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REFLEXIVE OPEN MAPPINGS

EpwiNn DupA AND JACK W. SmITH

This paper is a study of reflexive open mappings. From
the definition of reflexive open mapping and some of its
elementary properties it is clear that it is a generalization
of an open mapping. Classes of such mappings are identified
and conditions under which such mappings are open mappings
are given, Some applications to such mappings in plane
regions are given.

1. Introduction. A function f from a topological space X to
another such space Y is said to be reflexive open if for every open
set U of X the set f~'(f(U)) is also open. An immediate observation
is that all open mappings and all one-to-one functions are necessarily
reflexive open. In this paper an outline of the essential properties
of such functions is given and particular attention is given to those
conditions which necessarily imply the function is an open function.
We show that openness of a reflexive open mapping will follow from
additional conditions on the mapping such as quasi-compactness, or,
closedness, or by a compactness condition on the domain space, and
finally by requiring the domain and range to be certain subsets of
Euclidean 2-space. The last condition mentioned is of interest in
topological analysis.

2. Notation. A mapping is a continuous function. A generalized
continuum is a connected, locally compact, separable metric space.
A simple closed arc is written [ab] while the symbols [ab) and (ab)
indicate a closed arc less the point b or less the points @ and 5. A
region is an open connected set. A topological ray is a homeomorphic
image of a ray in the real line and a topological line is a homeomorphic
image of the real line. Other notation and definitions are as in [6].
The cyclic theory used is that of reference [6]. A function f(X) =Y
is a local homeomorphism at a point 2 in X if there exists an open
set U about x such that A(U) is open in Y and also f|U is a
homeomorphism onto f(U).

DEFINITION. A function f(X) = Y is reflexive open if f~(f(U))
is open whenever U is open.

3. Elementary Properties. In this section we show various
properties of reflexive open mappings, most of which are similar to
properties of open mappings.
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THEOREM 3.1. Let f(X) = Y be a function. These are equivalent.
(a) f is reflexive open.

(b) If ACX then f“(f(%)) c S (A).

(¢) If AC X then f(f(4) = ff(4)).

(d) If Q is anm inverse set so is Q.

Proof. All of these are straightforward. As a sample, for the

case b implies ¢, F(f(4A) C f(f(4)), and f~(f(4)c fF(f(4) by
hypothesis so equality holds.

THEOREM 3.2. If f(X) = Y is a function where X 1s a metric
space these are equivalent.

(a) f 1is reflexive open.

(b) If x,—x, then f~(f(x)) clim inf f(f(x,)).

(¢) If 2,—uw, then f~(f(»)) Clim sup f7'(f(x,)).

Proof. Consider the case a implies b. If U is an open set that
meets f~(f(x)) then f~*(f(U)) contains x, for all but finitely many
n so that U N f~(f(x,) # ¢ for all but finitely many %. Evidently b
implies ¢. If (x,) is a sequence in X — f(f(U)) tending to a point
2, in f7(f(U)), since each f~'(f(x,)) misses both f~*(f(U)) and U it
follows that U is not open, so ¢ implies a.

COROLLARY 3.2. If f(X) = Y 14s also continuous, then reflexive
openness is equivalent to f~'(f(x)) = lim f'(f(x,)).

Proof. By continuity, lim sup f'(f(x,) < f'(f(x)).

THEOREM 3.3. If fIX)=1Y 1is a reflexive open function, then
g = f|Q s also reflexive open if Q is open in X or if f~(f(Q)) = Q.

Proof. If @ is open, and U is an open set in X, g7(g(UNQ)) =
AU NK) NK, which is evidently open in Q.
If @ is an inverse set, then

97e(UNQ) =g (f(U)NFQ))
=Y Na.

A funection is said to be reflexive closed if f'(f(4)) is closed
whenever A is closed. It is evident from the definitions that a
mapping generates an upper (lower) semi-continuous decomposition iff
the mapping is reflexive closed (reflexive open). We state the next
three known results (see [9]) in these terms.

Let f(X) =Y be a continuous function, where X and Y are
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metric spaces. Let G be the decomposition of X into the sets
S7(y),ye Y.

THEOREM 3.5. Let M be the hyperspace of the decomposition G.
The natural mapping m(X) = M associated with this decomposition
is open (closed) if and only it f is reflexive open (reflexive closed).

THEOREM 3.6. If f(X) =Y 1is reflexive open, then f factors
uniquely as f = hm where m(X) =M is an open mapping and
h(M) = Y is a one-to-one mapping.

