## COHOMOLOGY OF GROUP GERMS AND LIE ALGEBRAS

## S. ŚWIERCZKOWSKI

Let  $\pi$  be a continuous representation of a Lie group G in a finite dimensional real vector space V. Denote by  $H_{\square}(G,V)$  the cohomology with empty supports in the sense of Sze-tsen Hu. If L is the Lie algebra of G,  $\pi$  induces an L-module structure on V and there is the associated cohomology H(L,V) of Chevalley-Eilenberg. Our main result is the construction of an isomorphism  $H_{\square}(G,V) \simeq H(L,V)$ .

This is preceded by a closer analysis of  $H_{\square}(G, V)$ . It is clear from the definition that to know  $H_{\square}(G, V)$ , it suffices to know an arbitrary neighbourhood of 1 in G and its action on V. totality of neighbourhoods of 1 in G may be regarded as an object of a more fine nature than a local group; we call it a group germ. More precisely, a group germ is defined as a group object in the category  $\Gamma$  of topological germs [18]. The Eilenberg-MacLane definition [3] of the cohomology of an abstract group is carried over from the category of sets to  $\Gamma$  (i.e., from groups to group germs). for any group germs g, a, where a is abelian, and any g-action on a, we have cohomology groups H(g, a). It turns out that  $H_{\square}(G, V) \simeq$ H(g, a) for a suitable choice of g and a, in all dimensions > 1. To cope with dim 0 and 1 it seems convenient to introduce the concept of an action of a group germ g on an abelian topological group Aand associate with this a cohomology H(g, A). This is only a slight modification of the previous H(q, a), so that both cohomologies coincide in dimensions >1 and  $H^{1}(g,A)$  is a quotient of  $H^{1}(g,a)$ , if a is suitably related to A.  $(H^0(g, A))$  is the subgroup of g-stable elements of A and  $H^0(g,a)$  is always trivial). One now has  $H_{\square}(G,V)\simeq H(g,V)$ in all dimensions, for a group germ g corresponding to G.

We are grateful to W.T. van Est for his comments on an earlier version of this paper which have resulted in many improvements.

1. Group germs. Let T be the category of pointed topological spaces. For  $A, B \in T$  write  $A \simeq B$  if and only if there is a  $C \in T$  which is an open subspace of both A and B. Denote by [A] the equivalence class of A. For morphisms  $f: A \to B, f': A' \to B'$  in T write  $f \simeq f'$  if and only if  $A \cong A'$ ,  $B \simeq B'$  and there is a  $C \in T$  which is an open subspace of both A and A' such that  $f \mid C = f' \mid C$ . Denote the equivalence class of  $f: A \to B$  by  $[f]: [A] \to [B]$ . There is now precisely

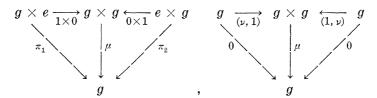
one category  $\Gamma$  whose objects are the equivalence classes [A], the morphisms are the equivalence classes  $[f]: [A] \to [B]$ , and such that  $A \mapsto [A]$ ,  $f \mapsto [f]$  is a functor  $T \to \Gamma$ .  $\Gamma$  will be called the category of topological germs. (For a similar definition see [18]).

LEMMA. The functor  $T \rightarrow \Gamma$  preserves zero objects and finite products.

We omit the straightforward verification. As a conclusion, all finite products exist in  $\Gamma$ . Let S be a zero object in T, i.e., a one-point set, and denote the zero object [S] in  $\Gamma$  by e. Any morphism in  $\Gamma$  which factorizes through e will be denoted by 0.

DEFINITION. A group object in  $\Gamma$  will be called a group germ. The category of group germs will be denoted by  $Gr\Gamma$ .

We recall the definitions. A group object in  $\Gamma$  is an object  $g \in \Gamma$  together with morphisms  $\mu$ :  $g \times g \to g$ ,  $\nu$ :  $g \to g$  such that  $\mu(\mu \times 1) = \mu(1 \times \mu)$  (i.e., associativity),  $\nu^2 = id$  and



 $(\pi_i \text{ are the product projections; all diagrams drawn are assumed to commute). A morphism <math>g \to g'$  in  $Gr\Gamma$  is a  $\varphi \colon g \to g'$  in  $\Gamma$  such that  $\mu'(\varphi \times \varphi) = \varphi \mu$  and  $\nu'\varphi = \varphi \nu$ .

Let  $\Lambda$  be the category of local topological groups. Following ([8], p. 393) we mean by a local topological group an abstract local group in the sense of Malcev [15] together with a topology on the set Q of its elements such that the map  $(x, y) \mapsto xy^{-1}$  is continuous on the domain of its definition and that domain is open in  $Q \times Q$ . A morphism  $Q \to Q'$  in  $\Lambda$  is an  $f: Q \to Q'$  in T such that f(x)f(y) is defined whenever xy is defined, and if defined, f(x)f(y) = f(xy).

