PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 3, 1971

UNIQUELY REPRESENTABLE SEMIGROUPS ON
THE TWO-CELL

J. T. BorreGo, H. CoHEN, AND E. E. DEVUN

A semigroup S is said to be uniquely representable in terms
of two subsets X and Y of Sif X- Y=Y -X=38, 2.y, =
22> is a nonzero element of S implies 2, = x; and y,= ¥, and
Y%, = Y222 is a nonzero element of S implies y; = y, and x; = x;
for z;, 2:€X and 9,y:€Y. A semigroup S is said to be
uniquely divisible if for each s< S and every positive integer
n there exists a unique z € S such that 2* = s. Theorem. If Sis
a uniquely divisible semigroup on the two-cell with the set of
idempotents of S being a zero for S and an identity for S,
then S is uniquely representable in terms of X and Y where
X and Y are iseomorphic copies of the usual unit interval and
the boundary of S equals X union Y. Corollary. If S is a
uniquely divisible semigroup on the two-cell and if S has only
two idempotents, a zero and an identity, then the nonzero
elements of S form a cancellative semigroup.

A semigroup S is said to be uniquely representable in terms
of two subsets X and Y of Sif XY =Y.-X =8, x5, = 4. is a non-
zero element of S implies z, = 2, and ¥, = ¥,, and y&, = ¥, is a non-
zero element of S implies ¥, = ¥, and x, = «, for «,, x,€ X and ¥,,4.€ Y.
A semigroup S is said to be uniquely divisible if for every se S and
every positive integer n there exists a unique ze S such that 2* = s.

The primary purpose of this paper is to show that if S is a uni-
quely divisible semigroup on two-cell with the set of idempotents of
S being a zero for S and an identity for S, then S is uniquely rep-
resentable in terms of X and Y where X and Y are iseomorphic copies
of the usual unit interval and the boundary of S equals X union Y.
As a corollary to this theorem we shall prove a conjecture of D. R.
Brown, that if S is a uniquely divisible semigroup on the two-cell and
if S has only two idempotents, a zero and an identity, then the non-
zero elements of S form a cancellative subsemigroup of S.

NortaTioN. Throughout S will be a uniquely divisible semigroup
on the two-cell with E(S) (the set of idempotents of S) = {0, 1} where
0 is the zero for S and 1 is the identity for S. It is well known that
the boundary of S is the union of two usual threads X and Y with
XNY={0,1} and S=X.-Y=Y-X. Intervals containing z will repre-
sent segments of X and intervals with y shall stand for segments of
Y. For a positive integer n, s'* will denote the unique nth root of
s in S.
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The authors would like to thank the referee for pointing out the
following result due to J. D. Lawson and M. Friedberg and which
appears in [2].

LeEmMA 1. If T is a wuniquely divisible semigroup with E(T) =
{0, 1}, then T has mo zero divisors.

Proof. Suppose ab = 0 for some a, be T, a#0. Then (ba)* = b(ab)a
=0, hence ba = 0. Thus 0 = ab = a'*(a'’?b) = (a'*b)a'’® = (a'b)(a'*b),
so a?b = 0. It follows that a*"b = 0 for all n. Since {a'**}—1,b = 0.

Define f: X x Y— S onto S by f(x,y) = 2y. The proofs of the
following three lemmas are analogous to the proofs in [3].

LemmA 2. If f(x, y) = f(®,, ¥,) = 0, then either
1) z, =2 and y, =y, or

@2 %> and y, >y, or

3 x> and y, > Y.

LemmA 3. If se S\{0}, then there exist (x,, y,), (%, ¥:) €S (s) such
that for all (x,y) e f'(s) we have x, = x = 2, and ¥, = Y = ¥,.

LemMA 4. If se S\{0}, then w (f"(s)) is connected.
LemmA 5. If se S\{0}, then f~'(s) is an arc.

