GENERATORS OF THE MAXIMAL IDEALS OF $A(\bar{D})$

NILS ØVRELID

Let $A=A(\bar{D})$ be the sup norm algebra of functions continuous in \bar{D} and holomorphic in D, where D is a bounded, strictly pseudoconvex domain in C^n . This paper gives necessary and sufficient local conditions that a subfamily of A generates the maximal ideal $\mathscr{M}_w(\bar{D})$ of functions in A vanishing at $w\in \bar{D}$. In particular, it shows that $\mathscr{M}_w(\bar{D})$ is generated by z_1-w_1,\cdots,z_n-w_n when $W\in D$.

In [3], Gleason shows that if m is an (algebraically) finitely generated maximal ideal of a commutative Banach algebra A, the maximal ideal space \mathcal{M}_A can be given an analytic structure near m, in terms of which the Gelfand transforms of the elements of A are holomorphic functions.

In a sense, the results of this paper go in the opposite direction. We consider a bounded domain D in C^n , with C^2 strictly pseudoconvex boundary, and study the algebra $A=A(\bar{D})$ of functions continuous on \bar{D} and holomorphic in D. By a recent result, Henkin [4], Kerzman [7], Lieb [9], A equals the closure in $C(\bar{D})$ of the algebra $O(\bar{D})$ of functions holomorphic in some neighbourhood of \bar{D} , from which it follows that $\mathcal{M}_A \approx \bar{D}$.

We first fix the notation. If $w \in \overline{D}$, \mathscr{M}_w denotes the maximal ideal of the ring O_w of germs of holomorphic functions at w, while $\mathscr{M}_w(\overline{D})$ is the maximal ideal in A of functions vanishing at w. If f is a function on some neighbourhood of w, f_w denotes the germ of f at w.

THEOREM 1. Let $w \in D$, and $f_1, \dots, f_N \in A$. Then f_1, \dots, f_N generate $\mathscr{M}_w(\bar{D})$ if and only if

- (1) f_{1_w}, \dots, f_{N_w} generate \mathcal{M}_w , and
- (2) w is the only common zero of f_1, \dots, f_N in \bar{D} .

COROLLARY. If $w \in D$, $z_1 - w_1, \dots, z_n - w_n$ generate $\mathscr{M}_w(\bar{D})$.

Below we give the more general theorem 2, which also gives a similar characterization of generators of $\mathscr{M}_w(\bar{D})$ when $w \in \partial D$. When n=2, Kerzman and Nagel [8] have shown that z_1-w_1 and z_2-w_2 generate $\mathscr{M}_w(\bar{D})$ when $w \in D$, as well as similar results for algebras with Hölder norms. I want to thank Dr. Kerzman for sending me a copy of his thesis [7], where these results are stated.

The main tool in the proof is the following result, which is proved in [11]:

LEMMA 1. Suppose $u \in C^{\infty}_{(0,q)}(D)$ is bounded, with $\bar{\partial}u = 0$, $q \ge 1$. Then there exists a $v \in C^{\infty}_{(0,q-1)}(D)$ with $\bar{\partial}v = u$, such that v has a continuous extension to \bar{D} .

A closely related result is given in Lieb [10], while a stronger result for (0, 1)-forms, involving Hölder estimates, is given in Kerzman [7].

It is convenient to prove first a more general result. If U is open in \overline{D} , let H(U) denote functions in C(U) that are holomorphic in $D \cap U$. When $w \in \overline{D}$, we define $H_w = \varinjlim_{U \ni w} H(U)$, so H_w is the space of germs at w of continuous functions on \overline{D} that are holomorphic in D. It is easy to see that H is the sheaf of A-holomorphic functions in the sense of [2].

PROPOSITION 1. Let D be as above, $w \in \overline{D}$, and suppose f_1, \dots, f_N have w as their only common zero. We let I denote the ideal in A generated by f_1, \dots, f_N , and I_w the ideal in H_w generated by f_{1w}, \dots, f_{Nw} . If $f \in A$ and $f_w \in I_w$, then $f \in I$.