Define a functor  $U: \Lambda \to Gr\Gamma$  as follows. Given  $Q \in \Lambda$ , let  $j(x) = x^{-1}$  and  $\varphi(x, y) = xy$ , the domain of  $\varphi$  being an open subspace D of  $Q \times Q$ , so that  $[D] = [Q] \times [Q]$  (cf. Lemma). Let UQ be the topological germ [Q] together with the morphisms  $\nu = [j]: [Q] \to [Q], \ \mu = [\varphi]: [Q] \times [Q] \to [Q]$  in  $\Gamma$ . Then  $UQ \in Gr\Gamma$ . For a morphism f in  $\Lambda$  put Uf = [f].

PROPOSITION. For each  $g \in Gr\Gamma$  there exists a  $Q \in \Lambda$  such that g = UQ.

*Proof.* Suppose g = [A],  $A \in T$  and denote the base point of A by 1. The definition of a group object in  $\Gamma$  implies the existence of

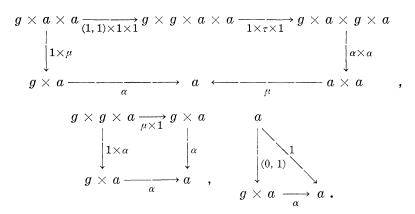
open neighbourhoods P, V, W of 1 in A such that  $P \subset V \subset W$  and

- (i) there exists  $\varphi \colon W \times W \to A$  such that  $\mu = [\varphi]$ ,
- (ii) there exists  $j: V \rightarrow W$  such that  $\nu = [j]$ ,
- (iii)  $\varphi(j(x), x) = \varphi(x, j(x)) = 1$ ,  $\varphi(x, 1) = \varphi(1, x) = x$  and both  $\varphi(x, \varphi(y, z)), \varphi(\varphi(x, y), z)$  are defined and equal for all  $x, y, z \in V$ ,
  - (iv)  $j(P) \subset V$  and  $P \xrightarrow{j|P} V \xrightarrow{j} P$  is the identity on P.

Put  $Q = P \cap j^{-1}(P)$ . Then  $j(Q) \subset Q$  and  $j^2 =$  identity on Q. Define  $x^{-1} = j(x)$ . For any  $x, y \in Q$  say that xy is defined if and only if  $\varphi(x, y) \in Q$ , and if this is so, put  $xy = \varphi(x, y)$ . Then  $Q \in \Lambda$  and g = UQ.

2. Cohomology of group germs. Let  $\tau: g \times g \to g \times g$  be the transposition morphism of the product. Call  $g \in \operatorname{Gr}\Gamma$  abelian if  $g \times g \to g \times g \to g$  equals  $\mu$ . Note that for such g and any  $b \in \Gamma$ , hom<sub> $\Gamma$ </sub>(b, g) has a structure of an abelian group (obtained by applying the functor hom<sub> $\Gamma$ </sub>(b, -):  $\Gamma \to \operatorname{Sets}$  to the diagrams defining g).

Given  $a, g \in Gr\Gamma$ , where a is abelian, call  $\alpha: g \times a \rightarrow a$  a g-action on a if



Given such g-action, put  $\Phi^n = \hom_r(g^n, a)$ , where  $g^n = g \times \cdots \times g$   $(n \ge 1 \text{ times})$ . Define  $\delta_i : \Phi^n \to \Phi^{n+1}; i = 0, \dots, n+1$ , by putting for each  $\varphi \in \Phi^n$ ,

Then each  $\delta_i$  is a morphism of abelian groups. (This is easily shown for i > 0; for i = 0 one needs the first diagram in the definition of a g- action). Now let  $\delta \varphi = \sum_{0 \le i \le n+1} (-1)^i \delta_i \varphi$ . By direct verification (or by the proof of the Theorem in § 4) one sees that  $\delta^2 = 0$ .

DEFINITION. For any g-action on a, H(g, a) will denote the cohomology of  $0 \longrightarrow \Phi^1 \xrightarrow{\hat{\rho}} \Phi^2 \xrightarrow{\hat{\rho}} \cdots$ .

REMARK. It is not hard to see that for any g-action on a one can find  $Q, A \in A$ , A abelian, and a Q-action on A in the sense of ([12], p. 40) such that g = UQ, a = UA and  $\alpha = [m]$ , where m(x, p) = xp whenever the latter is defined for  $x \in Q$ ,  $P \in A$ . Moreover  $H(g, a) \simeq H_L(Q, A) =$  the local cohomology defined in ([12], p. 42).

- 3. Cohomology with coefficients in a group. Suppose that there are given  $Q \in A$ , an abelian topological group A and a morphism  $m: Q \times A \to A$  in T. Then m will be called a Q-action on A if, denoting m(x, p) by xp,
  - (i)  $x(p_1 + p_2) = xp_1 + xp_2$  for all  $x \in Q$ ;  $p_1, p_2 \in A$ ,
  - (ii)  $x_1(x_2p) = (x_1x_2)p$  whenever  $x_1x_2$  is defined in Q,
  - (iii) 1p = p for all  $p \in A$ .

