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COHOMOLOGY OF GROUP GERMS
AND LIE ALGEBRAS

S. SWIERCZKOWSKI

Let = be a continuous representation of a Lie group G in
a finite dimensional real vector space V. Denote by H(G,V)
the cohomology with empty supports in the sense of Sze-tsen
Hu. If L is the Lie algebra of G, n induces an L-module
structure on V and there is the associated cohomology H(L,V)
of Chevalley-Eilenberg. Our main result is the construction
of an isomorphism H(G, V)= H(L,V).

This is preceded by a closer analysis of Hy(G, V). It is clear
from the definition that to know H(G, V), it suffices to know
an arbitrary neighbourhood of 1 in G and its action on V. The
totality of neighbourhoods of 1 in G may be regarded as an object
of a more fine nature than a local group; we call it a group germ.
More precisely, a group germ is defined as a group object in the
category I' of topological germs [18]. The Eilenberg-MacLane defini-
tion [3] of the cohomology of an abstract group is carried over from
the category of sets to I" (i.e., from groups to group germs). Thus
for any group germs g, a, where a is abelian, and any g-action on «,
we have cohomology groups H(g,a). It turns out that HL(G, V) =
H(g, a) for a suitable choice of ¢ and a, in all dimensions > 1. To
cope with dim 0 and 1 it seems convenient to introduce the concept
of an action of a group germ g on an abelian topological group A
and associate with this a cohomology H(g, A). This is only a slight
modification of the previous H(g, a), so that both cohomologies coin-
cide in dimensions >1 and H'(g, A) is a quotient of H'(g,a), if a is
suitably related to A. (H°(g, A) is the subgroup of g-stable elements
of A and H'(g, a) is always trivial). One now has Hy(G, V) = Hi(g, V)
in all dimensions, for a group germ ¢ corresponding to G.

We are grateful to W.T. van Est for his comments on an earlier
version of this paper which have resulted in many improvements.

1. Group germs. Let T be the category of pointed topological
spaces. For A, Be T write A ~ B if and only if there is a Ce T
which is an open subspace of both A and B. Denote by [A] the equiv-
alence class of A. For morphisms f:A— B,f: A’ — B in T write
f=f"ifand only if A= A’, B~ B’ and there is a Ce T which is an
open subspace of both A and A’ such that f|C = f’|C. Denote the
equivalence class of f: A— B by [f]: [A] — [B]. There is now precisely
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one category I whose objects are the equivalence classes [A], the
morphisms are the equivalence classes [f]: [A] — [B], and such that
A—[A], f—1][f] is a functor T— I". I" will be called the category of
topological germs. (For a similar definition see [18]).

LEMMA. The functor T —I" preserves zero objects and finite
products.

We omit the straightforward verification. As a conclusion, all
finite products exist in I". Let S be a zero object in T, i.e., a one-
point set, and denote the zero object [S] in I" by e. Any morphism
in I" which factorizes through ¢ will be denoted by 0.

DEFINITION. A group object in I will be called a group germ.
The category of group germs will be denoted by GrI'.

We recall the definitions. A group object in I” is an object ge I”
together with morphisms p¢: g x g—g, v: g — ¢ such that p(¢ x 1) =
#(@1 x ) (i.e., associativity), v* = id and

gi@mng‘o—x-l—e/Xg .CJ\'(;’,T)) g>|<g<———g
AN Iz /=, 0\ © /0

N J / AN
NS
g , g

(r; are the product projections; all diagrams drawn are assumed to
commute). A morphism g — ¢’ in Grl” is a @:g— ¢’ in I" such that
W@ x @) =pu and Vo = py.

Let 4 be the category of local topological groups. Following
(I8], p- 393) we mean by a local topological group an abstract local
group in the sense of Malcev [15] together with a topology on the
set @ of its elements such that the map (x, ) — xy~* is continuous
on the domain of its definition and that domain is open in @ X Q.
A morphism @ — Q' in 4 is an f: Q— Q' in T such that f(x)f(y) is
defined whenever xy is defined, and if defined, f(x)f(y) = flzy).