THEOREM 3.7. If f(X) = Y is a reflexive open mapping which
is quasi-compact, then f is open.

COROLLARY 3.7.1. If f 1s closed and reflexive open, then f is an
open mapping.

COROLLARY 3.7.2. If f s reflexive open and X is compact then
f is open.

THEOREM 3.8. If f(X) =Y is a reflexive open mapping where
X is a locally conmnected gemeralized continuwum and Y 1s a metric,
then the middle space M of the factoring f = hm 1is also a locally
connected generalized continuum.

Proof. Let p and q be distinct elements of M. There are distinct
points « and y of X such that m(f~(f(z)) = » and m(f'(f(y)) = ¢
and disjoint neighborhoods U and V in Y about f(x) and f{(y) respec-
tively. Thus m(f~%(U)) and m(f~'(V)) are open sets about p and ¢
respectively which are disjoint, since m(f~4(U)) N m(f~(V)) #= ¢
implies that U N V = ¢.

Now M is locally compact, hence regular, and also connected and
locally connected, since m is an open mapping. Using Theorem 4,
[5], and its corollary it follows that M is also a separable metric
space.

THEOREM 3.9. Let f(X) = Y be a reflexive open mapping where
X and Y are metric spaces. If K is a connected set in Y for which
S U(K) is compact, then any component of f~—(K) maps onto K.

Proof. Suppose V is an open set about a component @ of
f(K). There is an open set U about @ with Uc V such that
FriU)n ff(K)=¢. Let S=Un f(K)=0Tnf"K). Now f|f(K)
is closed, reflexive open by 3.4 and by the corollary to 3.7 even open,
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so f(S) is both open and closed in K, and thus f(S) = K so that
f(VyD> K. Since V is arbitrary it follows that f(Q) = K.

THEOREM 3.10. Let f(X) = Y be a reflexive open mapping where
X and Y are metric spaces. If A is a conditionally compact inverse
set im X, then f|A is open, closed, and quasicompact and if f(A) s
perfect, then f|A is compact.

Proof. Since A is an inverse set we have f(4 — 4) C f(4) — f(4) =
F(A) — f(A), and thus by Theorem 7, [9], f|A is a closed mapping,
hence an open mapping by 3.7. By Theorem 4, [9], the conclusion
follows.

THROREM 3.11. Let f(X) = Y be a reflexvive open mapping where
X and Y are locally connected generalized continua. If R is a region
wm Y for which f'(R) is conditionally compact and @ is a component
of fY{R), then f(@) = R.

Proof. Let x and y be distinet elements in R with z e f(Q). Let
ae®@N f(x). Let [xy] be an arc in R. By 3.10, f|f~(R) is compact,
so f([xy]) is a compact subset of f~'(R) and if C is the component
of f~'([xy]) which contains a then by 3.9, f(C) = [x¥] which implies
that f(Q) = R.

THEOREM 3.12. Suppose f: X— Y is an additive function, not
necessarily continuous, where X and Y are normed linear spaces.
Then f s reflextve open.

Proof. Due to the algebraic structure of X and Y the symbol
A — B here will mean the set of all (¢ — b) such that ac A and be B.

Suppose z, — « and z¢ f~(f(x)). If N is an open neighborhood
of z then N — z is a neighborhood of 0 and since (x, — ) — 0. if »n
is large we have (v, —x)e N —z, so that z 4+ (x, —x)e N if n is
large. Thus f'f(z + (x, — »)) = f~f(x,) meets N if n is large so
that f~*(f(x)) clim inf f~'(f(»,)) and by Theorem 3.1 f is reflexive
open.

THEOREM 3.13. There extists a reflexive open function which is
discontinuous at each point in its domain.

Proof. Let X be the real numbers and let H be a Hamel basis
for X. Choose z,€ H. Define

Slw) =%
fle) =1 if xe H and o # , .
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Now if e X — H there is a finite collection of rational numbers
{r,, 75, +++r,} such that ¢ = >*r.x; with each ;¢ H, so we define
f@) = 300 rif(@)).

A check of the definition shows that f is additive; hence f is
reflexive open. Since f is discontinuous at xz,, f is discontinuous at
each point in X.

THEOREM 3.14. If f(X) = Y s a reflexive open mapping where
X and Y are locally compact metric spaces and X is separable, then
there is an open set X, C X such that f(X,) is an open dense set in
Y and the restriction of f to X, is open.