Call such Q-action m on A equivalent to a Q'-action m' on A if and only if there is an  $S \in A$  such that S is an open local subgroup of both Q and Q' and  $m \mid S \times A = m' \mid S \times A$ . An equivalence class of Q-actions will be called a g-action, where g is the common value of Q for all Q-actions in that class. Any Q-action in the class will be called a representative of the g-action.

Given any g-action on A, put a = UA and let  $\alpha: g \times a \to a$  be equal to  $[m]: [Q] \times [A] \to [A]$  where  $m: Q \times A \to A$  is any of its representatives. Then  $\alpha$  is a g-action on a. Define  $\delta^0: A \to \Phi^1$ , where  $\Phi^1 = \hom_{\Gamma}(g, a)$ , as follows. For  $m: Q \times A \to A$  as above, consider the map  $A \to \hom_{\Gamma}(Q, A)$  assigning to  $p \in A$  the map  $Q \to A$  given by  $x \mapsto m(x, p) - p$ , for all  $x \in Q$ . The image of  $Q \mapsto A$  under the functor  $T \to \Gamma$  is in  $\Phi^1$ ; denote it by  $\delta^0 p$ . Then  $\delta^0$  is a morhism of abelian groups depending only on the g-action on A. Moreover one verifies easily that  $\delta\delta^0 = 0$ , where  $\delta: \Phi^1 \to \Phi^2$  was defined in §2.

DEFINITION. For any g-action on A, H(g,A) will denote the cohomology of  $\Phi \colon 0 \longrightarrow A \xrightarrow{\delta^0} \Phi^1 \xrightarrow{\delta} \Phi^2 \xrightarrow{\delta} \cdots$ .

There is a description of H(g,A) using the local group cohomology of W. T. van Est. For  $Q \in A$ , an abelian topological group A and a Q-action m on A, let H(Q,A) be the cohomology defined as in [8] (or, in terms of cotriads, in [19]), but based on continuous cochains. Any Q'-action m' on A such that  $Q' \subset Q$  and  $m \mid Q' \times A = m'$  will be called contained in m. If this is so, the restriction of cochains yields a map  $H(Q,A) \to H(Q',A)$ .

PROPOSITION. For any g-action on A,  $H(g, A) = \lim_{\longrightarrow} H(Q, A)$ , the direct limit being taken over the partially ordered by inclusion

(and directed) set of all Q-actions on A representing the g-action.

4. Cohomology of enlargeable group germs. A group germ g will be called *enlargeable* if and only if there exists a group  $G \in \Lambda$  such that g = UG. Such G will be called an enlargement of g.

LEMMA. Suppose g is an enlargeable group germ and there is given a g-action on an abelian topological group A. Then there exists an enlargement G of g and a G-action on A which represents the g-action.

Suppose  $m: Q \times A \rightarrow A$ , where  $Q \in \Lambda$ , represents the g-Proof.action. Replacing Q by a sufficiently small neighbourhood of 1, if needed, we may assume that Q is enlargeable (i.e., Q is a local subgroup of a group; [8], p. 393). Let G be the abstract group with the following presentation by generators and relations: Q is the set of generators and for  $x_1, \dots, x_n \in Q, x_1x_2 \dots x_n = 1$  is a defining relation if and only if this equality holds in the local group Q, after a suitable placement of brackets. The enlargeability of Q implies that the obvious map  $Q \to G$  is injective; we use it to identify Q with a subset of G. The topology on Q defines now a fundamental system of neighbourhoods in G ([2], Chapter 2, § II) making G into a topological group with the open subset Q. For each  $x \in Q$ , define  $\pi^m(x): A \to A$  by  $\pi^m(x)p = m(x, p)$ , for all  $p \in A$ . Then  $\pi^m: Q \to \operatorname{Aut}(A)$  is a morphism of the abstract local group Q into the automorphism group of A. The construction of G implies that there is a group morphism  $\pi: G \to \operatorname{Aut}(A)$ such that  $\pi \mid Q = \pi^m$ . If  $x \in G$ , then  $x = x_1 x_2 \cdots x_k : x_1, \dots, x_k \in Q$ , whence  $\pi(x) = \pi^m(x_1) \cdots, \pi^m(x_k) : A \to A$  is continuous. The continuity of m is now easily seen to imply that the action  $m_0: G \times A \rightarrow A$  given by  $m_0(x, p) = \pi(x)p$  is continuous. It evidently represents the g-action.

Given topological groups G, A, where A is abelian, and a G-action on A, let  $H_{\square}(G, A)$  denote the corresponding cohomology with empty supports ([12], p. 42 and below).

THEOREM. Suppose g is an enlargeable group germ and there is given a g-action on a finite dimentional real vector space V. Then for any enlargement G of g and any G-action on V representing the g-action,  $H(g, V) \simeq H_{\square}(G, V)$ .

