0 in (iii), then we say: A is a degenerate
C-algebra, i.e., ¢cca =0 for all ceC and ac A. If wecantakey =1
in (iii) then we say A is an tsometric Banach C-algebra (following
[11]). (Note that if A is a commutative Banach algebra, then the
last equality in (ii) follows from the first equality in (ii).)

Introductory properties and examples of Banach modules are
discussed [6]. Further discussions, relevent to this paper, appear in
[3], [4], and [11].

The following example provides a basis for our discussions. Let
K and G be (not necessarily Abelian) locally compact groups. Let
9: K— G be a continuous homomorphism. Then L!(G) becomes an
isometric Banach L!(K)-module via “#-convolution” in the following
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manner. If ce LY(K) and ac LYG), then cx,a € LY(G) is defined by
(1) cnalg) = | ey a@dk (¢ 6);

that is, the right hand side of (1) is finite dg-a.e. and defines a
dg-measurable function and elément in L'(G) and is defined indepen-
dent of the choice of representatives c(k) and a{g) in the equivalence
classes (modulo null functions) determined by c¢e€ L'(K) and a e L'(G).
Moreover, we have ||c*,all, < |l¢]l, ||a@]l,. This Banach module action
of L}(K) on L}(G) becomes an algebra action if and only if 6 is central,
i.e., @ maps K into the center of G.

In general now, if §: K— G is a continuous homomorphism, then
6* will denote the canonical norm decreasing homomorphism of LK)
into M(G) such that

000> = | 9 @ 0) = | _s0)e)dk = <fo0, ¢)

for all ¢ce LY(K) and fe C)(G), the Banach algebra of complex-valued
continuous functions vanishing at infinity on G with the sup-norm.
It is easy to check that c¢x,a = 6*(¢c)*a, ce LK), a€ LY(G), and also
that 6 is central if and only if 6* is central. Finally, if K and G
are Abelian and if 4: G — K is the dual homomorphism of 6: (51,
p. 392) (k, O(a)) = (0(k), @), ke K, e G, then (6%(c))” = é-8 for all
ce L(K).

1. Algebra actions on L'(G). Let K and G be LC groups. We
have observed that a continuous central homomorphism ¢ of K into
G induces a canonical continuous central homomorphism 6* of L'(K)
into M(G) such that the action c¢-a = 0*(c)xa (=cxpa), c¢ec L'(K),
a € LY(G@), makes L'(G) into a Banach L!(K)-algebra. More generally,
if ¥ is any complex homomorphism of a Banach algebra C into the
center of M(G), then the action c¢.a = ¥(c¢)*a, ¢ € C, a € LY(G), makes
L'(G) into a Banach C-algebra. (The striking fact that the module
action is necessarily continuous will become clear later.) The main
purpose now is to show the converse holds.

If C is a commutative Banach algebra, we denote by I and I,
the spaces of all and all nonzero multiplicative linear functionals on
C, respectively. Give each space the weak*, topology. The Gelfand
transform of ¢e C is denoted by é: &(g) = ¢(c), ¢ € M?.

The following is a straightforward generalization of Lemmas 1,2
[3], p. 134.

ProposITION 2.1. Let A and C be commutative Banach algebras.
Suppose A is a C-algebra. Then there is a continuous map p: M, —
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MY such that
[c-a]” = Coped

for all ceC and ac A.
We are now prepared to present the main theorem in this section.

THEOREM 2.2. Let C be a Banach algebra and let G be a locally
compact group. Suppose LY(G) is a C-algebra. Then the module action
18 mecessarily continuous and there 1s a continwous unique central
homomorphism ¥: C— M(G) such that:

(i) c-a = ¥(c)*a for all ce C and ac L'(G);

(ii) ||&|| s the morm of the action of C on LYG). .

Finally, if C is commutative and G 1is abelian, and, if p: G— MY
is the adjoint map induced by the action of C on LY G) (as in Pro-
position 2.1), then

(iii) (Fe)~ = éopt on G for all ceC.

Proof. (1) For each ce C, define the linear operator T, on LY(G)
by T.a) =c-a, ac L'G). Since L'(G) is an algebra over C, c.f.,
condition (ii) in Def. 1.1, T, is a centralizer of L'(G):

T.(axa') = T(a)xa’ = axT(a)

for all a, ¢’ € LN(G). It is well known (e.g., [7, Theorem 2.1]) that
every centralizer on L'(G) is a bounded linear operator and therefore
T, is a bounded linear operator on L'G). Since T, is a (right)
centralizer, by Wendel [13, Theorem 1] there is a measure Z(c) € M(G)
such that T,(a) = ¥(c)*a for all ae LY(G); moreover, ||T,| = ||Z(c)]l.
Clearly we have c-a = ¥(¢)xa, cc L'(K), ac L'(G).