Proof. Let Y, be the set of all points vy in Y for which there
exists a compact set K in X such that y is interior to f(K). If
V = interior f(K), evidently VC Y, so Y, is open.

Let {K,} be a sequence of compact sets in X such that X = UTK,
and also K,c K,c+--CK,C+++. If yeY and U is a conditionally
compact open set about y then U = Ur(U N f(K,)), and thus there
is fan open set 0 such that 0N U is nonempty and lies in some
f(K,) N U. We can assume that 0 lies in U so that 0C f(K,); thus
U meets Y, and Y, is dense in Y. Let X, = f(Y,).

Let g = f|X,, and let (y,) be a sequence of distinet points in
9(X,) such that y,— vy, ycg9(X,). Let K be the compact set in X
such that ye V = int f(K). Suppose zc€¢ (y) and 2 is not in lim
inf ¢g7'(y,). Then there is an open set U about 2 for which infinitely
many g¢~'(y,) lie outside U, and hence there is a sequence (z, ), each
%, €(97'(¥.,) NK)— U, and a point x,€ K such that », —a,. By
continuity f(x;) = %, and 2,€ g~'(y). Since X, is open ¢ is reflexive
open, and by Corollary 3.2 we have g~'(y) = g7'(g9(x,)) = lim ¢g7(g(x,,)),
so that U must meet infinitely many ¢~'(g(x,,)) which is contradictory.
Thus ¢g7*(y) < lim inf ¢g7'(y,) C lim sup ¢7'(y.) C g~'(y) so that g7*(y) =
lim g~*(y,) and ¢ is open.

COROLLARY 3.14.1. If f(X) =Y is a one-to-one mapping, then
there exists an open set X,C X such that f(X,) is an open dense
subset of Y and f|X, is a homeomorphism.

Proof. A one-to-one mapping is reflexive open; thus f|X, is open,
and thus a homeomorphism.

4, Main Lemma. Let M be a locally connected generalized
continuum with the property that for each x in M there is a
conditionally compact region R containing x such that the complement
of R is connected. Let Y be an unbounded locally connected generalized
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continuum in the plane E?, where Y has no local cut points and
where any simple closed curve in Y bounds a two-cell in Y.

LEMMA 4. If (M) = Y s a one-to-one continuous mapping, then
M has exactly one noncompact cyclic element. Furthermore, if the
noncompact cyclic element has mo local cut points, then h 1is a
homeomorphism.

The proof will be aceomplished by assuming % is not a homeomor-
phism and then establishing a sequence of statements describing the
structure of M and a sequence of statements which lead to a
contradiction. It is convenient to consider two cases. First suppose
Y is an open subset of E“.

(1) The space M has exactly one noncompact cyclic element.

Proof. Suppose that each true cyclic element of M is compact.
By a theorem of G. T. Whyburn, [8], as stated by E. Duda, [2],
there is a topological ray « in M which is a closed subset of M and
such that % is a local homeomorphism at each point of «. Because
Y has no local cut points 4 is not a local homeomorphism at cut
points of M. Therefore « lies in a single true cyclic element and
this implies the false statement that « is compact.

Now suppose that C, and C, are distinct true cyclic elements of
M where C, is noncompact. There is a point ¢ which is a cut point
of M separating C, — {t} and C, — {t}, and there is a conditionally
compact region R of ¢ whose complement is connected. This implies
that M — {t} has no more than one non-conditionally-compact com-
ponent, which must contain C, — {t} and therefore C, is compact.

(2) Every compact true cyclic element of M is a topological
closed two cell.

Proof. See Duda, [2].

(8) For each point z in the noncompact cyclic element C, there
is a topological closed two cell W in C, containing a neighborhood
V of z relative to C, and the open two cell @ of W is an open
subset of M.

Proof. There is a conditionally compact region R of z with
M — R connected. In RN C, there is a region V of x, relative to
C,, with V a locally connected continuum without separating points
and such that Vc RN C,. The set (V) is a cyclicly connected
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locally connected continuum so by 2.5 page 107 [6], the boundary B
of the unbounded component of E?* — h(V) is a simple closed curve.
Furthermore if K is the closed two cell bounded by B then h(V)C K.
The connected set #(M — R) misses B and is not in K for this would
imply that the range of k, h(R) U k(M — R), is a conditionally compact
set. Since KCh(R), W = h(K) is a closed disk in RN C, The
closed two cell W> V, and the open two cell @ of W is open in M
since @ is the inverse image of the interior of K.