*Proof.* Recall first  $H_{\square}(G, V)$ . Suppose  $m: G \times V \to V$  is the G-action. Define  $\pi: G \to GL(V)$  by  $\pi(x)p = m(x, p)$ . Denote by C the complex of V-valued, continuous, inhomogenous cochains on G. That is,  $C = \bigoplus_{n \geq 0} C^n$ , where  $C^0 = V$  and  $C^n$  is the set of continuous maps from  $G \times \cdots \times G$  (n times) to V, made into an abelian group by the addition in V.  $\delta: C^0 \to C^1$  is defined by  $(\delta p)(x_1) = \pi(x_1)p - p$  for

all  $p \in C^0$ , and  $\delta: C^n \to C^{n+1}$ ,  $(n \ge 1)$ , by

$$\begin{array}{l} (\delta f)(x_1,\,\cdots,\,x_{n+1}) \,=\, \pi(x_1)f(x_2,\,\cdots,\,x_{n+1}) \\ \\ +\, \sum_{1\leq i\leq n} (-1)^i f(x_1,\,\cdots,\,x_i x_{i+1},\,\cdots,\,x_{n+1}) \\ \\ +\, (-1)^{n+1} f(x_1,\,\cdots,\,x_n) \end{array}$$

for all  $f \in C^n$ . Call  $f \in C^n$  locally trivial if there is a neighbourhood Q of 1 in G such that  $f(x_1, \dots, x_n) = 0$  whenever all  $x_1, \dots, x_n$  are in Q. The locally trivial cochains form a subcomplex  $C_l$  of C. Let  $\overline{C}$  be the quotient complex  $C/C_l$ . Its cohomology is by definition  $H_{\square}(G, V)$ .

Consider now, for each  $n \geq 1$ , the map  $C^n \to \Phi^n$  (see Definition, § 3) given by  $f \mapsto [f]$ . Let  $C^0 \to \Phi^0$  be the identity. All these maps are morphisms of abelian groups and they define a cochain map of C into  $\Phi$ . Since  $G \times \cdots \times G$  is completely regular at 1 ([16], p. 29), each  $C^n \to \Phi^n$  is an epimorphism. Clearly its kernel is  $C^n$ . Therefore the cochain map  $C \to \Phi$  induces an isomorphism  $\overline{C} \to \Phi$ .

REMARK. The cohomology of C has been discussed in [4]-[7], [9], [11], [12] and [17].

5. Cohomology of Lie group germs. A local topological group Q will be called a local Lie group if the space Q admits an analytic manifold structure such that the map  $(x, y) \mapsto xy^{-1}$  is analytic on the open submanifold of  $Q \times Q$  on which it is defined. Any such manifold structure on Q is unique ([10], p. 107).

Let  $g \in Gr\Gamma$ . We shall call g a Lie group germ if g = UQ for some local Lie group Q. The Lie algebra of any such Q will be called the Lie algebra of g; it is easy to see that the latter is well defined.

Given a Lie algebra L and an L-module V which is a finite dimensional real vector space, let H(L, V) denote the Chevalley-Eilenberg cohomology [1].

Theorem 1. If g is a Lie group germ with Lie algebra L, then for every g-action on a finite dimensional vector space V,  $H(g, V) \simeq H(L, V)$ .

Here the *L*-module structure of V is defined by the g-action as follows. Let  $m: Q \times V \to V$ , where Q is a local Lie group, be a representative of the g-action. Define  $\pi^m: Q \to GL(V)$  by  $\pi^m(x)p = m(x, p)$ . Then  $\pi^m$  is a morphism of local Lie groups, thus it is differentiable ([10], p. 107). Its differential at  $1 \in Q$  defines a morphism of their Lie algebras  $\pi_0^m: L \to gl(V)$ , ([10], p. 102) which does not

depend on the choice of Q. Thus V becomes an L-module.

Since a Lie group germ is known to be enlargeable, it follows from the considerations in § 4 that, under the assumptions of Theorem 1, there is a Lie group G with a continuous representation  $\pi\colon G\to GL(V)$  such that  $H(g,V)\simeq H_{\square}(G,V)$ . Thus Theorem 1 will follow if we show.

THEOREM 2. Given a Lie group G and  $\pi\colon G\to GL(V)$  a continuous representation in a finite dimentional real vector space V, let  $\pi_{\scriptscriptstyle 0}\colon L\to g(V)$  be the corresponding morphism of Lie algebras, making V into an L-module. Then  $H_{\scriptscriptstyle \square}(G,\,V)\simeq H(L,\,V)$ .

6. Smooth cohomology with empty supports. For the proof of Theorem 2 we shall need to know that the definition of  $H_{\square}(G, V)$ , as given in §4, yields the same cohomology if smooth (i.e., indefinitely differentiable) cochains are used instead of continuous ones. Thus let  ${}_dC \subset C$  be the subcomplex of smooth cochains and put  ${}_dC_l = {}_dC \cap C_l$ ,  ${}_d\bar{C} = {}_dC/{}_dC_l$ .

Proposition. 
$$H(_d\bar{C}) \simeq H(\bar{C})$$
.