Define a functor U: 4 — GrI” as follows. Given Q¢ 4, let j(x) = &
and @z, y) = xy, the domain of ® being an open subspace D of Q X @,
so that [D] = [Q] x [Q] (cf. Lemma). Let UQ be the topological germ
[Q] together with the morphisms v = [5]: [Q] — [Q], # = [#]: [Q] x
[Q] = [Q] in I". Then UQe GrI’. For a morphism fin 4 put Uf = [f].

PROPOSITION. For each ge Grl' there exists a Qe A such that
g=UQ.

Proof. Suppose g = [A], Ae T and denote the base point of A
by 1. The definition of a group object in I" implies the existence of
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open neighbourhoods P, V, W of 1 in A such that PC VC W and
(i) there exists @: W x W — A such that p = [¢],
(ii) there exists j: V— W such that v = [j],
(iii) (@), ) = ¢(x,j(®) =1, ¢(x,1) = ¢(1,2) =« and both
@(x, P(y, 2)), P(P(x, ¥), 2) are defined and equal for all x,y,z¢c V,
(iv) j(P)c V and PW V—j—> P is the identity on P.

Put @ = PN j7'(P). Then j{(Q) C @ and j* = identity on Q. Define
! = j(x). For any x,yc@Q say that zy is defined if and only if
@(x, y¥) € @, and if this is so, put 2y = @(x, y). Then Qe 4 and g = UQ.

2. Cohomology of group germs. Let 7:g X g—g X g be the
transposition morphism of the product. Call ge GrI" abelian if g x
g —9 X g gequals #. Note that for such g and any beT', hom.(3, )
has a structure of an abelian group (obtained by applying the functor
hom (b, —): I' — Sets to the diagrams defining g).

Given a, g€ GrI’, where a is abelian, call a: g X a — a a g-action
on q if

a X a X X a X a — g X a X X a
g% I 1, 1)><1><lg g I1xzXx1 g Ig
llxy laXa
gxXa a a X a y

a 1

gX?xa#—x?gTa
11><a Ja l
J(o 1)\
gxa———a ,
a g X a

——‘—>a.

Given such g-action, put @ = hom,(g", a), where g" = g X--+X g
(n = 1 times). Define §,: 0" — @"*';4 =10, ---,n + 1, by putting for
each @ ¢ 0",

0Pig X g" —> g X a—a,
1Xo a

0P g X G X G e gt i = L e

Op P g” X g—— g" —a, (m, = first projection).
1 3

Then each 6; is a morphism of abelian groups. (This is easily shown
for 42 > 0; for © = 0 one needs the first diagram in the definition of a
g- action). Now let 6@ = Dcicai(—1)6,2. By direct verification (or
by the proof of the Theorem in §4) one sees that 6% = 0.
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DEFINITION. For any g-action on a, H(g, @) will denote the coho-

mology of 0 > O > @* 5

REMARK. It is not hard to see that for any g-action on a one
can find Q, Ae 4, A abelian, and a Q-action on A in the sense of
([12], p. 40) such that ¢=UQ, a=UA and a=[m], where m(x, p)=xp
whenever the latter is defined for xe @, Pec A. Moreover H(g, a) =~
H,(Q, A) = the local cohomology defined in ([12], p. 42).

3. Cohomology with coefficients in a group. Suppose that
there are given Qe 4, an abelian topological group A and a morphism
m:Q@x A—A in T. Then m will be called a Q-action on A if,
denoting m(x, p) by xp,

(i) «(p, + p) = ap, + ap, for all xe Q; p, v, € 4,

(ii) 2(xp) = (x.25)p Whenever x,x, is defined in @,

(iii) 1p = p for all pec A.

Call such Q-action m on A equivalent to a @Q'-action m' on A if
and only if there is an Se 4 such that S is an open local subgroup
of both @ and @ and m|S x A =m'|S x A. An equivalence class
of Q-actions will be called a g-action, where g is the common value
of UQ for all Q-actions in that class. Any Q-action in the class will
be called a representative of the g-action.

Given any g-action on 4, put a = UA and let a:g x a—a be
equal to [m]: [Q] X [A] — [A] where m:Q x A— A is any of its re-
presentatives. Then a is a g-action on a. Define 6% A — @', where
@' = hom,(g, @), as follows. For m:Q x A— A as above, consider
the map A — hom,(Q, A) assigning to pe A the map Q@ — A given by
2 +— m(x, p) — p, for all te Q. The image of @ +— A under the functor
T—1TI is in @'; denote it by 6°p. Then § is a morhism of abelian
groups depending only on the g-action on A. Moreover one verifies
easily that 06° = 0, where §: @' — @* was defined in § 2.