(4) If H is the set of points of C, which lie in an open two
cell, then H is connected, dense in C,, and open in M.

Proof. By (3) H is dense in C, and open in M. Let A be a
component of H and suppose H is not connected. Since C, = H =
AU (H — A) and C, is connected there exists g A N (H — A). Take
a topological closed two-cell W about ¢ as in (3). Since ¢ is interior
to W it follows that AN W and (H — A) N W are nonempty. Since
A is open in M we have AN Q # ¢ where Q is the open two cell of
W and therefore @ < A. But similarly (H — A) must meet @ and
this is false.

(5) Every component of C, — H is a topological line.

Proof. By (3) if xeC, — H there is a topological closed two
cell W in C, and a region V of x, relative to C,, with V< W. Since
2 must lie in the boundary curve J of W there is an arc (axb) in
Vnd. If ze(axb) N H there is an open two cell @ about z with
Qc VN H, but since the boundary curve of Q lies in V it follows
that Q W so that z¢ J. It is evident that C, — H is a one-manifold,
thus by [6, p 194] every component of C, — H is a topological line
or a simple closed curve.

Now if J is a simple closed curve in C, — H then A(J) is a simple
closed curve which is the boundary curve of a closed topological two
cell K in h(M). Suppose h(H) < K. Then h(C,) c K and hence if N
is a component of A(M) — K it follows that N is the union of no
more than countably many sets of the form A(D,) where D, is a
component of M — C,. For each such D, we have D,NC, ==z, a
single point, and since M — {xr} has at most one nonconditionally
compact component it follows that each D, is compact. Because N
cannot be the union of countably many (more than one) closed (in N)
pairwise disjoint sets there is some 7 such that N = k(D,), and thus
N is compact. By the local connectedness of h(M) the union of the
conditionally compact components of A(M) — K is also conditionally
compact which implies the false conclusion that A(M) is compact.
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Thus 2~*(K) N C, = J and it follows that the open two-cell @ of K
is the union of no more than countably many sets of the form A(D,).
By the same argument as before we have that @ = A(D,) for some
n and thus D, N C, = J which is not a single point.

NotATiON. For any set A in C, — H let N(A) be the union of
A plus all the components D of M — C, such that DN A # ¢. For
a component D of M — C, define 0D to be D less all the open two
cells of the compact true cyclic elements C, which lie in D. Define
ON(A) to be the union of A plus all the sets 6D such that D < N(A).

(6) If A is a continuum in C, — H, then N(A4) is a continuum
and further, A(ON(A)) C h(H).

Proof. Since each x e A lies in a conditionally compact region R
for which M — R is connected there is a finite subcover {R,, R,, ++-, R}
of A with M — R, connected, and R; compact, ¢ =1,2,3, ---, k. Now
C, does not lie in any R,; so it follows that each R; contains any
component D of M — C, that it meets; hence N(4)c Uf R;. In
addition, if x¢ N(A) there is an open region U about x such that
UNA= . Therefore U cannot contain any component D which
lies in N(A) and since U meets at most finitely many such components
D it follows that xz¢ N(4). Thus N(A) is compact, and obviously
connected.

If (x) ¢ R(H) choose a region V about A(x) such that V N h(A) = 4.
Then VcC h(M — C,) so that V< U7 h(D,), each D, being a component
of M — C,. By the argument used in (5) there is an integer » such
that a(D,) > V, and thus a compact true cyclic element C,C D, such
that @ lies in the open two cell of C,. It follows that h(GN(A)) < h(H).

(7) If L is a component of C, — H the restriction of the funec-
tion 2 to N(L) is a homeomorphism.

Proof. If not, there is a sequence (x,) of distinct points in N(L)
with Uz, = Ux, and a point w, in N(L) — Ux, such that i(x,) — k().
For n=20,1,2, -+« let «, e L such that x, e N(x,). There is a closed
topological ray R in L with origin x; which contains infinitely many
x,. For simplicity of notation we shall assume that R contains all
the x.