*Proof.* We shall modify a construction due to G. D. Mostow ([17], p. 33) so that it becomes applicable modulo the locally trivial cochains.

Let K be the complex of V-valued, continuous, homogeneous cochains on G with homogeneous coboundary  $(K^n = F^n(G, V))$  in the notation of [17]). Let  $K_l$  be the subcomplex of locally trivial cochains and put  $\overline{K} = K/K_l$ . Denote by  ${}_dK \subset K$  the subcomplex of smooth cochains and put  ${}_dK_l = {}_dK \cap K_l$ . Then  ${}_dK \subset K$  induces a cochain map  $\gamma$  of  ${}_d\overline{K} = {}_dK/{}_dK_l$  into  $\overline{K}$ . The standard isomorphism  $K \simeq C$  ([3], p. 54) obviously carries  $K_l$  and  ${}_dK$  into  $C_l$  and  ${}_dC$  respectively. Hence it will suffice to prove that  $H(\gamma)$ :  $H({}_d\overline{K}) \to H(\overline{K})$  is an isomorphism.

Let  $\mathscr{U}$  denote the family of neighbourhoods of 1 in G, and choose a sequence  $\varphi_0, \varphi_1, \varphi_2, \cdots$  of real valued smooth functions on G with compact supports and Haar integral 1 such that for every  $Q \in \mathscr{U}$  there is a  $\varphi_i$  whose support is contained in Q. For every i, define a cochain map  $\alpha_i \colon K \to {}_d K$  by

$$(\alpha_i f)(x_0, \dots, x_n) = \int_G \dots \int_G f(x_0 \xi_0, \dots, x_n \xi_n) \varphi_i(\xi_0) \dots \varphi_i(\xi_n) d\xi_0 \dots d\xi_n$$

$$= \int_G \dots \int_G f(\xi_0, \dots, \xi_n) \varphi_i(x_0^{-1} \xi_0) \dots \varphi_i(x_n^{-1} \xi_n) d\xi_0 \dots d\xi_n$$

for  $f \in K^n$ ;  $n \ge 0$ . Also define maps  $u_i: K \to K$  of degree -1 by

$$egin{aligned} &(u_if)(x_0,\,\cdots,\,x_{n-1})\ &=\sum\limits_{j=1}^n{(-1)^j}\!\!\int_{\scriptscriptstyle G}\!\cdots\!\int_{\scriptscriptstyle G}\!\!f(x_0,\,\cdots,\,x_{j-1},\,x_{j-1}\!\!\,\xi_j,\,\cdots,\,x_{n-1}\!\!\,\xi_n)}arphi_i(\xi_j)\ &\cdotsarphi_i(\xi_n)d\xi_i\cdots d\xi_n \end{aligned}$$

for  $f \in K^n$ ;  $n \ge 1$ , and by  $u_i f = 0$  for  $f \in K^0$ .

It is easy to see that if  $f \in K_i$ , then there is an i such that  $\alpha_i f$  and  $u_i f$  are in  $K_i$ . One verifies the identities

(\*) 
$$f - \alpha_i f = \delta u_i f + u_i \delta f; \qquad i = 0, 1, 2, \cdots$$

(see [5], § 4).

For  $f \in K$ , let  $\overline{f}$  be its image in  $\overline{K}$ , and if  $\overline{f}$  is a cocycle, let  $\{f\} \in H(\overline{K})$  be its class.

To prove that  $H(\gamma)$  is epimorphic, suppose that there is given a cocycle  $\overline{f} \in \overline{K}$ . Then  $\delta f \in K_l$ , whence for a suitable  $i, f - \alpha_i f - \delta u_i f \in K_l$ . Therefore  $\{f\} = \{\alpha_i f\}$ . But  $\alpha_i f \in {}_d K$ .

To show that  $H(\gamma)$  is monomorphic, suppose that  $f \in {}_{d}K$  is such that  $\{f\} = 0$ . Then there are  $h \in K$ ,  $g \in K_{l}$  such that  $f - \delta h = g$ . Hence (\*) implies

 $f = \alpha_i \delta h + \alpha_i g + \delta u_i f + u_i \delta g = \delta(\alpha_i h + u_i f) + (\alpha_i + u_i \delta) g$ . Thus, for suitable  $i, f - \delta(\alpha_i h + u_i f) \in K_l$ , and since  $\alpha_i h + u_i f \in {}_d K$ , it follows that the cohomology class of f in  $H({}_d \overline{K})$  is zero.