DEFINITION. For any g-action on A, H(g, A) will denote the

cohomology of @:0 A = ot 5 @? —

There is a description of H(g, A) using the local group cohomology
of W. T. van Est. For Qe 4, an abelian topological group A and a
Q-action m on A, let H(Q, A) be the cohomology defined as in [8] (or,
in terms of cotriads, in [19]), but based on continuous cochains. Any
@'-action m’ on A such that @ cQand m| Q" x A = m’ will be called
contained in m. If this is so, the restriction of cochains yields a
map H(Q, A) — HQ', A).

PROPOSITION. For any g-action on A, H(g, A) = lim_, H(Q, A),
the direct limit being taken over the partially ordered by inclusion
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(and directed) set of all Q-actions on A representing the g-action.

4. Cohomology of enlargeable group germs. A group germ
g will be called enlargeable if and only if there exists a group Ge 4
such that ¢ = UG. Such G will be called an enlargement of g.

LEMMA. Suppose g ts an enlargeable group germ and there is
given a g-action on an abelian topological group A. Then there exists
an enlargement G of g and a G-action on A which represents the
g-action.

Proof. Suppose m:Q x A— A, where Qe /A, represents the g-
action. Replacing @ by a sufficiently small neighbourhood of 1, if
needed, we may assume that @ is enlargeable (i.e., @ is a local
subgroup of a group; [8], p. 393). Let G be the abstract group with
the following presentation by generators and relations: @ is the set
of generators and for «,, *++, %, € Q, X, - -2, = 1 is a defining relation
if and only if this equality holds in the local group @, after a suitable
placement of brackets. The enlargeability of @ implies that the
obvious map @ — G is injective; we use it to identify @ with a subset
of G. The topology on @ defines now a fundamental system of neigh-
bourhoods in G ([2], Chapter 2, §II) making G into a topological
group with the open subset Q. For each x¢ Q, define 7™(x): A — A by
w™(x)p = m(x, p), for all pe A. Then 7™: Q@ — Aut (4) is a morphism of
the abstract local group @ into the automorphism group of A. The con-
struction of G implies that there is a group morphism 7: G — Aut (4)
such that 7 | Q@ =7™. If xe G, then © = 2,2, + -2, 2, +++, %, € Q, Whence
w(x) =a™(x)+ -+, T™(x,): A— A is continuous. The continuity of m is
now easily seen to imply that the action m,:G x A— A given by
my(x, p) = 7(x)p is continuous. It evidently represents the g-action.

Given topological groups G, A, where A is abelian, and a G-action
on A, let Hy(G, A) denote the corresponding cohomology with empty
supports ([12], p. 42 and below).

THEOREM. Suppose g is an enlargeable group germ and there is
given a g-action on a finite dimentional real wvector space V. Then
for any enlargement G of g and any G-action on V representing the
g-action, H(g, V) = H(G, V).

Proof. Recall first H;(G, V). Suppose m:G x V-— V is the G-
action. Define 7: G — GL(V) by ©(x)p = m(x, p). Denote by C the com-
plex of V-valued, continuous, inhomogenous cochains on G. That is,
C =P, C" where C° =V and C" is the set of continuous maps
from G X «++ X G (n times) to V, made into an abelian group by
the addition in V. 4:C°— C* is defined by (6p)(x) = w(x)p — p for
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all peC’ and 6: C*— C"*, (n = 1), by

OF) (@5 = v+ s Tusy) = T@)f (@ + 2y Tpiy)
+ > (_l)if(xu Ce ey Wiyttt L)

1Si=n

+ (_l)n—i—lf(xl! tt xn)

for all feC". Call feC" locally trivial if there is a neighbourhood
@ of 1 in G such that f(z, ---,2,) = 0 whenever all z,, -+, 2, are in
Q. The locally trivial cochains form a subcomplex C, of C. Let C be
the quotient complex C/C,. Its cohomology is by definition H5(G, V).