Let B=0N(R — x;). It follows from local connectedness that
B=BuUu. If yeh(B) — (BU<x) and = = h~'(y) we can choose a
conditionally-compact open set U containing  such that Un B = ¢,
and since ye(U) N k(B) it follows that A(B) — W(BU 2 is an F,,
and hence i(B) — h(B) is also an F,. In addition since ON(R — =} is
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a countable union of closed arcs plus countably many compact sets
0D so is h(B). Thus by the usual category argument there is an
open set 0 < Y such that 0N A(B) is not empty and lies in one of
the closed sets in A(B). Suppose deoD such that k(d)c0 N i(B).
We let t = DN (R — «}) and let [y.] = h([td]) where [td] is an are
in D and ¥, = h(t). Choose a closed two cell W in C, such that ¥,
is interior to an arc [ay,b] which lies in A(W)N AR — x}). If
de¢ (R — x;), let 0’ be an open region in Y about 4(d) with 0’ 0 such
that 0’ N (W) = ¢, and choose ¥, € 0’ N W(H). Then if y,e (W) N h(H)
there is an arc [y,y,] in h(H). There is an arc [y,y;] in ¥, U (W(W) N h(H)).
Let p be the first element in [y,y;] from ¥, to y, which lies in [yy;],
then [y,py.] is an arc in y, U h(H). There is an arc [y,%,] in 0/, and
if ¢ is the first element of [y,y.] from y, to y, that lies in [y,py.]
then ¢ lies in [py,] and [y.q] U [¢py,] is an arc. Now let » be the
first element of [yy,] from y, to y, that lies in the half-open arc
[y.9py,). Then r lies in [y,gp), and [y,r] U [rpy,] is a simple closed
curve J contained in A(D) U Q U h(H) such that J N (R — ) = ¥,

Choose a closed topological two cell W’ < W such that A(W’) N [ay,b]
contains a subarc [a'y,b'] and such that AW(W')—-J=EUF, two
components. Now FE must lie in one of the two components S and
T of E* — J, say S, therefore F'c T. It follows that A(R — x;) meets
both S and 7, and we may assume that A(x))eS. If 2] e[xit] for
infinitely many integers » then infinitely many different x, lie in
the compact set N[xit], which implies the false statement that (x,)
has a convergent subsequence. But if for at most finitely many =
we have « €[xit) then at most finitely many h(x,) lie in S which is
contradictory to A(x,) — A(x,).

If 0N A(B) < (R — ), a simple closed curve J can be constructed
so that A(R — x;) meets both components of E* — J and meets J at
a single point %4(t) € 0. This case leads to the same contradiction so
the statement is proven.

The ray a of [8] can be chosen so as to meet C, — H at a single
point ¢, and such that A(a) is the boundary of a closed 2-cell X, in
Y. If L, is the component of C, — H which contains ¢ it follows
that L, N A (K, is a closed topological ray R, whose origin is ¢,
and furthermore A(N(R,) lies in the compact set K, U A(N(t)). If
L, is any other component of C, — H, then L,Na = ¢ so that
N(L,) Na = ¢, and hence A(N(L,)) C K, or h(N(L,)) N K, = ¢. Let %A
be the collection of sets A, = W(N(L,)), where h(L,)C K,, and the
set 4, = (N(R,)). Evidently 2l is a countable collection of pairwise
disjoint sets.

The remaining statements lead to a contradiction. It is convenient
to make the following definitions:
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For each A, e, with » > 0, let L, be the component of C, — H
which determines A,. There is a homeomorphism g¢,(L,) = X, the
real line, and thus L,= R;U R, where RS = g,'{x|x =0} and
R, = g7 {x]x < 0}. We set A = (N(R))), A, = h{N(R;)) and also set
A=A, Forn=0,1,238,---let =, be the collection of all AU
such that A # A, and for which there is {4,, 4., +--4.,} CA-{A,}
with AF N A, #+ ¢, A, N A, # ¢, ++A, NA+g¢. Fornm=123,.-..
we define &~ similarly, using A4,. For =0,1,2, ---let &, =
&, T U{A4,} U &, where &,” is defined to be the empty set, and
let F'; be the closure of {y|there exists Ae%,* with ye A}, F,
similarly, and F, = F, U 4, U F.

(8) If w+m and A,c %, then A,¢ &,.

Proof. If not, there are two subcollections of 2, {4,, 4.,, ---4,,}
where A, = A,,, and {4, . ,A,, ., *++A.. . _} where A, = A4, and
a set {y, %, -+-, ¥} such that y, €4, N A, and y;. € AN A, if
1= <k, ypoh € ﬁnk NA,, ,and y;, € Zmi N A, if k<it<s. For
1<i<s let z;eC, — H such that 2 7'(y,) ¢ N(z}) and let R; be the
closed topological ray in C, — H with origin ] and with

Y, € (N(R,y)) if © <s
and
Y€ h(N(R,)) .