- 7. A spectral sequence. Suppose G,  $\pi$ , V and L satisfy the assumptions of Theorem 2. By the result of §6, Theorem 2 will follow if we show that  $H(_{\bar{a}}\bar{C}) \simeq H(L,V)$ . We shall consider a bicomplex F, similar to the one defined in [4], §10, and we shall show that the quotient complex  $\bar{F}$  obtained by factoring out the locally trivial cochains is such that
  - (i) the initial term of the first spectral sequence is

$${}^{\scriptscriptstyle{0}}E_{\scriptscriptstyle{1}}^{\scriptscriptstyle{s}}=H^{\scriptscriptstyle{s}}({}_{\scriptscriptstyle{d}}ar{C})$$
 and  ${}^{\scriptscriptstyle{r}}E_{\scriptscriptstyle{1}}^{\scriptscriptstyle{s}}=0$  for all  $r>0$  ,

(ii) the initial term of the second spectral sequence is

$${}^rE_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}=H^{\scriptscriptstyle r}(L,\,V)$$
 and  ${}^rE_{\scriptscriptstyle 1}^{\scriptscriptstyle s}=0$  for all  $s>0$  .

As well known, this implies  $H({}_dar{C})\simeq H(L,\,V)$ .

We begin by defining  $F = \bigoplus_{r,s \geq 0} {}^r F^s$ . Let  $L_1, \dots, L_r$  be r copies of L and  $G_1, \dots, G_s$ , s copies of G. Then, for  $r, s \geq 1$ ,  ${}^r F^s$  is the vector space of all smooth maps

$$L_{\scriptscriptstyle 1} \times \cdots \times L_{\scriptscriptstyle r} \times G_{\scriptscriptstyle 1} \times \cdots \times G_{\scriptscriptstyle s} \longrightarrow V$$

which are r-linear and alternating in the first r variables. For every  $s \ge 1$ ,  ${}^{\circ}F^{s}$  is the subspace of  ${}_{d}C^{s}$  composed of those cochains f which

satisfy the following local normalization condition: for each  $f \in {}^{\circ}F^{s}$ , there is a  $Q \in \mathscr{U}$  such that  $f(x_{1}, \dots, x_{s}) = 0$  whenever  $x_{1}, \dots, x_{s} \in Q$  and at least one  $x_{i}$  equals 1.  ${}^{r}F^{0}$  is, for each  $r \geq 1$ , the space of V-valued r-linear alternating functions on L, and  ${}^{\circ}F^{0} = V$ .

For each  $x \in G$ , let  $\rho_x \colon G \to G$  be the right translation  $y \mapsto yx$ . Denote by  $\rho_x^*$  the induced map on the tangent bundle. We shall identify L with the tangent space to G at 1. For each  $X \in L$ ,  $\widetilde{X}$  will denote the right invariant vector field (i.e., satisfying  $\rho_x^* \widetilde{X} = \widetilde{X}$  for all x) taking at 1 the value X.

Occasionally an  $f \in {}^rF^s$  will be interpreted as a differential form on G, depending on the parameter  $(x_2, \dots, x_s) \in G \times \dots \times G$  which, for fixed value of the parameter, takes at  $\widetilde{X}_1 \cdots, \widetilde{X}_r$  and  $x_1 \in G$  the value  $f(X_1, \dots, X_r, x_1, \dots, x_s)$ . The morphisms

$$d_1: {}^rF^s \longrightarrow {}^{r+1}F^s, d_2: {}^rF^s \longrightarrow {}^rF^{s+1}$$

are now defined as follows.

If  $f \in {}^{n}F^{0}$ , let  $d_{1}f$  be given by the formula

$$egin{align} (d_{_1}f)(X_{_1},\, \cdots,\, X_{_{n+1}}) &= rac{1}{n+1} \sum{(-1)^{i+1}} \pi_{_0}(X_i) f(X_1,\, \cdots \hat{\ } \cdots,\, X_{_{n+1}}) \ &+ rac{1}{n+1} \sum{(-1)^{i+j}} f([X_i,\, X_j],\, X_1 \cdot \hat{\ } \cdots,\, X_{_{n+1}}) \end{array}$$

for every  $X_1, \dots, X_{n+1} \in L$ .

Let  $f \in {}^rF^s$ ;  $s \ge 1$ . For any fixed  $x_2, \dots, x_s \in G$  consider the differential form  $\omega_f$  for which identically

$$\omega_f(\widetilde{X}_1, \dots, \widetilde{X}_r; x_1) = \pi(x_1^{-1})f(X_1, \dots, X_r, x_1, \dots, x_s)$$
.

Let  $d_1f$  be the (r+1)-form whose value at  $x_1$  is  $\pi(x_1)d\omega_f$ , d being the exterior derivative ([10], p. 21). One sees easily that  $d_1f \in {}^{r+1}F^s$ .

Let  $d_2: {}^{\circ}F^s \longrightarrow {}^{\circ}F^{s+1}$  be the coboundary  $\delta$  of § 4. Finally, let  $d_2: {}^{r}F^s \longrightarrow {}^{r}F^{s+1}$ ;  $r \geq 1$ , be given by

$$(d_2f)(X_1, \dots, X_r, x_1, \dots, x_{s+1}) \ = \sum (-1)^i f(X_1, \dots, X_r, x_1, \dots, x_i x_{i+1}, \dots, x_{s+1}) \ + (-1)^{s+1} f(X_1, \dots, X_r, x_1, \dots, x_s) .$$

This completes the definition of F.