Consider now, for each n = 1, the map C* — @" (see Definition, § 3)
given by f+—[f]. Let C°— @ be the identity. All these maps are
morphisms of abelian groups and they define a cochain map of C into
@. Since G x --- X G 1is completely regular at 1 ([16], p. 29), each
C"» — @™ is an epimorphism. Clearly its kernel is Cr. Therefore the
cochain map C — @ induces an isomorphism C — @.

REMARK. The cohomology of C has been discussed in [4]-[7],
[9], [11], [12] and [17].

5. Cohomology of Lie group germs. A local topological group
@ will be called a local Lie group if the space Q admits an analytic
manifold structure such that the map (x, ) — 2y~ is analytic on the
open submanifold of @ x @ on which it is defined. Any such mani-
fold structure on @ is unique ([10], p. 107).

Let ge GrI’. We shall call g a Lie group germ if g = UQ for
some local Lie group @. The Lie algebra of any such @ will be
called the Lie algebra of g; it is easy to see that the latter is well
defined.

Given a Lie algebra L and an L-module V which is a finite
dimensional real vector space, let H(L, V) denote the Chevalley-
Eilenberg cohomology [1].

THEOREM 1. If g is a Lie group germ with Lie algebra L, then
for every g-action on a finite dimensional vector space V, H(g, V) =~
H(L, V).

Here the L-module structure of V is defined by the g-action as
follows. Let m:Q X V— V, where @ is a local Lie group, be a
representative of the g-action. Define 7™: Q — GL(V) by n™(x)p =
m(x, p). Then 7™ is a morphism of local Lie groups, thus it is
differentiable ([10], p. 107). Its differential at 1 ¢ @ defines a morphism
of their Lie algebras =}: L — gl(V), ([10], p. 102) which does not
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depend on the choice of @. Thus V becomes an L-module.

Since a Lie group germ is known to be enlargeable, it follows
from the considerations in § 4 that, under the assumptions of Theorem
1, there is a Lie group G with a continuous representation 7: G —
GL(V) such that H(g, V) ~Hy(G, V). Thus Theorem 1 will follow
if we show.

THEOREM 2. Given a Lie group G and ©: G — GL(V) a continuous
representation in o fintte dimentional real vector space V, let w,: L —
9(V) be the corresponding morphism of Lie algebras, making V into
an L-module. Then H-(G, V) = H(L, V).

6. Smooth cohomology with empty supports. For the proof
of Theorem 2 we shall need to know that the definition of H-(G, V),
as given in §4, yields the same cohomology if smooth (i.e., indefinitely
differentiable) cochains are used instead of continuous ones. Thus let
«C C C be the subcomplex of smooth cochains and put ,C;, =.,CnC,
dC = dC/ dCl-

PROPOSITION. H(,C) ~ HC) .

Proof. We shall modify a construction due to G. D. Mostow ([17],
p- 33) so that it becomes applicable modulo the locally trivial cochains.

Let K be the complex of V-valued, continuous, homogeneous
cochains on G with homogeneous coboundary (K" = F™(G, V) in the
notation of [17]). Let K, be the subcomplex of locally trivial cochaing
and put K = K/K,. Denote by ,KC K the subcomplex of smooth
cochains and put ,K, = ;KN K,. Then ;K C K induces a cochain map
v of ;K = ,K/,K, into K. The standard isomorphism K ~ C ([3], p. 54)
obviously carries K, and ,K into C, and ,C respectively. Hence it will
suffice to prove that H(v): H(,K) — H(K) is an isomorphism.

Let % denote the family of neighbourhoods of 1 in G, and
choose a sequence @,, @,, ., -+ of real valued smooth functions on G
with compact supports and Haar integral 1 such that for every Qe %
there is a @; whose support is contained in Q. For every 4, define
a cochain map «;: K — ;K by

(@)@ ey ) = | oo Fnd ooy 080200 P,
= SG' °° Lf(fo, ) En)@i(xo—léo)' : '(Pi(a’;;lén)dfo' --ds,

for fe K"; n» = 0. Also define maps u;: K— K of degree —1 by
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(uzf) (030, *t wn—l)
= i (”‘l)jg i 'S f(xor sy Ly xj—x&j’ ttcy xn—x&n)q)i(&')
Jj=1 G G
° 'q)i(‘sn)d‘fj. ¢ 'den,

for fe K*;n =1, and by u,f = 0 for fe K°.
It is easy to see that if fe K;, then there is an ¢ such that a,f
and u;f are in K,. One verifies the identities

(*) f_azfzﬁuzf"_umafv ?::Oylyzy"'

(see [5], §4).