Proof. By assumption, we may write $f = \sum_{i=1}^N g_i \cdot f_i$ on a neighbourhood U of w in \overline{D} , with $g_1, \cdots, g_N \in H(U)$. We want to write $f = \sum_{i=1}^N h_i \cdot f_i$, with $h_1, \cdots, h_N \in A$, and shall first solve the problem differentiably. As the sets $N_i = \{z \in \overline{D} \setminus \{w\}: f_i(z) = 0\}, \ i = 1, \cdots, N$, are closed in $C^n \setminus \{w\}$, it is well known how to construct $\widetilde{\varphi}_1, \cdots, \widetilde{\varphi}_N$ with $\widetilde{\varphi}_i = 0$ on a neighbourhood of $N_i, i = 1, \cdots, N$, that form a C^∞ partition of unity on $C^n \setminus \{w\}$. Choose $\varphi_0 \in C_0^\infty(U')$, where $U' \cap \overline{D} = U$, with $\varphi_0 = 1$ on a neighbourhood U_1 of W, and define $\varphi_i = (1 - \varphi_0) \cdot \widetilde{\varphi}_i, \ i = 1, \cdots, N$.

If we define

$$g_i' = arphi_0 {m \cdot} g_i + rac{arphi_i {m \cdot} f}{f_i}, ext{ clearly } \sum\limits_{i=1}^N g_i' {m \cdot} f_i = f ext{ on } ar{D}.$$

The $g_i's \in C^{\infty}(D) \cap C(\overline{D})$, and are holomorphic in $U_1 \cap D$.

We want to use Lemma 1 to modify the g_i 's to get h_i 's in A. To handle the combinatorial difficulties, we apply the homological argument of [6].

NOTATION. $L_r=\{u\in C^{\infty}_{(0,r)}(D),\ u\ \text{and}\ \bar{\partial}u\ \text{have bounded coefficients}\},$ while $L^s_r=L_r\bigotimes_{C} {igwedge}^sC^N,\ 0\leqq r,s.$

If we choose a basis e_1, \dots, e_N in C^N , the elements in L^s may be written uniquely as $\sum_{|I|=s} u_I \otimes e^I$, where $u_I \in L_r$, $e^I = e_{i_1} \wedge \dots \wedge e_{i_s}$, and we sum over strictly increasing sequences $I = (i_1, \dots, i_s)$. We define $\bar{\partial}$ on L^s by $\bar{\partial}(u \otimes \omega) = (\bar{\partial}u) \otimes \omega$ and linearity. Clearly

 $\bar{\partial} L^s_r \subset L^s_{r+1}$, and lemma 1 gives:

LEMMA 1'. If $k \in L_r^s$ and $\bar{\partial} k = 0$, $r \ge 1$, there exists a $k' \in L_{r-1}^s$, such that $\bar{\partial} k' = k$, and k' has a continuous extension to \bar{D} .

The product determined by $(u \otimes \omega) \cdot (u' \otimes \omega') = (u \wedge u') \otimes (\omega \wedge \omega')$ is clearly a bilinear map $L_r^s \times L_{r'}^{s+s'} \to L_{r+r'}^{s+s'}$.

Let e_1^*, \dots, e_N^* be the reciprocal basis to e_1, \dots, e_N , so $\langle e_i^*, e_j \rangle = \delta_{ij}$. We define $P_f: L_r^s \to L_r^{s-1}$ by

$$P_{f}(d\otimes\omega)=\sum\limits_{i=1}^{N}\left(f_{i}\!\cdot\!u
ight)\otimes\left(e_{i}^{*}\;\;\!\!\!\perp\omega
ight)$$
, and linearity.

(For the definition of], se [12] Ch. 1.)

 P_f : $L_r^1 o L_r^0$ maps $\sum_{i=1}^N u_i \otimes e_i$ to $\sum_{i=1}^N f_i \cdot u_i$; in particular, $P_f g' = f$, when $g' = \sum_{i=1}^N g_i' \otimes u_i$.

A simple computation gives $P_f^2=0$, while the derivation property of \mid gives

$$(i) P_f(k \cdot k') = (P_f k) \cdot k' + (-1)^s k \cdot P_f k'$$

when $k \in L_r^s$.