(2) We show ¥ is a central homomorphism, i.e., ¥ is a homo-
morphism of C into the center of M(G). First, observe that Z(c)xa =
ax¥(c) for all ce C and aec LNG). Indeed, for every o' e L'(G)

T (e)xa)xa’ = (c-a)xa’ = ax(c-a’) = ax(¥(c)xa’) = (ax¥ (¢c))*a’

and hence ¥ (¢)xa = a+¥(c) since L'(G) has a right approximate identity.
Using the fact that L'(G) is an ideal in M(G) and Z¢ commutes with
LY(G), we have

ax(v+xT(c)) = (axv)x¥'(c) = ¥(c)*(axy)
= (T(c)*a)*xy = (a*¥(c))*y
— ax(F ()

for all a e LY(G), i.e., the mapping a — ax(v«¥(c) — Fc+y) is the zero
operator on L'(G). By Wendel [13, Theorem 1], the norm of this
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operator is |[[v+¥(c) — ¥(c)*v||, which consequently is 0. Thus,
vx¥(c) = ¥(c)xy

for all yve M(G) and ceC, and, ¥ is central. Finally, to show ¥ is
a homomorphism we again use Wendel’s result that the norm of the
operator a — pxa on L'(G) for pne M(G) is ||p¢]], e.g., if ¢, ¢’ € C, then

Ulec)xa = (e¢’)ra = c-(c'-a) = U(c)+¥(c')xa

for all a e L'(G) and hence ||¥(cc’) — ¥(c)x¥(c")|| = 0, i.e. ¥ is multi-
plicative; the linearity of ¥ can be similarly shown.

(3) To show ¥ is continuous and ||¥|| is identical to the norm
x of the action of C on L'(G), we first need the following lemma.

LEMMA 2.3. Let G be a locally compact group. Then the center
of M(G) ts a semisimple commutative Banach algebra.

Proof. It is clear that the center of M(G) is a commutative
Banach algebra. To see that it is semisimple, consider the left regular
representation &¥ of M(G) on the Hilbert space L*G): Z(a) = pxa,
ac LXG), re M(G). It is well known that <~ is a faithful *-repre-
sentation of M(G) into the algebra of all bounded linear operators on
L¥G). Consequently, M(G) is an A*-algebra and hence any =x-subal-
gebra of M(G) is semisimple [10, Theorem 4.1.19]. In particular,
the center of M(G) must be semisimple.

Returning to the proof of Theorem 2.2, the complex homomorphism
¥ from C into the center of M(G) is necessarily continuous since the
center of M(G) is a semisimple commutative Banach algebra (c.f.,
[10], Theorem 2.5.17). Since ||c-a|l, = [|¥(c)*all, < ||| |l¢]] ||a]l, for
all ce C, a € L*(G), we have ||¥'|| = x. To prove the reverse inequality,
first recall that in (1) of the proof ||T,|| = [|¥c||]. Since ||T.al, =
lfe-all. = xllell llall, we have ||[Z¢|| < x|lc|l. Thus, [[¥]| <y and it
follows that ||¥'|| = x. Finally, the uniqueness of ¥ is clear since
c-a = ¥(c)xa = @(c)+a for all ce C, ae L (G), implies that

a— e — Dc)xa

is the zero operator on L*(G) and hence has zero norm, which is
|¥e — @c|| (by Wendel [3]). Thus & = 0.

(4) If C is commutative and G is abelian, then for each ceC,
ae LNG), ¢oprd = (coa)” = (¥(e)xa)” = (¥,)"G. Therefore, copt = (¥c)™,
proving (iii). The proof is complete.

REMARK. With a few minor modifications in the above proof,
we can weaken the hypotheses to obtain roughly the same conclusion.
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Namely, suppose L'(G) is a left L'(K)-algebra in the sense that LY(G)
is a left C-module satisfying the additional associativity condition
c-(axa’) = (c-a)xa’ for all ce C and ae L'(G). Then it can be shown
that there is a unique complex homomorphism ¥: C— M(G) such
that ¢-a = ¥(c)xa for all ce C, ae LG); ¥ is continuous if and only
if the module action is continuous, in which case ||¥|| = x. The
proof is similar to the above proof. However, the continuity of the
linear operator T, reqires a slightly more refined argument. We show
that if lim,_.a, = 0, then lim,... T.(a,) = 0. By Hewitt’s factoriza-
tion theorem ([6], (32.23)) there is a sequence (b,) in L'(G) and an
a€ L(G) such that lim,..b,=0 and a,=axb,, n=1,2,.-.. It
follows that lim,_.T,.(axb,) = lim, .. T (axb,) = lim,_.T.(a)*b, = 0.