One has  $d_1d_2=d_2d_1$  and  $d_1^2=d_2^2=0$  ([4], §10). Moreover the complex

$${}^rF: 0 \longrightarrow {}^rF^0 \xrightarrow{d_2} {}^rF^1 \xrightarrow{d_2} \cdots$$

has for  $r \ge 1$  a contracting homotopy  $u: {}^rF^{s+1} \to {}^rF^s$  given by

$$(uf)(X_1, \dots, X_r, x_1, \dots, x_s) = -f(X_1, \dots, X_r, 1, x_1, \dots, x_s)$$

 $([4], \S 9).$ 

Call a bicochain  $f \in {}^rF^s$  locally trivial if there exists a  $Q \in \mathcal{U}$  such that  $f(X_1, \dots, X_r, x_1, \dots, x_s) = 0$  for all  $X_1, \dots, X_r \in L, x_1, \dots, x_s \in Q$ . Let  $\overline{F}$  be the quotient of F by the sub-bicomplex of locally trivial cochains. Then  $\overline{F}$  is a bicomplex with operators  $\overline{d}_1$ ,  $\overline{d}_2$  induced by  $d_1$ ,  $d_2$ . We shall show that it has the properties (i), (ii) stated at the beginning of this section.

For each r let  ${}^r\bar{F}$  be the complex  $0 \to {}^r\bar{F}^0 \to {}^r\bar{F}^1 \to \cdots$  with coboundary  $\bar{d}_2$ , and let for each s,  $\bar{F}^s$  be defined similarly.

To obtain (i), one shows first that the inclusion  ${}^{_{0}}F \subset {}_{d}C$  induces an isomorphism  $H({}^{_{0}}\bar{F}) \to H({}_{d}\bar{C})$ . This is a consequence of the two facts

- (a) if  $f \in {}_{d}C$  and  $\partial f$  is locally trivial, then f is cohomologous in  ${}_{d}C$  to some  $h \in {}^{0}F$ ,
- (b) if  $f \in {}^{\circ}F$  and  $f \delta g$  is locally trivial for some  $g \in {}_{d}C$ , then there exists an  $h \in {}^{\circ}F$  such that  $f \delta h$  is locally trivial.

The proof of (a) and (b) is easily obtained from that of Lemmas 6.1 and 6.2 in [3], p. 62. One concludes that  ${}^{\circ}E_{_{1}}^{s}=H^{s}(_{d}\bar{C})$ , for the first spectral sequence. Since each  ${}^{r}\bar{F},\,r\geq 1$ , has a contracting homotopy  $\bar{u}$  induced by  $u,\,{}^{r}E_{_{1}}^{s}=0$  for  $r\geq 1$ .

To prove (ii) observe first that  $\overline{F}^{0} = F^{0}$  and  $H(F^{0}) = H(L, V)$ , by definition. Hence  ${}^{r}E^{0}_{1} = H^{r}(L, V)$  for the second spectral sequence.

It remains to show that for each  $s \ge 1$ ,  $\overline{F}^s$  is an acyclic complex. Let  $f \in {}^rF^s$  be such that  $d_1f$  is locally trivial. Thus there is a  $Q \in \mathcal{U}$  such that for each  $x_2, \dots, x_s \in Q$  the (r+1)-form  $d\omega_f$  vanishes identically on Q. We may assume that Q is diffeomorphic to a Euclidean ball.

For r=0, the condition  $d\omega_f=0$  on Q implies that  $\pi(x_1^{-1})f(x_1,\cdots,x_s)$  does not depend on  $x_1$  when  $x_1,\cdots,x_s\in Q$ . Consequently, by the local normalization condition, f is locally trivial. Hence  $\bar{d}_1\colon {}^0\bar{F}^s \to {}^1\bar{F}^s$  is a monomorphism.

For  $r \geq 1$ , and any  $x_2, \dots, x_s \in G$ , the restriction  $\omega_f \mid Q$  is a closed r-form on Q. Hence the Poincarè lemma ([13], p. 87) implies the existence of an (r-1)-form  $\mu$  on Q such that  $d\mu = \omega_f$ . The proof of Poincarè lemma shows that  $\mu$  depends smoothly on the parameter  $(x_2, \dots, x_s) \in Q \times \dots \times Q$  (where smoothness is understood in the sense of [7], §1). Let  $\varphi$  be a smooth real-valued function on G, identically equal to 1 in some neighbourhood of the identity and vanishing outside some neighbourhood of the identity whose closure is contained in Q. For each  $x_2, \dots, x_s \in G$ , let h be the (r-1)-form on G which at  $x_1 \in G$  takes the value  $\varphi(x_1) \varphi(x_2) \dots \varphi(x_s) \pi(x_1) \mu$  when  $x_1, \dots, x_s \in Q$  and 0 otherwise.

Recalling the interpretation of  ${}^rF^s$  as the space of r-forms depending on the parameter  $(x_2, \cdots, x_s) \in G \times \cdots \times G$ , we see readily that  $h \in {}^{r-1}F^s$ . Moreover the construction guarantees that  $f - d_1h$  is locally trivial. Thus  $\bar{F}^s$  is exact at  ${}^r\bar{F}^s$  and the proof of Theorem 2 is complete.