Let $M_r^s = \{k \in L_r^s : k|_{U_1} = 0\}$.

LEMMA 2. The complex $0 \leftarrow M_r^0 \xrightarrow{P_f} M_r^1 \xrightarrow{P_f} \cdots \xrightarrow{P_f} M_r^N \leftarrow 0$ is exact.

Proof. Let $\varphi \in C^{\infty}(C^N)$ be zero near w and one outside U_1 . We put $k_0 = \sum_{i=1}^N (\varphi \cdot \widetilde{\varphi}_i)/f_i \otimes e_i$. Clearly $k_0 \in L_0^1$, and $P_f k_0 \in L_0^0$ is identically one in $D \setminus U_1$. If $k \in M_r^s$ and $P_f k = 0$, $k_0 \cdot k \in M_r^{s+1}$, and by (i), $P_f(k_0 \cdot k) = (P_f k_0) \cdot k = k$.

As f_1, \dots, f_N are holomorphic in D, P_f and $\bar{\partial}$ commute.

LEMMA 3. If $k \in M_r^s$ and $P_f k = \bar{\partial} k = 0$, there exists a $k' \in L_r^{s+1}$, with $P_f k' = k$ and $\bar{\partial} k' = 0$.

This is trivially true when r>n, and the proof goes by downward induction on r. Suppose the lemma is valid for r+1. By Lemma 2, there exists a $k_1\in M_r^{s+1}$ with $P_fk_1=k$. Clearly $\bar{\partial}M_r^{s+1}\subset M_{r+1}^{s+1}$, while $P_f\bar{\partial}k_1=\bar{\partial}P_fk_1=0$. Using the induction hypothesis, we can find $k_2\in L_{r+1}^{s+2}$ with $P_fk_2=\bar{\partial}k_1$ and $\bar{\partial}k_2=0$. By Lemma 1', $k_2=\bar{\partial}k_3$, with $k_3\in L_r^{s+2}$. If we put $k'=k_1-P_fk_3$, we get $k'\in L_r^{s+1}$, with $\bar{\partial}k'=\bar{\partial}k_1-P_f\bar{\partial}k_3=0$, and $P_fk'=P_fk_1-P_f^2k_3=k$. This completes the induction step.

Proof of Proposition 1. As the g_i' s are holomorphic in $U_1 \cap D$, $\bar{\partial}g' \in M_1^1$. Applying Lemma 1' and Lemma 3, we find a $k \in L_0^2$, with $\bar{\partial}P_fk = P_f\bar{\partial}k = \bar{\partial}g'$, such that k is continuous on \bar{D} . If $h = g' - P_fk$, $\bar{\partial}h = 0$. Writing $h = \sum_{i=1}^N h_i \otimes e_i$, this means that $h_1, \dots, h_N \in A$, and $\sum_{i=1}^N h_i \cdot f_i = f$.

THEOREM 2. Let $w \in \overline{D}$, and let M_w denote the unique maximal ideal of H_w . The family $(f_i)_{i \in I}$ in A generates $\mathscr{M}_w(\overline{D})$ if and only if

- (1) $(f_{i_w})_{i \in I}$ generates M_w , and
- (2) w is the only common zero of functions f_i in \bar{D}

Proof. I. The sufficiency of (1) and (2): If $f \in \mathscr{M}_w(\overline{D})$, we have $f_w \in M_w$, and by (1) f_w belongs to some ideal $[f_{i_1 \cdot w}, \cdots, f_{i_M, w}]$. As $(z_1 - w_1)_w, \cdots, f(z_n - w_n)_w$ belong to M_w , the functions $z_i - w_i$; $i = 1, \cdots, n$, may be expressed as linear combinations of functions $f_{i_{M+1}}, \cdots, f_{i_P}$ in the family on some open neighbourhood V of w in \overline{D} . Then $f_{i_{M+1}}, \cdots, f_{i_P}$ have w as their only common zero in V. By condition (2) and the compactness of $\overline{D} \setminus V$, there exist $f_{i_{P+1}}, \cdots, f_{i_N}$ in the family with no common zeroes outside V. Now proposition 1 implies that $f \in [f_{i_1}, \cdots, f_{i_N}]$.