3. Application of Cohen’s theory of homomorphisms of group
algebras. It is easy to see that describing the algebra actions of
L'(K) on LYG) for LCA groups K and G is equivalent to suitably
identifying the adjoint maps u: G — K°. By Theorem 2.5 if LNG) is
an L'(K)-algebra there is a continuous homomorphism ¥: L'(K)— M(G)
such that [Z¢]” = ¢op for all ¢ € L'(K), where p: G— K" is the adjoint
map of the action. At this point the Cohen theory [2] of homomor-
phisms of commutative group algebras applies. Specific references to
the Cohen theory will be taken from the treatment in Rudin’s book
[12], Chapter 4.

In general, if ¥ is a complex homomorphism of L'(K) into M(G),
then ¥ induces a continuous map p: G — K° such that ¥¢ = éop for
all ce L'(K). Cohen characterizes all homomorphisms ¥ by identifying
the respective adjoint maps p¢. We turn this around to give an ex-
plicit description of ¥ in terms of its action on L'(K).

Before presenting the alledged description of Z we set down a
few facts and notations. If H is a compact subgroup of the LCA
group G, then 7, will denote the canonical homomorphism of G onto
G/H. Choose a Haar measure on G/H so that the Haar measures of
G, H, and G/H are canonically related [9] and so that the Haar
measure on H is normalized. Let T, denote the canonical norm
decreasing homomorphism of L'(G) onto L'(G/H) given by

Tyo(g/H) = | alg+hdh  (o/HeG/H),

for all ae LY(G) ([6, p.91], or [9, p.59]). Note that by the compactness
of H, T, maps CyG) onto C,(G/H) and in particular the unit ball of
Cy(G) onto the unit ball of C,(G/H). This fact can be used to show
that m, induces an isometric isomorphism z} of M(G/H) into M(G)
such that

{fsmgy) = LTuf,v)
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for all fe C(@) and ve M(G/H). (The mapping f—<Txf,v) defines a
bounded linear functional on C,(G) and hence there is a unique
measure iy e M(G) such that {f,n}v> = {Tyf,v) for all fe C(G)).

We now present our interpretation of the theorem of Paul Cohen

[2].

THEOREM 3.1. Let K and G be locally compact Abelian groups.
Suppose ¥ is a nonzero complex homomorphism of LK) into M(G).
Then there are

(i) ecompact subgroups H,, ---, H, in G,

(ii) continuous homomorphisms 6,, --+,0, (0;: K— G/H,),

(iil) patrwise orthogonal monzero idempotents e,, «-+, e, in M(G),

(iv) elements v, -+, 7, 10 K and Ay ooy, TN @, such that

™ U(e) = 3 amh 05 (1) ses

for all ce L'(K), where -} : M(G/H;) — M(G) and 6;: L'(K) — M(G/H))
are the canonical maps.
If |7 < 1, then (*) simplifies to

U(c) = anj0*(ve)

for all ¢ce L'(K) and the compact subgroup H and continuous homo-
morphism 0: K — G/H are uniquely determined.

Proof. Let p: G — K° be the adjoint map of ¥. Then by Cohen
1 is a piecewise affine map of Y = #‘I(K)C@ into K ([12], p.78).
More explicitly, Y is in the open coset ring of G and there are 1)
pairwise disjoint sets S, ---, S, in the open coset ring of G; (2) open
cosets C; in G such that S;c C;; (38) for each i, affine maps u: of C;
into K, such that ¢ is the map of Y= 8,U -+ US, into K which
coincides on S; with ;. Arbitrarily choose «a;€C;, 1=1,2, ---, n,
but once chosen we keep «; fixed throughout. Now, for each 7 set
v = —p(a) (=f(a;) e K). Since p; is affine on C; to K, the map

is a continuous homomorphism of the open subgroup @Q; = C, — «;
into K (and moreover is independent of the choice of «; e C;). Let
H; be the closed subgroup in G and annihilator of Q; & G: H, = Q:
([12], p.35). It is well known ([12], Theorem 2.12) by duality theory
that the dual group of G/H; can be identified with H; = Q,: if
Be(G/H,)”, then g— acQ; in such a way that (¢/H, B) = (9, @) for
g/He G/H. Since Q; is an open subgroup, H; is a compact subgroup
in G. Using the identification, (G/H,)” = Q,, let 8,: K— G/H; be the
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continuous homomorphism and dual of the continuous homomorphism
defined in (xx). The ingredients listed in (i), (ii) and (iv) are now
defined. Since S; is a member of the open coset ring in G, by Cohen
[1] the characteristic function of S; is the Fourier-Stieltjes transform
of a (nonzero) idempotent measure e; in M(G). Since the S; are
pairwise disjoint, the idempotents e; are pairwise orthogonal, and the
ingredients in (iii) are defined.