8. Explicit form of the isomorphism. We shall describe the isomorphism  $H({}_{d}\bar{C}) \simeq H(L,\,V)$ , i.e.,  $H({}^{0}\bar{F}) \simeq H(\bar{F}^{0})$ . Let Tot F be the total complex of F ([14], p. 340). For  $f \in {}^{0}F^{n}$ ,  $n \geq 1$ ,  $1 \leq j \leq n$  and  $X \in L$  denote by  $\partial_{j}(X)f \in {}^{0}F^{n-1}$  the derivative in the direction X with respect to the jth variable at  $x_{j} = 1$ . Define maps  $\tau^{n,r} : {}^{0}F^{n} \to {}^{r}F^{n-r}$ ;  $r = 0, 1, \dots, n$  by  $\tau^{n,0} = \text{identity}$ , and for  $r \geq 1$ 

$$(\tau^{n,r}f)(X_1, \dots, X_r, x_{r+1}, \dots, x_n)$$

$$= (\sum \operatorname{sgn}(i_1, \dots, i_r)\partial_1(X_{i_1}) \dots \partial_r(X_{i_r})f)(x_{r+1}, \dots, x_n),$$

where  $\sum$  ranges over all permutations of  $(1, \dots, r)$ . It is shown in [4], p. 500 that the maps  $\tau^n = \sum_{0 \le r \le n} \tau^{n,r} : {}^0F^n \to (\operatorname{Tot} F)^n$  define a cochain map  $\tau : {}^0F \to \operatorname{Tot} F$ . Let  $\overline{\tau} : {}^0F \to \operatorname{Tot} \overline{F}$  be induced by  $\tau$ . Denote by  $\overline{p}_1$ ,  $\overline{p}_2$  the projections  $\operatorname{Tot} \overline{F} \to \overline{F}^0$ ,  $\operatorname{Tot} \overline{F} \to {}^0\overline{F}$ . These are evidently cochain maps and from the behaviour (i), (ii) of the spectral sequences it follows that  $H(\overline{p}_1)$ ,  $H(\overline{p}_2)$  are isomorphisms. Now  $\overline{p}_2\overline{\tau}$  is the identity, thus  $H(\overline{\tau}) : H({}^0\overline{F}) \to H(\operatorname{Tot} \overline{F})$  is an isomorphism, whence the same is true about  $H(\overline{p}_1\overline{\tau}) : H({}^0\overline{F}) \to H(\overline{F}^0)$ . Clearly  $\overline{p}_1\overline{\tau} \mid {}^0\overline{F}^n = \overline{\tau}^{n,n}$ .

## REFERENCES

- 1. C. Chevalley and S, Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
- 2. C. Chevalley, Theory of Lie groups, Vol. 1. Princeton Univ. Press, Princeton 1946.
- 3. S. Eilenberg and S. MacLane, Cohomology theory in abstract groups, Ann. of Math., 48 (1947). 51-78.
- 4. W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups, Indag. Math., 15 (1953), 484-504.
- 5. ———, On the algebraic cohomology concepts in Lie groups I, Indag. Math., 17 (1955), 225-233.
- 6. ——, Une application d'une méthode de Cartan-Leray, Indag. Math., 17 (1955), 542-545.
- 7. ———, A generalization of the Cartain-Leray spectral sequence I, Indag. Math., **20** (1958), 399-405.
- 8. ——, Local and global groups I, Indag. Math., 24 (1962), 391-408.
- 9. I. M. Gel'fand D. B. Fuks, On classifying spaces for principal fiberings with Hausdorff bases, Soviet Math. Dokl., 9 (1968), No. 4, 851-854.
- 10. S. Helgason, Differential geometry and symmetric spaces, Acad. Press, New York 1962.
- 11, G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math., 6 (1962), 367-401.
- 12. Sze-tsen Hu, Cohomology theory in topological groups, Michigan Math. J.,  $\mathbf{1}$  (1952), 11-59,

- 13. S. Lang, Introduction to differentiable manifolds, Interscience. New York-London 1962.
- 14. Saunders MacLane, Homology, Springer 1963.
- 15. A. I. Malcev, Sur les groupes topologiques locaux et complets, C. R. (Doklady) Acad. Sci. URSS (N.S.) **32** (1941), 606-608.
- 16. D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955.
- 17. G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math., 73 (1961), 20-48.
- 18. A. Robinson, Germs, Applications of Model Theory to Algebra, Analysis and Probability, (Edited by W. A. J. Luxemburg), Holt, Reinhart, Winston 1969.
- 19. S. Świerczkowski, On the cohomology of local groups, J. Austral Math. Soc., 12 (1971), 249-255.

Received February 3, 1970. This work was partially supported by a grant from the Netherlands Organization for the Advancement of Pure Research, Z. W. O.

AUSTRALIAN NATIONAL UNIVERSITY