As in the proof of (7) the set Uih(ON(R; — 7)) — Uih(ON(R; — 7))
is an F,, and UiR{(ON(R; — x)) is a countable union of closed arcs
plus countably many sets of the type h(dD), so there exists a region
0 with 0 N U h(ON(R; — =) nonempty and contained in A(ON(R; — x}))
for some j,1 <7 <s. The region 0 can be chosen sufficiently small
so as to have a vacuous intersection with the compact set UJ;a(N(z})).
By the construction used in (7) there is a simple closed curve J which
meets A(R; — «}) at a single point A(t). The set ' = Ui H(N(R; — 7))
is a connected set which misses J, so F lies in one of the two
components S and T of E*— J, say S. The point y;¢J and is in
the closure of one of the sets determining %, so y; €.S, hence A{z))e S
which implies that A(N([zit)))=S. But A(N(E; — [it])) T and
MN(R; — [«jt])) N E = ¢ which is contradictory.

(9) For any integer » there is an integer m such that A4, € &,
hence F, C F, and such that if p = m then A, does not meet both
F}, and F,,.

Proof. For each A;c =, let L; be the set in C, — H such that
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MN(L;) = A;. If X = U L,; then from (5) the complement of X is
open in C, — H; thus N(X) = U N(L;) is closed, so that if K, =
U dN(L;) then W(K,) — W(K,) is an F,, and h(K,) is a countable closed
arc sum plus countably many closed sets A(0D). Thus there exists
an open region 0 such that 0N (K, is nonempty and lies in some
h(0N(L,)) C (K,). Since A, = h(N(L,)) € &, it follows that F, C F,.

Suppose p # m and assume that yec A, N F,;, and ze A, N F,. If
y==zlet y=y ==z and if y ++ z let v be an arc [yz] in A,. We can
assume that 0 N v = ¢. By the construction used in (7) there is a
simple closed curve J such that JNF,C A4, with J — F,cC0U h(H),
and also A(L,) meets both components S and T of E* — J. Note
that m % 0 since F, + ¢. Suppose AcU such that A+ A, and A
meets A;. Thus Ae &,*; and furthermore A C F; so that AnJ = ¢,
so we can suppose that A S. This implies that each A in &,*
also lies in S, so that F);cS. Suppose now that A =+ A, and
AN A4; # ¢. Then since A, — A, T and AN J = ¢, it follows that
Ac T. Consequently each A in &, lies in T so that F,, c T. From
{yuzlc(F, — A,) we have {y Uz} NJ = ¢ so that y = 2. Thus v is
a nondegenerate arc with yNS+#¢,vyNT % ¢gand vy N0 = ¢. There-
fore v meets (J — (F, U 0)) which lies in A(H) and A, N W(H) = ¢,
which is contradictory.

(10) Completion of the proof: The collection &, is not empty,
otherwise h(R,) is a topological ray which is a closed bounded subset
of the plane. Similarly &,* and &, are not empty for » > 0. Let
A, e &,*, then A,¢ &, by (8) and by (9) there is an integer m such
that F,c F, and furthermore A, does not meet both members of
(F), F.}. Let B, be a member of {F, F,} that misses A,.

Let A, be the member of U with lowest subscript such that
A, N B, # ¢. We assert that there is an integer p for which F,C B,
such that A, does not meet both F; and F,. To show this, first
suppose that B, = F;. Now if A, €%, (and hence A4, C B, then
n, # m. We choose some integer ¢ with ¢ # n, for which A4, %,
From (9) there is an integer p such that 4,¢ &, and if [ = p then
A; does not meet both members of {F,, F;}. From A,e %, C &, it
follows that F,c F', and from A, C B, it follows that F,c B,. Now
if p=m, then 4, €%, and A,e %, with ¢ # n, which contradicts
(8). Thus p # n, and A, does not meet both members. If A, ¢ &,.*
we choose ¢ to be any integer for which A,e &,* and let p be the
integer from (9) such that A,e &, F,C F,, and such that if [ # p
then A, does not meet both F,” and F,. From &,C%,C&." we
note that n, # p, so A, does not meet both members. In addition,
from ,c&,t we get F,C F; = B,. It is then evident that if
B, = F', the argument is the same except for notation so that the
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assertion is valid. Let B, be a member of {F, F,;} that misses 4,.
From B,C F,C B, it follows that B, N (Uy 4.) = ¢.