We need only show that ¥(c) has the desired representation for
each ce LY(K). Let @(c) denote the element in M(G) given by the
right hand side of the equality in (*). Let aeG. If aeG\Y, then
since Y = p(K), (¥(c)) (@) = 0, and, since supp(é;) = S; and U S; = Y,
we have (@(c)) (o) =0. If aeS;c Y, then since S;NS; = ¢,1 +* 7,
and since &; = Y5,

(@(e) (@) = (s, 03 (i) (@)
= (7555 0% (7:0)) (@ — a;)
= (0%(7:0)) (o — ay) (since @ — a; € Q,)
= (7iC)A(9i(“ — ay))
= e — a;) — vi) = E(pa(@))
= o)) = T () () -

Since U S; = Y, we have (¥(c))” = (@(c))” on G~ and by the uniqueness
of the Fourier-Stieltjes transform, Z(c) = @(c) for all ce C.
Finally, if ¥ is norm decreasing then again by Cohen

Y = p(K)cG

is an open coset and p is affine on Y to K (e.f., [12], 4.6.3(b), p.88).
Choose e Y, and set v = — p(a). Let H be the compact subgroup
of G and annihilator of the open subgroup Y — « in G. Let 6:
K — G/H be the dual homomorphism of the continuous homomorphism

(G/HY =Y —asa — pa + a) — pa) e K.

Then with v,«, H and 6 as defined, it can be shown (as above by
taking Fourier-Stieltjes transforms) that ¥c = an}0*(vc) for all ce C.
The uniqueness of H and 6 can be easily verified.

Theorems 2.2 and 3.1 provide the key to the characterization of
all nondegenerate algebra actions of L'(K) on L'(G).

COROLLARY 3.2. Let K and G be locally compact Abelian groups.
If LMG) is o mondegenrate L'(K)-algebra them there are compact
subgroups H;, continuous homomorphisms 6, K— G/H,, zoairwise
orthogonal nonzero idempotents e; in M(G), and elements a;€ G, v; € I?,
=1, -+, m, such that
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m
= 1_21 aiﬂ?ri(%c*oi Ty, (@.a))xe;

Sfor all ce LNK), ae LNG), where =y : M(G/H)— M(G) and Ty;:
L(G) — LY(G/H;) are the canonical maps, and, where =, is the algeb'ra
action of L'(K) on LNG/H,;) induced by 0,.

If the action of L'(K) on LYG) is isometric (x < 1), then

c-a = an}(vexy Ty(da))

for all ce L}(K),aec L(G), and the compact subgroup H and the
continuous homomorphism 0: K — G/H are uniquely determined.

Proof. By Theorem 2.2 there is a homomorphism ¥ of LK)
into M(G) such that c¢-a = ¥exa,ce LY(K), ac LYG), and [|¥|| = ¥X.
Now ¥ has the form described in Theorem 3.1. It need only be
observed that

;1 (Vic*o, THi(éia)) = a;73, 05 (7:c)xa

to complete the proof.

We broaden our notation slightly for the following two corol-
laries. Namely, if ve K and 6e Hom(K, G), then ,% will denote the
isometric Banach L'(K)-algebra action on L'G) given by

02,0(0) = roriale) = | Y(We(Balg — Ok -

COROLLARY 3.3. The following are equivalent for a LCA group G.

(i) G is conmected.

(ii) For every LCA group K and each mondegenerate L'(K)-
algebra action on L'(G) there is a continuous homomorphism 0: K— G
and ve K such that ¢-a = ¢ X0 for all ce LK) and ac LYG).

_Proof. Now, G has no nontrivial compact subgroups if and only
if G is connected [5, (24.19)] which implies the open coset ring G
is {G ¢}. Thus if G is connected, H = {0} in Corollary 3.2, and
¢ (K) = G; hence we can take @ = 1, v = p(I). 7, and T, reduce
to the identity maps on L'(G). Thus (i) implies (ii). If G is not
connected, then by choosing a nontrivial compact subgroup H in G
and setting K = G/H and ¢ = identity on G/H, the action c¢-a =
7% (c*, Ty(a)) is not induced by a 0 e Hom(K, G) and a 7ve K.