II. The necessity of (1) and (2): If $(f_i)_{i\in I}$ generate $\mathscr{M}_w(\overline{D})$, condition (2) follows from the fact that A separates points in \overline{D} . Condition (1) follows from

PROPOSITION 2. The germs at w of elements in $\mathscr{M}_w(\bar{D})$ generate $M_w.$

The following proof of Proposition 2 was kindly communicated to me by Dr. R. M. Range, and replaces a more complicated argument of my own:

When $w\in D,\ z_1-w_1,\cdots,z_n-w_n$ generate $\mathscr{M}_w=M_w$. Thus we may assume $w\in \partial D$, and consider an $f\in H(U\cap \bar D)$ with f(w)=0, where U is some neighbourhood of w in C^n . We choose $\varphi\in C_0^\infty(U)$ such that $\varphi\equiv 1$ on a smaller neighbourhood V of w. As D is strictly pseudoconvex, we may extend it inside V to a strictly pseudoconvex domain D' containing w. As $\bar\partial(\varphi\cdot f)$ vanishes on $V\cap D$, it may be extended by zero to a smooth, bounded, $\bar\partial$ -closed (0,1)-form ω on D'. By Lemma 1, the equation $\bar\partial g=\omega$ has a solution in $C^\infty(D')\cap C(\bar D')$, and we may assume g(w)=0. As g is holomorphic in $D'\cap V$, we may write it near w as $g=\sum_{i=1}^n g_i(z_i-w_i)$, with g_1,\cdots,g_n holomorphic. Thus $f_w=(\varphi\cdot f-g)_w+\sum_{i=1}^n g_{i_w}(z_i-w_i)_w$, and $\varphi\cdot f-g|_{\overline{D}}\in \mathscr{M}_w(\bar D)$.

When $w \in D$ and I is finite, Theorem 2 reduces to theorem 1. If $w \in \partial D$, it follows from Gleason's result that $\mathscr{M}_w(\bar{D})$ is not finitely generated. If M_w were finitely generated, it would by Proposition 2 be generated by finitely many elements of A, which implies by the argument of I that $\mathscr{M}_w(\bar{D})$ must be finitely generated. Thus M_w is not finitely generated when $w \in \partial D$. (This may also be proved in a more direct fashion).

Note. The Corollary to Theorem 1 has also been proved by G. M. Henkin in Bull. Acad. Polon. Sci., 24 (1971) 37-42, and by I. Lieb in Math. Ann., 190 (1970-71) 6-44, which contains a detailed version of [10].

REFERENCES

- 1. J. Dieudonné, Foundations of Modern Analysis, Academic Press 1960.
- 2. T. W. Gamelin, Uniform Algebras, Prentice Hall 1969.
- 3. A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-32.
- 4. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sbornik, 78 (1969), 611-32. (Math. USSR Sbornik Vol. 7 (1969).)
- 5. L. Hörmander, Introduction to Complex Analysis in Several Variables, van Nostrand 1966.
- 6. _____, Generators of some rings of analytic functions, Bull. Amer. Math. Soc., 73 (1967), 943-49.
- 7. N. Kerzman, Hölder and L^p -estimates for solutions of $\bar{\delta u} = f$ in strongly pseudoconvex domains, Comm. Pure. Appl. Math. 24 (1971) 301-80.
- 8. N. Kerzman and A. Nagel, Finitely generated ideals in certain function algebras Journal of Functional Analysis. 7 (1971) 212-15.
- 9. I. Lieb, Ein approximations satz auf streng pseudoconvexen gebieten, Math. Ann., 184 (1969), 56-60.
- 10. _____, Beschränktkeitsaussagen für den d"-operator, Nachr. Ak. Wiss. Gött. II. Math. Phys. Kl. 1970, 1, 7 p.
- 11. N. Øvrelid, Integral representation formulas and L^p -estimates for the $\bar{\partial}$ -equation, (to appear in Math. Scand.).
- 12. S. Sternberg, Lectures on Differential Geometry, Prentice Hall 1964.

Received August 6, 1970. Dr. Range's proof received June 28, 1971.

UNIVERSITETET I OSLO