In this manner we exhibit a collection of sets
B,5>B, OB, D>-+DB;j>:---

where each B; is a nonvoid compact set, and such that ;> 4, misses
N B;. This is contradictory since Ui 4. D N5 B; # 4.

The second case, where Y is not open in E?, follows from the
first. If A is a continuum in C, — H then it is not necessarily true
that A(ON(A)) C h(H). (See (6)). However, let @, be the open two
cell of K, and suppose A is a continuum in C, — H such that i(4) C Q,.
Then A(N(A)) lies in @, as well, and the proof of (6) shows that
R(ON(A)) c h(H). From this observation it follows by the same proof
as in (7) that if L is a component of C, — H such that A(L)C@Q,
then #|N(L) is topological. Furthermore, %|N(R, is topological,
where R, is the topological ray in C, — H with origin ¢ such that
h(R,) C K,. This is evident from the proof of (7), for the ray R of
the proof must lie in R, and A(N(R — x;)) must lie in Q,. Since all
the sets R; — x} appearing in the proof of (8) map into @, the proof
of (8) is valid, and statement (9) has the same proof, for as was
noted, m = 0, so h(@N(L,)) must lie in Q. We note that in the
proof of (10) it follows that A, # A, by the same argument, and
furthermore (4, — A,) C Q,, so that &,* # ¢, and everything else in
the proof is the same. Thus exactly the same contradiction is reached
and the theorem is proven.

5. Applications. In this section we suppose that f(E*) = Y C E*
is a reflexive open mapping with compact point inverses and that Y
is an unbounded subset of E®. By Theorem 3.8 there is the factoring
f = hm where the middle space M = m(E? is a locally connected
generalized continuum.

LEMMA 5.1. If xe M there exists a conditionally compact region
R’ about x such that M — R 1is connected.

Proof. Let xe M and let ye Y such that mf~'(y) = . Take J
a simple closed curve enclosing f~'(y) such that JN f~'(y) = ¢ and
let R be the component of M — m(J) that contains x. There is a
component D of m~'(R) that meets m'(x) = f~'(y) and D is compact
since J must enclose D. From the openness of the mapping m we
have m(D) = R so that R is conditionally compact. Furthermore,
M — R is connected, for if M — R = AU B, a separation, and we
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assume that m(J) C A, then since M is connected so is R U B, but
then (R U B) N m(J) = ¢ implies that (R U B) C R which is absurd.

With f, Y and M as in Lemma 5.1 we have

LEmmA 5.2. If xeM and y s the point in Y such that
mf~'(y) = x, then x separates M if ond only if f~'(y) separates E*.

Proof. If E* — f~*(y) is connected so is m(E* — f~'(y)) = M — x.
Now suppose that E* — f~'(y) = BUC where C is the unbounded
component and B is the union of the bounded components. By Lemma
5.1 there is a region R containing z such that M — R is connected
and B is compact; thus it follows that the component @ of M — «
which contains M — R is not conditionally compact (since Y is not
bounded). By local connectedness of E* we have B compact, so m™(Q)
must meet C and therefore m(C)CQ so m™(Q)>C. If A is a
component of m~(Q) that meets B then A B and by openness of
m we have m(4) = Q which gives that @ is compact which is false,
so that m*(Q) = C, and m™*(m(C)) = C. Since E*=CU f'(y) UB
it follows that m~‘(m(B)) = B, and thus m‘(m(B)) N m{(m(C)) =
BNC=¢. Thus m(B) N m(C) = ¢, and hence x separates M, since
M — x = m(B) U m(C).

THEOREM 5.1. Let f(E?) = YC E* be a reflexive open mapping
with compact point inverses where Y is an unbounded locally conmected
generalized continuum with no local cut points and with the property
that each simple closed curve in Y bounds a two cell in Y. Then f
18 am open MappPing.

Proof. Now f = hm where m(E?) = M is an open mapping and
h(M) =Y is a one-to-one mapping. We assume f is not open, so
that % is not a homeomorphism, and reach a contradiction.