COROLLARY. 3.4. Let K and G be LCA groups. Suppose LNG)
s a mondegererate L'(K)-algebra, ) tis the morm of the action, and
U G— K° is the adjoint map. The following are equivalent.
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(1) There is a (unique) continuous homomorphism 0: K— G,
and, ve€ K such that c-a = cxa for all ce L}(K) and a< LY(G).

(ii) G = p(R) and y < 1.

(ili) The linear span of LYK)-L'G) is demse in L(G) and x < 1.

Proof. (i) = (ii) is clear since ¢t = § — . Conversely, if (ii) holds,
then since y <1, g is an affine map of x*(K) = G into K. Set
v=—p1),0=(—"v)", and (i) follows. Now (i) = (iii) since an ap-
proximate identity for L'(K) can be shown to be an approximate
identity for L'(G). Finally, (iii) = (i) by Hewitt’s factorization theorem
([6), Theorem 32.22). Specifically, given any a ¢ G, choose an a € LY(G)
such that d@(a) = 0. By the hypothesis in (iii), the factorization theorem
implies there is a ce L'(K) and o’ € L'(G) such that a = ¢-a’. Then

0 = a(a) = é(H@)a'(@) ,

and hence é((a)) =0 and therefore p(a)e K. Since aeG was
arbitrary, u(G) c K, i.e., p*(K) =G, and (ii) follows, and therefore

@.

REMARK 38.5. If G is a LC group and if C is a Banach algebra,
then every algebra action of C on M(G) is induced by continuous
central homomorphism ¥: C— M(G). Clearly, for each ceC, we
need only define ¥(c) = c¢-0, where & is the identity of M(G); the
continuity of ¥ follows as before. Therefore, any separate charac-
terization of the algebra actions of L'(K) on M(G) for LCA groups
K and G is unnecessary. Analogues of Corollaries 3.2-3.4 are easily
formulated by merely replacing “L*(G)” by “M(G)” in their statements.

‘REMARK 8.6. In a forthcoming paper [14] we apply the charac-
terization of algebra actions of group algebras obtained in Corollary
3.2 to yield results to topological tensor products of group algebras.

In [11] Rieffel has discussed the tensor product of Banach spaces
that are Banach modules over a Banach algebra: if A and B are
Banach C-modules for a Banach algebra C, then the C-tensor product
of A and B, AQ®.;B, is defined as the Banach space and quotient
AR),B/J, where J is the closed linear subspace generated in the pro-
jective tensor product A Q, B by all elements of the form

ac®Rb—a@®c-b,acAd,becB,cecC.

When A4 and B are commutative Banach C-algebras for a commuta-
tive Banach algebra C, then A Q,B is naturally a commutative
Banach C-algebra.

We briefly mention two main results obtained in [14].
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(1) The commutative Banach algebra  L'G) Q. xL'(H) is
strongly semisimple in all instances of algebra actions of L'(K) on
LNG) and L'(H) for LCA groups G, H, and K. This can be viewed
as a generalization of the work of Gelbaum [3, Theorems 1, §3, §4]
and Natzitz [8].

(2) Suppose LY(G) and L'(H) are L'(K)-algebras for LCA groups
G, H, and K and assume the actions are isometric. Let

D= LI(G) ®L1(K> LI(H) ’

the commutative Banach L!(K)-algebra and L!(K)-tensor product of
of L'(G) and L'(H). There are unique closed L!(K)-ideals N and E
in D such that

D=N®E

where E is the essential part [11, Def. 8.5] of D and LYK)-N = {0}.
Furthermore, there is a canonical LCA group G ®, H and an isome-
tric L'(K)-isomorphism

E = (LN(G) Quux L'(H)), = L(G Qx H) .

Finally, there are compact subgroups ¢ & G and h < H such that if
I, and I, denote the kernels in L*(G) and L*(H), respectively, of the
canonical homomorphisms T,: L'(G) — L*(G/g) and T,: L'(H)— L'(H/h),
then there is a continuous isomorphism

N§I9®TIIL!

where 1, Q, !, is the projective tensor product of [, and ,.

The result above generalizes the work of Gelbaum [3], [4], and
Natzitz [8]. Furthermore, using Corollary 3.21 [11], we can obtain
a characterization of the space of L'(K)-homomorphisms (or multi-
pliers) of L'G) into L=(H). For example, in the special case when
L'(G) is an essential L'(K)-algebra (and therefore £ = D in 2) above),
we have

Hom,x, (L'(G), L=(H)) = L*(G Q« H) ,

where the isomorphism is algebraic and isometric.
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