For fe K, let f be its image in K, and if f is a cocycle, let
{f} e HKK) be its class.

To prove that H(v) is epimorphic, suppose that there is given a
cocycle fe K. Then df ¢ K;, whence for a suitable ¢, f—a;f—ou;f ¢ K,.
Therefore {f} = {a;f}. But a;f ¢ K.

To show that H(v) is monomorphic, suppose that f € K is such
that {f} =0. Then there are he K,gec K, such that f— ok =g.
Hence (x) implies

f = a,dh + a9 + ou,f + udg = d(a;h + uif) + (; + w;6)g. Thus,
for suitable ¢, f — d(a;h + w;f) € K;, and since a;h + u;f € K, it follows
that the cohomology class of f in H(,K) is zero.

7. A spectral sequence. Suppose G, 7, V and L satisfy the
assumptions of Theorem 2. By the result of §6, Theorem 2 will
follow if we show that H(,C) = H(L, V). We shall consider a bicom-
plex F, similar to the one defined in [4], §10, and we shall show
that the quotient complex F obtained by factoring out the locally
trivial cochains is such that

(i) the initial term of the first spectral sequence is

‘FE¢ = H(,C) and "Ef =0 forall » >0,
(ii) the initial term of the second spectral sequence is
"H=H(L,V) and "Ef=0 forall s>0.

As well known, this implies H(,C) =~ H(L, V).

We begin by defining F' = @, ,»,"F*. Let L, ---, L, be r copies
of L and G,, +--,G,, s copies of G. Then, for r,s=1,"F* is the
vector space of all smooth maps

LiX eoe XL, XG X oo X G, >V

which are r-linear and alternating in the first » variables. For every
s = 1,°F* is the subspace of ;C* composed of those cochains f which
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satisfy the following local normalization condition: for each fe°F,
there is a Qe % such that f(x, -+, x,) = 0 whenever x,, +++,2,€Q
and at least one x; equals 1. "F° is, for each r» = 1, the space of
V-valued r-linear alternating functions on L, and °F° = V.

For each 2¢G, let p,: G— G be the right translation yi— yx.
Denote by p; the induced map on the tangent bundle. We shall
identify L with the tangent space to G at 1. For each Xe L, X
will denote the right invariant vector field (i.e., satisfying p}X = X
for all #) taking at 1 the value X.

Occasionally an fe’F*® will be interpreted as a differential form
on G, depending on the parameter (z, ++-,2,)eG X ++- X G which,
for fixed value of the parameter, takes at X,---, X, and z,¢G the
value f(X,, -, X,, %, »-+,2,). The morphisms

d1: rFs — H—lFs’ dz: rFs —_ rFs+1

are now defined as follows.
If ferF°, let d.f be given by the formula

(@f)(Xyy - ey X)) = n}k - 5 (D XYK" Ko

1
n+1

+

Z (”l)iﬂf([Xi: Xj]! XL'/.\' y Xn+1)

for every X, «++, X,., € L.
Let fe"F*;s=1. For any fixed ., ---,x,¢ G consider the diff-
erential form @, for which identically

(0/()?1, ey Xr; xl) = ﬂ(xl_l)f(Xu ) X.r! Ly 20y xs) .

Let d.f be the (r + 1)-form whose value at z, is 7(x,)dw,, d being the
exterior derivative ([10], p. 21). One sees easily that d, f e "HF".

Let d,: °F'*—°F'*+' be the coboundary 6 of §4. Finally, let d,: "F'*—
TFt = 1, be given by

()X, ooy Xy @yy o0y Xyi1)
=2 (—1)if(Xu coey Xy @y e, Ty, vy Tayy)
F (=1 AX, ey Xy By ooy )
This completes the definition of F'.

One has dd,=d,d, and d: =d; =0 (4], §10). Moreover the
complex

Ly N r J70 Ll nAY
F: 0 Fszdz

has for » = 1 a contracting homotopy wu:"F**' — "F'* given by
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(uf)(Xu "':Xr, Ly ooy xs) = _f(Xu cty X,.,l,d)l, "'yxs)

(41, 89).