Proof. Let [, x,] = m,(f'(s)), and define &: [z, x;] — f'(s) by
h(x) = (x, y) where y is the unique y € Y (lemma 2) such that f(z, ¥)
=Js. Now h: [z, ] — f~*(s) is a continuous, one-to-one, onto func-
tion. Thus &: [, @] — f~'(s) is a homeomorphism, and f~'(s) is an
arc.

DEFINITION 6. LetJ = {(z, %) : (z, ¥y) € X x Y and f~(f(x, ¥)) is not
a’ point}.

LemMmA 7. If se f(J), then Xs =sY.

The proof of the above lemma is analogous to the proof of Lemma
10 of [3].

LEMMA 8. If {(z,9):0 =2 <2,0 Sy <y} < J, then {(x,y):0 <
x < 2,0 <y < YN\ (@, vo)} < J. Moreover, for each (2, y') € {(x, y): 0 <
=<2, 0 <y < Y P\{@o, Yo)} there exists T e X such that £ (T, y)) = f(@, ¥').

Proof. Let z,€[0, 2) and fix x,¢ (x, 2,). Then for each y < [0, ¥,)
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we have (x,, y) €J. Select an increasing sequence {z,}, with z, € [0, ¥,)
and 2, — ¥,» Now there exist z,€ X and a sequence {w,}, with w,e Y,
such that zx, = z,, and x,f(%,, 2.) = f(x,, 2,)Ww,. Now {z,w,} is an in-
creasing sequence, and hence it must converge. Let z,w,— y,. Then
S, ¥) = f(@,9), and 0 < v, <y, Hence (x,y,)ecJ. A similar ar-
gument shows (x,, y) €J for y'€[0, y,).

Next let (¢, y)e{®, 9):0 =2 =<2, 0= = y)\{(@, %)}, Select
(@2, ¥o) € {(x, ): 0 = 2 < @, 0 =y <o} such that f(x,, v.) = f(x, ¥)- Now
(x, ¥o) €J. Fix y,eJ such that yy, =y, By Lemma 7 there exists
z,€ X such that x.f(x,, %) = f(®., ¥)y;. Letting z, = a2, we have

f@, yo) = f(@s, o) = fy, y)-
COROLLARY 9. If (x,1), A, y) e, then x =0 or y = 0.

Proof. Since (x,1), (1, y)eJ there exist x,€ X, y,€ Y such that
zf(z, 1) = f(», Dy and zf(1,y) = f(1, y)y,. Thus zx = yy,. This is
impossible unless x = 0 or y = 0.

’

LEMMA 10. Let xe X\{1},ye Y. Then yx can be written as x'y
with ' e X\{1}, 9y’ Y.

Proof. If y =0 the result is clear. Thus we will assume y¢
Y\{0}. We will divide the proof into several steps.

Step (1). Since S= Y-X = X-Y we know that there exist x, ¢
X\{1}, . € Y such that y2x, ¢ YUY, and thus there exist x,e X\{1}, v
€ Y such that y2, = 2.9,.

Step (2). Let y;€ Y with y; = y,. Then there exists y,€ Y such
that vy, = ¥, Thus yyx, = yx. ¢ XUY. Hence yx,¢ Y.

Step (3). We claim that for y,¢ [y, 1] and % a positive integer,
yxi*¢ Y. For if this were not the case there would exist a positive
integer n and a ¥, €[y, 1] such that yx/* = y;€ Y. But by Lemma
2, ¥ < ¥;. Thus there exists y, € Y\{1} such that y,;, = y,. Hence
Ys(@i™)" = gyl (@) = gl = yys(al”)* T = - = yry;€ Y. Thus
yx,€ Y. This is a contradiction.

Step (4). Let xe X\{1}. Then for y, e[y, 1] we claim %, can be
represented as x,y, with x,e€ X\{1}, and y;e Y. Choose n a positive
integer such that z!/" € [z, 1]). Then there exists x, € X such that z!/"x,
= 2. Thus yx = yx/"x,., However, y,x'"¢ Y, and hence y,x can be
written as ayy, with 2,¢ X\{1}, and y,e Y.