By Theorem 3.8 we have that M is a locally connected generalized
continuum, and by Lemma 5.1 each point 2 € M lies in a conditionally
compact region R such that M — R is connected. By the proof of
(1) in Lemma 4 there is exactly one noncompact cyclic element C, of
M. Let geC, and let ye Y such that ¢ = mf*(y). We assert that
g is not a local separating point of C,. First suppose that ¢ separates
M. Using the techniques of the proof of Lemma 5.2 we write
E? — f~Y(y) = CU B as before. Both C and B are inverse sets under
the mapping m. By Lemma 5.2 M — q = m(C) U m(B), a separation,
and since m(B) is compact it follows that m(C) N C, # ¢ so that
m(B) N C, = q. Let W be a region about g relative to C, and suppose
U’ is an open set in M such that U'NC, = W. Since m(B)NC, = ¢
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if @ is a component of B then m(int Q) N C, = ¢; otherwise q is both
open and closed relative to C,. Thus if U = U’'U (m(int Q)) it follows
that UNC, = (U'NCy)U[(m(int Q)NC,]=[UNC,]=W. Inaddi-
tion, E* — @ is connected, for if E* — Q = SU T, a separation, with
Cc S, then TUQ is a connected subset of B so that 7TUQ must
lie in Q.

Now m(B) is connected, since each component @ of B meets
m~(q), and m~(m(B)) = B so by Theorem 3.9 or by known results
m(Q) = m(B) for each Q; hence each Q has interior points. From
this it follows that there exists no more than finitely many @, C B,
n =1, 2, -.. for otherwise, if x, ¢ int Q,, since m(Q,) = m(B), m~*(m(x,))
meets each Q, at a point z,cint Q,, and since B is compact there
must be a point x, which is a limit point of U z,, but x, is in the
interior of some Q,, since m(x,) +# q.

Thus, for a component Q@ of B and for the particular open set
U defined as above for @, there exists a conditionally compact region
Vcm*(U) such that VNB=@Q and V— B= V — Q is connected.
Noting again that B is an inverse set we see that m(V — B) =
m(V) — m(B) so that m(V—- B nC,=m(V)NC,— q. Since C, is
a cyclic element m(V — B) N C, is connected; thus m(V)NC, — ¢q is
a region of C, which lies in W.

Now if ¢ does not separate M, and W = C, is a region (relative
to C,) about ¢, then m™(U) D f~'(y) = m™'(¢). If @ is a component
of f~'(y) there is a conditionally compact region V about @ which
lies in m™(U) such that Fr(V)N f(y) =¢, and V — f(Y)
connected, because E?* — fY(Y) is connected. It follows that
m(V— fy)nC,=m(V)NC, — q is a region in C, which lies in
w.

Thus no point of C, is a local separating point of C,. Thus by
Lemma 4 f is an open mapping since & must be a homeomorphism.

THEOREM 5.2. If f(E?) = YC E* where f and Y are as in
Theorem 5.1, them each point inverse f~'(y) consists of finitely many
components, none of which separate the plane and nmone of which has
an interior.

Proof. Let w(E?® = M, be the natural mapping of the decom-
position of E* in the components of the point inverses f~'(y), and
let I(M,) = M be defined by l{(x) = m(r~'(x)), where M is the middle
space of the factoring f = hm. Now 7 is monotone and closed hence
compact; [ is light and opsn and m = Ix, see [1], [4] and [9]. Now
M has no cut points since 4 is a homeomorphism, so by Lemma 5.2
no point inverse separates the plane, and evidently no component of
a point inverse separates the plane. Using [3], [7], or Corollary 2.31,
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p. 172 [6] it follows that M, is a topological plane, but then by [10],
or Corollary 3.42, p. 191[6] each [™'(x) consists of isolated points.
Since each [7'(z) is compact it follows that each [~'(x) is finite so
that each f~'(y) consists of finitely many components Q. Finally, if
for some Q we have int Q +# ¢, then f~'(f(int Q)) = f'(y) is both open
and closad, which contradicts the connectedness and unboundedness
of E-°.

THEOREM 5.3. Suppose f(E?) = Y is both a reflexive open and a
reflexive closed mapping, where Y is as in Theorem 5.1. Then each
point tnverse f'(y) is compact, and there is an integer k such that
each f~'(y) has at most k components.

Proof. The mapping m of the factoring f = hm is both open
and closed and since M is connected m is even a compact mapping,
see [9]; thus if xe€ M then m™(x) is compact and then of course each
f(y) is also compact.

Following the proof of Theorem 5.2 we factor m as m = [T where
v(E? = M, is monotone closed and compact and (M) = M is light
and open, and M, is a topological plane. Since m is closed it follows
that so is /; hence the decomposition of M, generated by ! is upper
semi-continuous. Now [ has bounded multiplicity & by Corollary 5.21,
p. 199 [6]; thus each f~'(y) has at most & components.
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