Call a bicochain fe"F'* locally trivial if there exists a @ € % such
that f(X, +++, X,y 2%, »++,2,) =0 for all X, --+, X, eL, %, ++,%,€Q.
Let F be the quotient of F/ by the sub-bicomplex of locally trivial
cochains. Then F is a bicomplex with operators d,, d, induced by
d,, d,. We shall show that it has the properties (i), (ii) stated at the
beginning of this section.

For each » let "F be the complex 0 —"F°—"F'— ... with
coboundary d,, and let for each s, #* be defined similarly.

To obtain (i), one shows first that the inclusion °F C ,C induces
an isomorphism H(°F) — H(;C). This is a consequence of the two
facts

(a) if fe,C and df is locally trivial, then f is cohomologous in
.C to some he'F,

(b) if fe'F and f — dg is locally trivial for some g e ,C, then
there exists an he’F such that f — oAk is locally trivial.

The proof of (a) and (b) is easily obtained from that of Lemmas
6.1 and 6.2 in [3], p. 62. One concludes that °E* = H*(,C), for the
first spectral sequence. Since each "F,r =1, has a contracting
homotopy % induced by u, "Ef =0 for r = 1.

To prove (ii) observe first that F° = F° and H(F°) = H(L, V), by
definition. Hence "E? = H"(L, V) for the second spectral sequence.

It remains to show that for each s > 1, F’* is an acyclic complex.
Let fe"F* be such that d,f is locally trivial. Thus there is a Qe %
such that for each z,, ---, 2, € @ the (r + 1)-form dw; vanishes identi-
cally on @. We may assume that Q is diffeomorphic to a Euclidean
ball.

For » =0, the condition dw, =0 on @ implies that w(z")f(x,, « -, x,)
does not depend on z, when 2, -+, x, € Q. Consequently, by the local
normalization condition, f is locally trivial. Hence d,: °F*—'F* is a
monomorphism.

For » = 1, and any &, -, @, € G, the restriction w,| @ is a closed
r-form on Q. Hence the Poincaré lemma ([13], p. 87) implies the
existence of an (r — 1)-form z¢ on @ such that dy = ;. The proof
of Poincaré lemma shows that p¢ depends smoothly on the parameter
(@ =++,2,) €Q X -+ X @ (Where smoothness is understood in the sense
of [7], §1). Let @ be a smooth real-valued function on G, identically
equal to 1 in some neighbourhood of the identity and vanishing outside
some neighbourhood of the identity whose closure is contained in Q.
For each x,, ---,2,€G, let h be the (r — 1)-form on G which at z, e G
takes the value @@)e(x.) --- o(x,)7(x)t when z,+--,2,€Q and 0
otherwise.
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Recalling the interpretation of “F* as the space of r-forms depend-
ing on the parameter (%, .-+, %) €G X -+ X G, we see readily that
he™F*. Moreover the construction guarantees that f — d.. is locally
trivial. Thus F° is exact at "F* and the proof of Theorem 2 is
complete.

8. Explicit form of the isomorphism. We shall describe the
isomorphism H(,C) =~ H(L, V), i.e., HCF) =H(F°). Let Tot F be the
total complex of F' ([14], p. 340). For fe'F",n=1,1<j<n and
Xe L denote by 0;(X)feF™" the derivative in the direction X with
respect to the jth variable at «; = 1. Define maps ™" "F" — "F"™;
r=20,1,--,n by v™° = identity, and for » = 1

(Tn’rf)(Xn R Xr’ Lriry *° % x'”)
= (Z sgn (?:1’ ctty @r)al(Xn) tte aT(X‘Zr)f)(mr—n ) xﬂ) ’

where > ranges over all psrmutations of (1, ---,7). It is shown in
[4], p. 500 that the maps " = D, <, %" "F" — (Tot F)* define a
cochain map 7: °F — Tot F. Let 7:°F — Tot F' be induced by z. Denote
by 7., P. the projections Tot FF — F°, Tot F'— °F. These are evidently
cochain maps and from the behaviour (i), (ii) of the spectral sequences
it follows that H(p,), H(p.) are isomorphisms. Now 7,7 is the identity,
thus H(7): HCF) — H(Tot F) is an isomorphism, whence the same is
true about H(p,7): HCF) — H(F°). Clearly p.T |°F" = 7*".
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