Step (5). Finally, let xe X\{1} and ye Y. If y =1, then yz =
2y and ze X\{1} and ye Y. If ye Y\{0, 1}, then there exist a positive
integer m and y, € [y, 1) such that y = (y)". Now yx = (y,"x = z'y/’
with «’e X\{1}, and y'e Y.
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The same argument can be used to show that if e X and y¢
Y\{1}, then xy can be written as %'z’ with 2’e X and »’'e Y\{1}.

THEOREM 11. If se S\{0}, then there exist unique xc X, ye Y such
that xy = s.

Proof. Suppose this is not the case. Then there exist z, € X {0, 1},
¥, € Y\{0, 1} such that (x, y)eJ. From corollary 9 we can assume
{,y):ye Y\{O}NJ = ¢. Let x, = sup {=: (x, y) €J}. Now x,€(0,1)
and {(z,9):0 <2 < 1,0 < y < yJ\{(&, w)} © J.

Next take x,€ (x,, 1). Then there exist x,€ X\{0,1}, y,€ Y such
that ¥, = vy, If 2,€(0, ], fix x;€ (2, ). If 2, € (2, 1), fix ;€ (2,
min {x,, x,/x,})) where x,/x, represents the unique element p of X such
that px, = »,. Take y,€(y,1). Then there exist z,¢ X, y; ¢ Y\{0, 1}
such that yw, = oy If ¥,€ (0, %] fix v, € (W, v2). I ye(w, 1), fixy,
€ (yu min {ym y1/y6})-

For each z ¢ [x,, ;] we have (xy,)* = «'y’ with 2’ (0, z,] and ¥’ €
0, v,]. By lemma 8 there exists a unique Z € (0, #,] such that (zy,)* =
a'y’ = Ty,. Hence we can define a function x —Z from [x,, x;] into
(0, ,]. The function x — Z defined above is continuous and monotone
and thus maps [z,, ;] onto an interval [Z,, %].

Also for yely, y,] we have (xy)* = Zy with Ze(0,2,] and Fe
0, v.]. Again by lemma 8 there exists a unique x(y) € (0, x.] such that
(%) = ¥ = 2(y)y.. Thus we can define a function y — x(y) from
[y., ] into (0, #,] which is continuous and monotone and hence maps
[4:, ¥:] onto an interval [z(y), z(y,)].

Now (z)° = %y, and (x.)* = «(y)y,. Hence Z, = x(y,), so the
intervals (Z,, Z;] and (x(y,)), 2(%:)] intersect. Thus there exist x € (x,, 2]
and y ¢ (v, ¥;] such that (vy)* = (x,y)>. However, (z,y,)¢J, thus xy,
#u,y. This is a contradiction.

In the same manner we can show that each element se S\{0} can
be written uniquely as yx with ye Y and ze X.

LEMMA 12. Let T be a semigroup without zero divisors, E(T) =
{0, 1}, and which is wuniquely representable in terms of two usual
threads X and Y. Then T\{0} is cancellative.

Proof. Let s,s,s,e€T\{0} with s =y, s =2y, s = &y, with
x, %, %X, Y, Y, ¥.€ Y, and suppose ss, = ss,. Then xyx.y, = 2yr.y,.
Now let yx, = 7,4, and yx, = T,J,. Thus 2Z.%.y, = *%,¥,Y,. Since T is
uniquely representable we get that Z, = %, and thus x, = x,. This
implies %, = ¥, and hence y, = ¥,. Hence s, = s,. In the same manner
we can show that if s, s, s,e T\{0} with s;s = s,5, then s, =s,. Thus
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T\{0} is cancellative.

COROLLARY 13. If S is a uniquely divisible semigroup on the two-
cell with E(S) = {0, 1}, then S\{0} is a cancellative semigroup.
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